Jump to content

Solar eclipse of November 23, 1946

From Wikipedia, the free encyclopedia
Solar eclipse of November 23, 1946
Map
Type of eclipse
NaturePartial
Gamma1.105
Magnitude0.7758
Maximum eclipse
Coordinates63°24′N 45°18′W / 63.4°N 45.3°W / 63.4; -45.3
Times (UTC)
Greatest eclipse17:37:12
References
Saros122 (54 of 70)
Catalog # (SE5000)9391

A partial solar eclipse occurred at the Moon's descending node of orbit on Saturday, November 23, 1946,[1] with a magnitude of 0.7758. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

This was the last of four partial solar eclipses in 1946, with the others occurring on January 3, May 30, and June 29.

A partial eclipse was visible for parts of Canada, the United States, the Caribbean, and northern South America.

Eclipse details

[edit]

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[2]

November 23, 1946 Solar Eclipse Times
Event Time (UTC)
First Penumbral External Contact 1946 November 23 at 15:24:47.5 UTC
Equatorial Conjunction 1946 November 23 at 16:55:38.1 UTC
Ecliptic Conjunction 1946 November 23 at 17:24:13.7 UTC
Greatest Eclipse 1946 November 23 at 17:37:12.3 UTC
Last Penumbral External Contact 1946 November 23 at 19:49:56.7 UTC
November 23, 1946 Solar Eclipse Parameters
Parameter Value
Eclipse Magnitude 0.77586
Eclipse Obscuration 0.69076
Gamma 1.10500
Sun Right Ascension 15h54m45.3s
Sun Declination -20°19'54.3"
Sun Semi-Diameter 16'12.0"
Sun Equatorial Horizontal Parallax 08.9"
Moon Right Ascension 15h56m01.8s
Moon Declination -19°22'58.6"
Moon Semi-Diameter 14'45.7"
Moon Equatorial Horizontal Parallax 0°54'10.6"
ΔT 27.7 s

Eclipse season

[edit]

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of November–December 1946
November 23
Descending node (new moon)
December 8
Ascending node (full moon)
Partial solar eclipse
Solar Saros 122
Total lunar eclipse
Lunar Saros 134
[edit]

Eclipses in 1946

[edit]

Metonic

[edit]

Tzolkinex

[edit]

Half-Saros

[edit]

Tritos

[edit]

Solar Saros 122

[edit]

Inex

[edit]

Triad

[edit]

Solar eclipses of 1946–1949

[edit]

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[3]

The partial solar eclipses on January 3, 1946 and June 29, 1946 occur in the previous lunar year eclipse set.

Solar eclipse series sets from 1946 to 1949
Ascending node   Descending node
Saros Map Gamma Saros Map Gamma
117 May 30, 1946

Partial
−1.0711 122 November 23, 1946

Partial
1.105
127 May 20, 1947

Total
−0.3528 132 November 12, 1947

Annular
0.3743
137 May 9, 1948

Annular
0.4133 142 November 1, 1948

Total
−0.3517
147 April 28, 1949

Partial
1.2068 152 October 21, 1949

Partial
−1.027

Saros 122

[edit]

This eclipse is a part of Saros series 122, repeating every 18 years, 11 days, and containing 70 events. The series started with a partial solar eclipse on April 17, 991 AD. It contains total eclipses from July 12, 1135 through August 3, 1171; hybrid eclipses on August 13, 1189 and August 25, 1207; and annular eclipses from September 4, 1225 through October 10, 1874. The series ends at member 70 as a partial eclipse on May 17, 2235. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 9 at 1 minutes, 25 seconds on July 12, 1135, and the longest duration of annularity was produced by member 50 at 6 minutes, 28 seconds on October 10, 1874. All eclipses in this series occur at the Moon’s descending node of orbit.[4]

Series members 46–68 occur between 1801 and 2200:
46 47 48

August 28, 1802

September 7, 1820

September 18, 1838
49 50 51

September 29, 1856

October 10, 1874

October 20, 1892
52 53 54

November 2, 1910

November 12, 1928

November 23, 1946
55 56 57

December 4, 1964

December 15, 1982

December 25, 2000
58 59 60

January 6, 2019

January 16, 2037

January 27, 2055
61 62 63

February 7, 2073

February 18, 2091

March 1, 2109
64 65 66

March 13, 2127

March 23, 2145

April 3, 2163
67 68

April 14, 2181

April 25, 2199

Metonic series

[edit]

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

22 eclipse events between September 12, 1931 and July 1, 2011
September 11–12 June 30–July 1 April 17–19 February 4–5 November 22–23
114 116 118 120 122

September 12, 1931

June 30, 1935

April 19, 1939

February 4, 1943

November 23, 1946
124 126 128 130 132

September 12, 1950

June 30, 1954

April 19, 1958

February 5, 1962

November 23, 1965
134 136 138 140 142

September 11, 1969

June 30, 1973

April 18, 1977

February 4, 1981

November 22, 1984
144 146 148 150 152

September 11, 1988

June 30, 1992

April 17, 1996

February 5, 2000

November 23, 2003
154 156

September 11, 2007

July 1, 2011

Tritos series

[edit]

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200

January 1, 1805
(Saros 109)

October 31, 1826
(Saros 111)

August 28, 1848
(Saros 113)

July 29, 1859
(Saros 114)

June 28, 1870
(Saros 115)

May 27, 1881
(Saros 116)

April 26, 1892
(Saros 117)

March 29, 1903
(Saros 118)

February 25, 1914
(Saros 119)

January 24, 1925
(Saros 120)

December 25, 1935
(Saros 121)

November 23, 1946
(Saros 122)

October 23, 1957
(Saros 123)

September 22, 1968
(Saros 124)

August 22, 1979
(Saros 125)

July 22, 1990
(Saros 126)

June 21, 2001
(Saros 127)

May 20, 2012
(Saros 128)

April 20, 2023
(Saros 129)

March 20, 2034
(Saros 130)

February 16, 2045
(Saros 131)

January 16, 2056
(Saros 132)

December 17, 2066
(Saros 133)

November 15, 2077
(Saros 134)

October 14, 2088
(Saros 135)

September 14, 2099
(Saros 136)

August 15, 2110
(Saros 137)

July 14, 2121
(Saros 138)

June 13, 2132
(Saros 139)

May 14, 2143
(Saros 140)

April 12, 2154
(Saros 141)

March 12, 2165
(Saros 142)

February 10, 2176
(Saros 143)

January 9, 2187
(Saros 144)

December 9, 2197
(Saros 145)

Inex series

[edit]

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200

March 4, 1802
(Saros 117)

February 12, 1831
(Saros 118)

January 23, 1860
(Saros 119)

January 1, 1889
(Saros 120)

December 14, 1917
(Saros 121)

November 23, 1946
(Saros 122)

November 3, 1975
(Saros 123)

October 14, 2004
(Saros 124)

September 23, 2033
(Saros 125)

September 3, 2062
(Saros 126)

August 15, 2091
(Saros 127)

July 25, 2120
(Saros 128)

July 5, 2149
(Saros 129)

June 16, 2178
(Saros 130)

References

[edit]
  1. ^ "November 23, 1946 Partial Solar Eclipse". timeanddate. Retrieved 4 August 2024.
  2. ^ "Partial Solar Eclipse of 1946 Nov 23". EclipseWise.com. Retrieved 4 August 2024.
  3. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  4. ^ "NASA - Catalog of Solar Eclipses of Saros 122". eclipse.gsfc.nasa.gov.
[edit]