Solar eclipse of July 2, 2038
Solar eclipse of July 2, 2038 | |
---|---|
Type of eclipse | |
Nature | Annular |
Gamma | 0.0398 |
Magnitude | 0.9911 |
Maximum eclipse | |
Duration | 60 s (1 min 0 s) |
Coordinates | 25°24′N 21°54′W / 25.4°N 21.9°W |
Max. width of band | 31 km (19 mi) |
Times (UTC) | |
Greatest eclipse | 13:32:55 |
References | |
Saros | 137 (37 of 70) |
Catalog # (SE5000) | 9593 |
An annular solar eclipse will occur at the Moon's ascending node of orbit on Friday, July 2, 2038,[1] with a magnitude of 0.9911. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 6 days after apogee (on June 26, 2038, at 13:55 UTC), the Moon's apparent diameter will be smaller.[2]
Annularity will be visible from parts of Colombia, Venezuela, Grenada, Barbados, Western Sahara, Mauritania, northern Mali, southern Algeria, Niger, Chad, southwestern Sudan, South Sudan, southern Ethiopia, northeastern Kenya, and southwestern Somalia. A partial eclipse will be visible for parts of eastern North America, Central America, the Caribbean, northern South America, Africa, Western Europe, and the Middle East.
Images
[edit]Eclipse details
[edit]Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[3]
Event | Time (UTC) |
---|---|
First Penumbral External Contact | 2038 July 02 at 10:37:36.5 UTC |
First Umbral External Contact | 2038 July 02 at 11:39:19.0 UTC |
First Central Line | 2038 July 02 at 11:40:07.8 UTC |
Greatest Duration | 2038 July 02 at 11:40:07.8 UTC |
First Umbral Internal Contact | 2038 July 02 at 11:40:56.5 UTC |
First Penumbral Internal Contact | 2038 July 02 at 12:42:42.0 UTC |
Greatest Eclipse | 2038 July 02 at 13:32:55.0 UTC |
Equatorial Conjunction | 2038 July 02 at 13:33:00.0 UTC |
Ecliptic Conjunction | 2038 July 02 at 13:33:21.9 UTC |
Last Penumbral Internal Contact | 2038 July 02 at 14:23:09.1 UTC |
Last Umbral Internal Contact | 2038 July 02 at 15:24:55.6 UTC |
Last Central Line | 2038 July 02 at 15:25:41.5 UTC |
Last Umbral External Contact | 2038 July 02 at 15:26:27.3 UTC |
Last Penumbral External Contact | 2038 July 02 at 16:28:07.1 UTC |
Parameter | Value |
---|---|
Eclipse Magnitude | 0.99113 |
Eclipse Obscuration | 0.98233 |
Gamma | 0.03975 |
Sun Right Ascension | 06h46m55.4s |
Sun Declination | +22°59'44.2" |
Sun Semi-Diameter | 15'43.9" |
Sun Equatorial Horizontal Parallax | 08.6" |
Moon Right Ascension | 06h46m55.2s |
Moon Declination | +23°01'58.2" |
Moon Semi-Diameter | 15'20.9" |
Moon Equatorial Horizontal Parallax | 0°56'19.9" |
ΔT | 77.8 s |
Eclipse season
[edit]This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight. The first and last eclipse in this sequence is separated by one synodic month.
June 17 Descending node (full moon) |
July 2 Ascending node (new moon) |
July 16 Descending node (full moon) |
---|---|---|
Penumbral lunar eclipse Lunar Saros 111 |
Annular solar eclipse Solar Saros 137 |
Penumbral lunar eclipse Lunar Saros 149 |
Related eclipses
[edit]Eclipses in 2038
[edit]- An annular solar eclipse on January 5.
- A penumbral lunar eclipse on January 21.
- A penumbral lunar eclipse on June 17.
- An annular solar eclipse on July 2.
- A penumbral lunar eclipse on July 16.
- A penumbral lunar eclipse on December 11.
- A total solar eclipse on December 26.
Metonic
[edit]- Preceded by: Solar eclipse of September 12, 2034
- Followed by: Solar eclipse of April 20, 2042
Tzolkinex
[edit]- Preceded by: Solar eclipse of May 21, 2031
- Followed by: Solar eclipse of August 12, 2045
Half-Saros
[edit]- Preceded by: Lunar eclipse of June 26, 2029
- Followed by: Lunar eclipse of July 7, 2047
Tritos
[edit]- Preceded by: Solar eclipse of August 2, 2027
- Followed by: Solar eclipse of May 31, 2049
Solar Saros 137
[edit]- Preceded by: Solar eclipse of June 21, 2020
- Followed by: Solar eclipse of July 12, 2056
Inex
[edit]- Preceded by: Solar eclipse of July 22, 2009
- Followed by: Solar eclipse of June 11, 2067
Triad
[edit]- Preceded by: Solar eclipse of September 1, 1951
- Followed by: Solar eclipse of May 3, 2125
Solar eclipses of 2036–2039
[edit]This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[4]
The partial solar eclipses on February 27, 2036 and August 21, 2036 occur in the previous lunar year eclipse set.
Solar eclipse series sets from 2036 to 2039 | ||||||
---|---|---|---|---|---|---|
Ascending node | Descending node | |||||
Saros | Map | Gamma | Saros | Map | Gamma | |
117 | July 23, 2036 Partial |
−1.425 | 122 | January 16, 2037 Partial |
1.1477 | |
127 | July 13, 2037 Total |
−0.7246 | 132 | January 5, 2038 Annular |
0.4169 | |
137 | July 2, 2038 Annular |
0.0398 | 142 | December 26, 2038 Total |
−0.2881 | |
147 | June 21, 2039 Annular |
0.8312 | 152 | December 15, 2039 Total |
−0.9458 |
Saros 137
[edit]This eclipse is a part of Saros series 137, repeating every 18 years, 11 days, and containing 70 events. The series started with a partial solar eclipse on May 25, 1389. It contains total eclipses from August 20, 1533 through December 6, 1695; the first set of hybrid eclipses from December 17, 1713 through February 11, 1804; the first set of annular eclipses from February 21, 1822 through March 25, 1876; the second set of hybrid eclipses from April 6, 1894 through April 28, 1930; and the second set of annular eclipses from May 9, 1948 through April 13, 2507. The series ends at member 70 as a partial eclipse on June 28, 2633. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of totality was produced by member 11 at 2 minutes, 55 seconds on September 10, 1569, and the longest duration of annularity will be produced by member 59 at 7 minutes, 5 seconds on February 28, 2435. All eclipses in this series occur at the Moon’s ascending node of orbit.[5]
Series members 24–46 occur between 1801 and 2200: | ||
---|---|---|
24 | 25 | 26 |
February 11, 1804 |
February 21, 1822 |
March 4, 1840 |
27 | 28 | 29 |
March 15, 1858 |
March 25, 1876 |
April 6, 1894 |
30 | 31 | 32 |
April 17, 1912 |
April 28, 1930 |
May 9, 1948 |
33 | 34 | 35 |
May 20, 1966 |
May 30, 1984 |
June 10, 2002 |
36 | 37 | 38 |
June 21, 2020 |
July 2, 2038 |
July 12, 2056 |
39 | 40 | 41 |
July 24, 2074 |
August 3, 2092 |
August 15, 2110 |
42 | 43 | 44 |
August 25, 2128 |
September 6, 2146 |
September 16, 2164 |
45 | 46 | |
September 27, 2182 |
October 9, 2200 |
Metonic series
[edit]The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.
21 eclipse events between July 1, 2000 and July 1, 2076 | ||||
---|---|---|---|---|
July 1–2 | April 19–20 | February 5–7 | November 24–25 | September 12–13 |
117 | 119 | 121 | 123 | 125 |
July 1, 2000 |
April 19, 2004 |
February 7, 2008 |
November 25, 2011 |
September 13, 2015 |
127 | 129 | 131 | 133 | 135 |
July 2, 2019 |
April 20, 2023 |
February 6, 2027 |
November 25, 2030 |
September 12, 2034 |
137 | 139 | 141 | 143 | 145 |
July 2, 2038 |
April 20, 2042 |
February 5, 2046 |
November 25, 2049 |
September 12, 2053 |
147 | 149 | 151 | 153 | 155 |
July 1, 2057 |
April 20, 2061 |
February 5, 2065 |
November 24, 2068 |
September 12, 2072 |
157 | ||||
July 1, 2076 |
Tritos series
[edit]This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||||
---|---|---|---|---|
April 14, 1809 (Saros 116) |
March 14, 1820 (Saros 117) |
February 12, 1831 (Saros 118) |
January 11, 1842 (Saros 119) |
December 11, 1852 (Saros 120) |
November 11, 1863 (Saros 121) |
October 10, 1874 (Saros 122) |
September 8, 1885 (Saros 123) |
August 9, 1896 (Saros 124) |
July 10, 1907 (Saros 125) |
June 8, 1918 (Saros 126) |
May 9, 1929 (Saros 127) |
April 7, 1940 (Saros 128) |
March 7, 1951 (Saros 129) |
February 5, 1962 (Saros 130) |
January 4, 1973 (Saros 131) |
December 4, 1983 (Saros 132) |
November 3, 1994 (Saros 133) |
October 3, 2005 (Saros 134) |
September 1, 2016 (Saros 135) |
August 2, 2027 (Saros 136) |
July 2, 2038 (Saros 137) |
May 31, 2049 (Saros 138) |
April 30, 2060 (Saros 139) |
March 31, 2071 (Saros 140) |
February 27, 2082 (Saros 141) |
January 27, 2093 (Saros 142) |
December 29, 2103 (Saros 143) |
November 27, 2114 (Saros 144) |
October 26, 2125 (Saros 145) |
September 26, 2136 (Saros 146) |
August 26, 2147 (Saros 147) |
July 25, 2158 (Saros 148) |
June 25, 2169 (Saros 149) |
May 24, 2180 (Saros 150) |
April 23, 2191 (Saros 151) |
Inex series
[edit]This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||
---|---|---|
December 10, 1806 (Saros 129) |
November 20, 1835 (Saros 130) |
October 30, 1864 (Saros 131) |
October 9, 1893 (Saros 132) |
September 21, 1922 (Saros 133) |
September 1, 1951 (Saros 134) |
August 10, 1980 (Saros 135) |
July 22, 2009 (Saros 136) |
July 2, 2038 (Saros 137) |
June 11, 2067 (Saros 138) |
May 22, 2096 (Saros 139) |
May 3, 2125 (Saros 140) |
April 12, 2154 (Saros 141) |
March 23, 2183 (Saros 142) |
References
[edit]- ^ "July 2, 2038 Annular Solar Eclipse". timeanddate. Retrieved 14 August 2024.
- ^ "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 14 August 2024.
- ^ "Annular Solar Eclipse of 2038 Jul 02". EclipseWise.com. Retrieved 14 August 2024.
- ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
- ^ "NASA - Catalog of Solar Eclipses of Saros 137". eclipse.gsfc.nasa.gov.