Jump to content

Solar eclipse of November 4, 2078

From Wikipedia, the free encyclopedia
Solar eclipse of November 4, 2078
Map
Type of eclipse
NatureAnnular
Gamma−0.2285
Magnitude0.9255
Maximum eclipse
Duration509 s (8 min 29 s)
Coordinates27°48′S 83°18′W / 27.8°S 83.3°W / -27.8; -83.3
Max. width of band287 km (178 mi)
Times (UTC)
Greatest eclipse16:55:44
References
Saros144 (20 of 70)
Catalog # (SE5000)9684

An annular solar eclipse will occur at the Moon's descending node of orbit on Friday, November 4, 2078,[1] with a magnitude of 0.9255. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 22 hours before apogee (on November 5, 2078, at 14:45 UTC), the Moon's apparent diameter will be smaller.[2]

The path of annularity will be visible from parts of Chile, Argentina, and Tristan da Cunha. A partial solar eclipse will also be visible for parts of eastern Oceania, Mexico, the southwestern United States, Central America, South America, and Antarctica.

Eclipse details

[edit]

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[3]

November 4, 2078 Solar Eclipse Times
Event Time (UTC)
First Penumbral External Contact 2078 November 04 at 13:50:30.4 UTC
First Umbral External Contact 2078 November 04 at 14:56:36.8 UTC
First Central Line 2078 November 04 at 14:59:50.8 UTC
First Umbral Internal Contact 2078 November 04 at 15:03:05.2 UTC
First Penumbral Internal Contact 2078 November 04 at 16:12:46.9 UTC
Greatest Eclipse 2078 November 04 at 16:55:44.4 UTC
Ecliptic Conjunction 2078 November 04 at 16:58:29.7 UTC
Equatorial Conjunction 2078 November 04 at 17:07:32.6 UTC
Greatest Duration 2078 November 04 at 17:13:29.5 UTC
Last Penumbral Internal Contact 2078 November 04 at 17:38:24.2 UTC
Last Umbral Internal Contact 2078 November 04 at 18:48:15.5 UTC
Last Central Line 2078 November 04 at 18:51:30.7 UTC
Last Umbral External Contact 2078 November 04 at 18:54:45.5 UTC
Last Penumbral External Contact 2078 November 04 at 20:00:55.0 UTC
November 4, 2078 Solar Eclipse Parameters
Parameter Value
Eclipse Magnitude 0.92551
Eclipse Obscuration 0.85657
Gamma −0.22852
Sun Right Ascension 14h40m53.9s
Sun Declination -15°38'07.6"
Sun Semi-Diameter 16'07.5"
Sun Equatorial Horizontal Parallax 08.9"
Moon Right Ascension 14h40m33.5s
Moon Declination -15°49'24.5"
Moon Semi-Diameter 14'42.4"
Moon Equatorial Horizontal Parallax 0°53'58.5"
ΔT 104.5 s

Eclipse season

[edit]

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight. The first and last eclipse in this sequence is separated by one synodic month.

Eclipse season of October–November 2078
October 21
Ascending node (full moon)
November 4
Descending node (new moon)
November 19
Ascending node (full moon)
Penumbral lunar eclipse
Lunar Saros 118
Annular solar eclipse
Solar Saros 144
Penumbral lunar eclipse
Lunar Saros 156
[edit]

Eclipses in 2078

[edit]

Metonic

[edit]

Tzolkinex

[edit]

Half-Saros

[edit]

Tritos

[edit]

Solar Saros 144

[edit]

Inex

[edit]

Triad

[edit]

Solar eclipses of 2076–2079

[edit]

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[4]

The partial solar eclipses on January 6, 2076 and July 1, 2076 occur in the previous lunar year eclipse set.

Solar eclipse series sets from 2076 to 2079
Ascending node   Descending node
Saros Map Gamma Saros Map Gamma
119 June 1, 2076

Partial
−1.3897 124 November 26, 2076

Partial
1.1401
129 May 22, 2077

Total
−0.5725 134 November 15, 2077

Annular
0.4705
139 May 11, 2078

Total
0.1838 144 November 4, 2078

Annular
−0.2285
149 May 1, 2079

Total
0.9081 154 October 24, 2079

Annular
−0.9243

Saros 144

[edit]

This eclipse is a part of Saros series 144, repeating every 18 years, 11 days, and containing 70 events. The series started with a partial solar eclipse on April 11, 1736. It contains annular eclipses from July 7, 1880 through August 27, 2565. There are no hybrid or total eclipses in this set. The series ends at member 70 as a partial eclipse on May 5, 2980. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity will be produced by member 51 at 9 minutes, 52 seconds on December 29, 2168. All eclipses in this series occur at the Moon’s descending node of orbit.[5]

Series members 5–26 occur between 1801 and 2200:
5 6 7

May 25, 1808

June 5, 1826

June 16, 1844
8 9 10

June 27, 1862

July 7, 1880

July 18, 1898
11 12 13

July 30, 1916

August 10, 1934

August 20, 1952
14 15 16

August 31, 1970

September 11, 1988

September 22, 2006
17 18 19

October 2, 2024

October 14, 2042

October 24, 2060
20 21 22

November 4, 2078

November 15, 2096

November 27, 2114
23 24 25

December 7, 2132

December 19, 2150

December 29, 2168
26

January 9, 2187

Metonic series

[edit]

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

22 eclipse events between June 12, 2029 and November 4, 2116
June 11–12 March 30–31 January 16 November 4–5 August 23–24
118 120 122 124 126

June 12, 2029

March 30, 2033

January 16, 2037

November 4, 2040

August 23, 2044
128 130 132 134 136

June 11, 2048

March 30, 2052

January 16, 2056

November 5, 2059

August 24, 2063
138 140 142 144 146

June 11, 2067

March 31, 2071

January 16, 2075

November 4, 2078

August 24, 2082
148 150 152 154 156

June 11, 2086

March 31, 2090

January 16, 2094

November 4, 2097

August 24, 2101
158 160 162 164

June 12, 2105

November 4, 2116

Tritos series

[edit]

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200

December 21, 1805
(Saros 119)

November 19, 1816
(Saros 120)

October 20, 1827
(Saros 121)

September 18, 1838
(Saros 122)

August 18, 1849
(Saros 123)

July 18, 1860
(Saros 124)

June 18, 1871
(Saros 125)

May 17, 1882
(Saros 126)

April 16, 1893
(Saros 127)

March 17, 1904
(Saros 128)

February 14, 1915
(Saros 129)

January 14, 1926
(Saros 130)

December 13, 1936
(Saros 131)

November 12, 1947
(Saros 132)

October 12, 1958
(Saros 133)

September 11, 1969
(Saros 134)

August 10, 1980
(Saros 135)

July 11, 1991
(Saros 136)

June 10, 2002
(Saros 137)

May 10, 2013
(Saros 138)

April 8, 2024
(Saros 139)

March 9, 2035
(Saros 140)

February 5, 2046
(Saros 141)

January 5, 2057
(Saros 142)

December 6, 2067
(Saros 143)

November 4, 2078
(Saros 144)

October 4, 2089
(Saros 145)

September 4, 2100
(Saros 146)

August 4, 2111
(Saros 147)

July 4, 2122
(Saros 148)

June 3, 2133
(Saros 149)

May 3, 2144
(Saros 150)

April 2, 2155
(Saros 151)

March 2, 2166
(Saros 152)

January 29, 2177
(Saros 153)

December 29, 2187
(Saros 154)

November 28, 2198
(Saros 155)

Inex series

[edit]

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200

May 5, 1818
(Saros 135)

April 15, 1847
(Saros 136)

March 25, 1876
(Saros 137)

March 6, 1905
(Saros 138)

February 14, 1934
(Saros 139)

January 25, 1963
(Saros 140)

January 4, 1992
(Saros 141)

December 14, 2020
(Saros 142)

November 25, 2049
(Saros 143)

November 4, 2078
(Saros 144)

October 16, 2107
(Saros 145)

September 26, 2136
(Saros 146)

September 5, 2165
(Saros 147)

August 16, 2194
(Saros 148)

References

[edit]
  1. ^ "November 4, 2078 Annular Solar Eclipse". timeanddate. Retrieved 22 August 2024.
  2. ^ "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 22 August 2024.
  3. ^ "Annular Solar Eclipse of 2078 Nov 04". EclipseWise.com. Retrieved 22 August 2024.
  4. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  5. ^ "NASA - Catalog of Solar Eclipses of Saros 144". eclipse.gsfc.nasa.gov.
[edit]