Solar eclipse of January 16, 2037
Solar eclipse of January 16, 2037 | |
---|---|
Type of eclipse | |
Nature | Partial |
Gamma | 1.1477 |
Magnitude | 0.7049 |
Maximum eclipse | |
Coordinates | 68°30′N 20°48′E / 68.5°N 20.8°E |
Times (UTC) | |
Greatest eclipse | 9:48:55 |
References | |
Saros | 122 (59 of 70) |
Catalog # (SE5000) | 9590 |
A partial solar eclipse will occur at the Moon's descending node of orbit on Friday, January 16, 2037,[1] with a magnitude of 0.7049. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial eclipse will be visible for parts of Europe, North Africa, the Middle East, and Central Asia.
Images
[edit]Eclipse details
[edit]Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[2]
Event | Time (UTC) |
---|---|
First Penumbral External Contact | 2037 January 16 at 07:42:39.8 UTC |
Ecliptic Conjunction | 2037 January 16 at 09:35:36.0 UTC |
Greatest Eclipse | 2037 January 16 at 09:48:55.1 UTC |
Equatorial Conjunction | 2037 January 16 at 10:01:35.5 UTC |
Last Penumbral External Contact | 2037 January 16 at 11:55:08.4 UTC |
Parameter | Value |
---|---|
Eclipse Magnitude | 0.70493 |
Eclipse Obscuration | 0.60942 |
Gamma | 1.14772 |
Sun Right Ascension | 19h54m30.1s |
Sun Declination | -20°49'43.5" |
Sun Semi-Diameter | 16'15.5" |
Sun Equatorial Horizontal Parallax | 08.9" |
Moon Right Ascension | 19h54m05.4s |
Moon Declination | -19°47'33.7" |
Moon Semi-Diameter | 14'51.8" |
Moon Equatorial Horizontal Parallax | 0°54'32.8" |
ΔT | 77.1 s |
Eclipse season
[edit]This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.
January 16 Descending node (new moon) |
January 31 Ascending node (full moon) |
---|---|
Partial solar eclipse Solar Saros 122 |
Total lunar eclipse Lunar Saros 134 |
Related eclipses
[edit]Eclipses in 2037
[edit]- A partial solar eclipse on January 16.
- A total lunar eclipse on January 31.
- A total solar eclipse on July 13.
- A partial lunar eclipse on July 27.
Metonic
[edit]- Preceded by: Solar eclipse of March 30, 2033
- Followed by: Solar eclipse of November 4, 2040
Tzolkinex
[edit]- Preceded by: Solar eclipse of December 5, 2029
- Followed by: Solar eclipse of February 28, 2044
Half-Saros
[edit]- Preceded by: Lunar eclipse of January 12, 2028
- Followed by: Lunar eclipse of January 22, 2046
Tritos
[edit]- Preceded by: Solar eclipse of February 17, 2026
- Followed by: Solar eclipse of December 16, 2047
Solar Saros 122
[edit]- Preceded by: Solar eclipse of January 6, 2019
- Followed by: Solar eclipse of January 27, 2055
Inex
[edit]- Preceded by: Solar eclipse of February 7, 2008
- Followed by: Solar eclipse of December 27, 2065
Triad
[edit]- Preceded by: Solar eclipse of March 18, 1950
- Followed by: Solar eclipse of November 18, 2123
Solar eclipses of 2036–2039
[edit]This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[3]
The partial solar eclipses on February 27, 2036 and August 21, 2036 occur in the previous lunar year eclipse set.
Solar eclipse series sets from 2036 to 2039 | ||||||
---|---|---|---|---|---|---|
Ascending node | Descending node | |||||
Saros | Map | Gamma | Saros | Map | Gamma | |
117 | July 23, 2036 Partial |
−1.425 | 122 | January 16, 2037 Partial |
1.1477 | |
127 | July 13, 2037 Total |
−0.7246 | 132 | January 5, 2038 Annular |
0.4169 | |
137 | July 2, 2038 Annular |
0.0398 | 142 | December 26, 2038 Total |
−0.2881 | |
147 | June 21, 2039 Annular |
0.8312 | 152 | December 15, 2039 Total |
−0.9458 |
Saros 122
[edit]This eclipse is a part of Saros series 122, repeating every 18 years, 11 days, and containing 70 events. The series started with a partial solar eclipse on April 17, 991 AD. It contains total eclipses from July 12, 1135 through August 3, 1171; hybrid eclipses on August 13, 1189 and August 25, 1207; and annular eclipses from September 4, 1225 through October 10, 1874. The series ends at member 70 as a partial eclipse on May 17, 2235. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of totality was produced by member 9 at 1 minutes, 25 seconds on July 12, 1135, and the longest duration of annularity was produced by member 50 at 6 minutes, 28 seconds on October 10, 1874. All eclipses in this series occur at the Moon’s descending node of orbit.[4]
Series members 46–68 occur between 1801 and 2200: | ||
---|---|---|
46 | 47 | 48 |
August 28, 1802 |
September 7, 1820 |
September 18, 1838 |
49 | 50 | 51 |
September 29, 1856 |
October 10, 1874 |
October 20, 1892 |
52 | 53 | 54 |
November 2, 1910 |
November 12, 1928 |
November 23, 1946 |
55 | 56 | 57 |
December 4, 1964 |
December 15, 1982 |
December 25, 2000 |
58 | 59 | 60 |
January 6, 2019 |
January 16, 2037 |
January 27, 2055 |
61 | 62 | 63 |
February 7, 2073 |
February 18, 2091 |
March 1, 2109 |
64 | 65 | 66 |
March 13, 2127 |
March 23, 2145 |
April 3, 2163 |
67 | 68 | |
April 14, 2181 |
April 25, 2199 |
Metonic series
[edit]The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.
22 eclipse events between June 12, 2029 and November 4, 2116 | ||||
---|---|---|---|---|
June 11–12 | March 30–31 | January 16 | November 4–5 | August 23–24 |
118 | 120 | 122 | 124 | 126 |
June 12, 2029 |
March 30, 2033 |
January 16, 2037 |
November 4, 2040 |
August 23, 2044 |
128 | 130 | 132 | 134 | 136 |
June 11, 2048 |
March 30, 2052 |
January 16, 2056 |
November 5, 2059 |
August 24, 2063 |
138 | 140 | 142 | 144 | 146 |
June 11, 2067 |
March 31, 2071 |
January 16, 2075 |
November 4, 2078 |
August 24, 2082 |
148 | 150 | 152 | 154 | 156 |
June 11, 2086 |
March 31, 2090 |
January 16, 2094 |
November 4, 2097 |
August 24, 2101 |
158 | 160 | 162 | 164 | |
June 12, 2105 |
November 4, 2116 |
Tritos series
[edit]This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
The partial solar eclipses on March 27, 1884 (part of Saros 108) and December 24, 1916 (part of Saros 111) are also a part of this series but are not included in the table below.
Series members between 1971 and 2200 | ||||
---|---|---|---|---|
July 22, 1971 (Saros 116) |
June 21, 1982 (Saros 117) |
May 21, 1993 (Saros 118) |
April 19, 2004 (Saros 119) |
March 20, 2015 (Saros 120) |
February 17, 2026 (Saros 121) |
January 16, 2037 (Saros 122) |
December 16, 2047 (Saros 123) |
November 16, 2058 (Saros 124) |
October 15, 2069 (Saros 125) |
September 13, 2080 (Saros 126) |
August 15, 2091 (Saros 127) |
July 15, 2102 (Saros 128) |
June 13, 2113 (Saros 129) |
May 14, 2124 (Saros 130) |
April 13, 2135 (Saros 131) |
March 12, 2146 (Saros 132) |
February 9, 2157 (Saros 133) |
January 10, 2168 (Saros 134) |
December 9, 2178 (Saros 135) |
November 8, 2189 (Saros 136) |
October 9, 2200 (Saros 137) |
Inex series
[edit]This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||
---|---|---|
June 26, 1805 (Saros 114) |
June 7, 1834 (Saros 115) |
May 17, 1863 (Saros 116) |
April 26, 1892 (Saros 117) |
April 8, 1921 (Saros 118) |
March 18, 1950 (Saros 119) |
February 26, 1979 (Saros 120) |
February 7, 2008 (Saros 121) |
January 16, 2037 (Saros 122) |
December 27, 2065 (Saros 123) |
December 7, 2094 (Saros 124) |
November 18, 2123 (Saros 125) |
October 28, 2152 (Saros 126) |
October 8, 2181 (Saros 127) |
References
[edit]- ^ "January 16, 2037 Partial Solar Eclipse". timeanddate. Retrieved 14 August 2024.
- ^ "Partial Solar Eclipse of 2037 Jan 16". EclipseWise.com. Retrieved 14 August 2024.
- ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
- ^ "NASA - Catalog of Solar Eclipses of Saros 122". eclipse.gsfc.nasa.gov.