Jump to content

Solar eclipse of July 31, 2000

From Wikipedia, the free encyclopedia
Solar eclipse of July 31, 2000
Map
Type of eclipse
NaturePartial
Gamma1.2166
Magnitude0.6034
Maximum eclipse
Coordinates69°30′N 59°54′W / 69.5°N 59.9°W / 69.5; -59.9
Times (UTC)
Greatest eclipse2:14:08
References
Saros155 (5 of 71)
Catalog # (SE5000)9508

A partial solar eclipse occurred at the Moon’s ascending node of orbit between Sunday, July 30 and Monday, July 31, 2000,[1] with a magnitude of 0.6034. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

This was the third of four partial solar eclipses in 2000, with the others occurring on February 5, July 1, and December 25.

A partial eclipse was visible for parts of northern Russia, northeastern Scandinavia, Alaska, western Canada, Greenland, and the western United States.

Images

[edit]

Eclipse details

[edit]

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[2]

July 31, 2000 Solar Eclipse Times
Event Time (UTC)
First Penumbral External Contact 2000 July 31 at 00:38:31.2 UTC
Equatorial Conjunction 2000 July 31 at 01:53:07.4 UTC
Greatest Eclipse 2000 July 31 at 02:14:07.7 UTC
Ecliptic Conjunction 2000 July 31 at 02:26:13.1 UTC
Last Penumbral External Contact 2000 July 31 at 03:49:55.6 UTC
July 31, 2000 Solar Eclipse Parameters
Parameter Value
Eclipse Magnitude 0.60337
Eclipse Obscuration 0.51669
Gamma 1.21664
Sun Right Ascension 08h42m24.7s
Sun Declination +18°13'08.6"
Sun Semi-Diameter 15'45.4"
Sun Equatorial Horizontal Parallax 08.7"
Moon Right Ascension 08h43m16.7s
Moon Declination +19°26'16.2"
Moon Semi-Diameter 16'38.8"
Moon Equatorial Horizontal Parallax 1°01'05.5"
ΔT 63.9 s

Eclipse season

[edit]

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight. The first and last eclipse in this sequence is separated by one synodic month.

Eclipse season of July 2000
July 1
Ascending node (new moon)
July 16
Descending node (full moon)
July 31
Ascending node (new moon)
Partial solar eclipse
Solar Saros 117
Total lunar eclipse
Lunar Saros 129
Partial solar eclipse
Solar Saros 155
[edit]

Eclipses in 2000

[edit]

Metonic

[edit]

Tzolkinex

[edit]

Half-Saros

[edit]

Tritos

[edit]

Solar Saros 155

[edit]

Inex

[edit]

Triad

[edit]

Solar eclipses of 1997–2000

[edit]

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[3]

The partial solar eclipses on July 1, 2000 and December 25, 2000 occur in the next lunar year eclipse set.

Solar eclipse series sets from 1997 to 2000
Descending node   Ascending node
Saros Map Gamma Saros Map Gamma
120

Totality in Chita, Russia
March 9, 1997

Total
0.9183 125 September 2, 1997

Partial
−1.0352
130

Totality near Guadeloupe
February 26, 1998

Total
0.2391 135 August 22, 1998

Annular
−0.2644
140 February 16, 1999

Annular
−0.4726 145

Totality in France
August 11, 1999

Total
0.5062
150 February 5, 2000

Partial
−1.2233 155 July 31, 2000

Partial
1.2166

Saros 155

[edit]

This eclipse is a part of Saros series 155, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on June 17, 1928. It contains total eclipses from September 12, 2072 through August 30, 2649; hybrid eclipses from September 10, 2667 through October 2, 2703; and annular eclipses from October 13, 2721 through May 8, 3064. The series ends at member 71 as a partial eclipse on July 24, 3190. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality will be produced by member 14 at 4 minutes, 5 seconds on November 6, 2162, and the longest duration of annularity will be produced by member 63 at 5 minutes, 31 seconds on April 28, 3046. All eclipses in this series occur at the Moon’s ascending node of orbit.[4]

Series members 1–16 occur between 1928 and 2200:
1 2 3

June 17, 1928

June 29, 1946

July 9, 1964
4 5 6

July 20, 1982

July 31, 2000

August 11, 2018
7 8 9

August 21, 2036

September 2, 2054

September 12, 2072
10 11 12

September 23, 2090

October 5, 2108

October 16, 2126
13 14 15

October 26, 2144

November 7, 2162

November 17, 2180
16

November 28, 2198

Metonic series

[edit]

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

22 eclipse events between December 24, 1916 and July 31, 2000
December 24–25 October 12 July 31–August 1 May 19–20 March 7
111 113 115 117 119

December 24, 1916

July 31, 1924

May 19, 1928

March 7, 1932
121 123 125 127 129

December 25, 1935

October 12, 1939

August 1, 1943

May 20, 1947

March 7, 1951
131 133 135 137 139

December 25, 1954

October 12, 1958

July 31, 1962

May 20, 1966

March 7, 1970
141 143 145 147 149

December 24, 1973

October 12, 1977

July 31, 1981

May 19, 1985

March 7, 1989
151 153 155

December 24, 1992

October 12, 1996

July 31, 2000

Tritos series

[edit]

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

The partial solar eclipse on October 24, 2098 (part of Saros 164) is also a part of this series but is not included in the table below.

Series members between 1801 and 2011

February 11, 1804
(Saros 137)

January 10, 1815
(Saros 138)

December 9, 1825
(Saros 139)

November 9, 1836
(Saros 140)

October 9, 1847
(Saros 141)

September 7, 1858
(Saros 142)

August 7, 1869
(Saros 143)

July 7, 1880
(Saros 144)

June 6, 1891
(Saros 145)

May 7, 1902
(Saros 146)

April 6, 1913
(Saros 147)

March 5, 1924
(Saros 148)

February 3, 1935
(Saros 149)

January 3, 1946
(Saros 150)

December 2, 1956
(Saros 151)

November 2, 1967
(Saros 152)

October 2, 1978
(Saros 153)

August 31, 1989
(Saros 154)

July 31, 2000
(Saros 155)

July 1, 2011
(Saros 156)

Inex series

[edit]

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200

November 29, 1826
(Saros 149)

November 9, 1855
(Saros 150)

October 19, 1884
(Saros 151)

September 30, 1913
(Saros 152)

September 10, 1942
(Saros 153)

August 20, 1971
(Saros 154)

July 31, 2000
(Saros 155)

July 11, 2029
(Saros 156)

June 21, 2058
(Saros 157)

June 1, 2087
(Saros 158)

April 1, 2174
(Saros 161)

Notes

[edit]
  1. ^ "July 31, 2000 Partial Solar Eclipse". timeanddate. Retrieved 10 August 2024.
  2. ^ "Partial Solar Eclipse of 2000 Jul 31". EclipseWise.com. Retrieved 10 August 2024.
  3. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  4. ^ "NASA - Catalog of Solar Eclipses of Saros 155". eclipse.gsfc.nasa.gov.

References

[edit]