Jump to content

Solar eclipse of May 22, 2077

From Wikipedia, the free encyclopedia
Solar eclipse of May 22, 2077
Map
Type of eclipse
NatureTotal
Gamma−0.5725
Magnitude1.029
Maximum eclipse
Duration174 s (2 min 54 s)
Coordinates13°06′S 148°18′E / 13.1°S 148.3°E / -13.1; 148.3
Max. width of band119 km (74 mi)
Times (UTC)
Greatest eclipse2:46:05
References
Saros129 (55 of 80)
Catalog # (SE5000)9681

A total solar eclipse will occur at the Moon's ascending node of orbit on Saturday, May 22, 2077,[1] with a magnitude of 1.029. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 3.2 days after perigee (on May 18, 2077, at 20:50 UTC), the Moon's apparent diameter will be larger.[2]

The path of totality will be visible from parts of Australia, Papua New Guinea, and the Solomon Islands. A partial solar eclipse will also be visible for parts of Australia, Indonesia, Antarctica, and Oceania.

Eclipse details

[edit]

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[3]

May 22, 2077 Solar Eclipse Times
Event Time (UTC)
First Penumbral External Contact 2077 May 22 at 00:12:22.3 UTC
First Umbral External Contact 2077 May 22 at 01:17:40.6 UTC
First Central Line 2077 May 22 at 01:18:13.0 UTC
First Umbral Internal Contact 2077 May 22 at 01:18:45.6 UTC
Equatorial Conjunction 2077 May 22 at 02:27:00.9 UTC
Ecliptic Conjunction 2077 May 22 at 02:40:03.0 UTC
Greatest Eclipse 2077 May 22 at 02:46:05.3 UTC
Greatest Duration 2077 May 22 at 02:48:00.5 UTC
Last Umbral Internal Contact 2077 May 22 at 04:13:40.3 UTC
Last Central Line 2077 May 22 at 04:14:10.3 UTC
Last Umbral External Contact 2077 May 22 at 04:14:40.1 UTC
Last Penumbral External Contact 2077 May 22 at 05:20:01.5 UTC
May 22, 2077 Solar Eclipse Parameters
Parameter Value
Eclipse Magnitude 1.02903
Eclipse Obscuration 1.05889
Gamma −0.57247
Sun Right Ascension 03h58m18.6s
Sun Declination +20°29'25.4"
Sun Semi-Diameter 15'48.1"
Sun Equatorial Horizontal Parallax 08.7"
Moon Right Ascension 03h59m01.0s
Moon Declination +19°57'18.2"
Moon Semi-Diameter 16'02.6"
Moon Equatorial Horizontal Parallax 0°58'52.8"
ΔT 103.3 s

Eclipse season

[edit]

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of May–June 2077
May 22
Ascending node (new moon)
June 6
Descending node (full moon)
Total solar eclipse
Solar Saros 129
Partial lunar eclipse
Lunar Saros 141
[edit]

Eclipses in 2077

[edit]

Metonic

[edit]

Tzolkinex

[edit]

Half-Saros

[edit]

Tritos

[edit]

Solar Saros 129

[edit]

Inex

[edit]

Triad

[edit]

Solar eclipses of 2076–2079

[edit]

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[4]

The partial solar eclipses on January 6, 2076 and July 1, 2076 occur in the previous lunar year eclipse set.

Solar eclipse series sets from 2076 to 2079
Ascending node   Descending node
Saros Map Gamma Saros Map Gamma
119 June 1, 2076

Partial
−1.3897 124 November 26, 2076

Partial
1.1401
129 May 22, 2077

Total
−0.5725 134 November 15, 2077

Annular
0.4705
139 May 11, 2078

Total
0.1838 144 November 4, 2078

Annular
−0.2285
149 May 1, 2079

Total
0.9081 154 October 24, 2079

Annular
−0.9243

Saros 129

[edit]

This eclipse is a part of Saros series 129, repeating every 18 years, 11 days, and containing 80 events. The series started with a partial solar eclipse on October 3, 1103. It contains annular eclipses from May 6, 1464 through March 18, 1969; hybrid eclipses from March 29, 1987 through April 20, 2023; and total eclipses from April 30, 2041 through July 26, 2185. The series ends at member 80 as a partial eclipse on February 21, 2528. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity was produced by member 34 at 5 minutes, 10 seconds on October 4, 1698, and the longest duration of totality will be produced by member 58 at 3 minutes, 43 seconds on June 25, 2131. All eclipses in this series occur at the Moon’s ascending node of orbit.[5]

Series members 40–61 occur between 1801 and 2200:
40 41 42

December 10, 1806

December 20, 1824

December 31, 1842
43 44 45

January 11, 1861

January 22, 1879

February 1, 1897
46 47 48

February 14, 1915

February 24, 1933

March 7, 1951
49 50 51

March 18, 1969

March 29, 1987

April 8, 2005
52 53 54

April 20, 2023

April 30, 2041

May 11, 2059
55 56 57

May 22, 2077

June 2, 2095

June 13, 2113
58 59 60

June 25, 2131

July 5, 2149

July 16, 2167
61

July 26, 2185

Metonic series

[edit]

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

23 eclipse events between August 3, 2054 and October 16, 2145
August 3–4 May 22–24 March 10–11 December 27–29 October 14–16
117 119 121 123 125

August 3, 2054

May 22, 2058

March 11, 2062

December 27, 2065

October 15, 2069
127 129 131 133 135

August 3, 2073

May 22, 2077

March 10, 2081

December 27, 2084

October 14, 2088
137 139 141 143 145

August 3, 2092

May 22, 2096

March 10, 2100

December 29, 2103

October 16, 2107
147 149 151 153 155

August 4, 2111

May 24, 2115

March 11, 2119

December 28, 2122

October 16, 2126
157 159 161 163 165

August 4, 2130

May 23, 2134

October 16, 2145

Tritos series

[edit]

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1837 and 2200

April 5, 1837
(Saros 107)

March 5, 1848
(Saros 108)

February 3, 1859
(Saros 109)

December 2, 1880
(Saros 111)

August 31, 1913
(Saros 114)

July 31, 1924
(Saros 115)

June 30, 1935
(Saros 116)

May 30, 1946
(Saros 117)

April 30, 1957
(Saros 118)

March 28, 1968
(Saros 119)

February 26, 1979
(Saros 120)

January 26, 1990
(Saros 121)

December 25, 2000
(Saros 122)

November 25, 2011
(Saros 123)

October 25, 2022
(Saros 124)

September 23, 2033
(Saros 125)

August 23, 2044
(Saros 126)

July 24, 2055
(Saros 127)

June 22, 2066
(Saros 128)

May 22, 2077
(Saros 129)

April 21, 2088
(Saros 130)

March 21, 2099
(Saros 131)

February 18, 2110
(Saros 132)

January 19, 2121
(Saros 133)

December 19, 2131
(Saros 134)

November 17, 2142
(Saros 135)

October 17, 2153
(Saros 136)

September 16, 2164
(Saros 137)

August 16, 2175
(Saros 138)

July 16, 2186
(Saros 139)

June 15, 2197
(Saros 140)

Inex series

[edit]

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200

November 19, 1816
(Saros 120)

October 30, 1845
(Saros 121)

October 10, 1874
(Saros 122)

September 21, 1903
(Saros 123)

August 31, 1932
(Saros 124)

August 11, 1961
(Saros 125)

July 22, 1990
(Saros 126)

July 2, 2019
(Saros 127)

June 11, 2048
(Saros 128)

May 22, 2077
(Saros 129)

May 3, 2106
(Saros 130)

April 13, 2135
(Saros 131)

March 23, 2164
(Saros 132)

March 3, 2193
(Saros 133)

Notes

[edit]
  1. ^ "May 22, 2077 Total Solar Eclipse". timeanddate. Retrieved 22 August 2024.
  2. ^ "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 22 August 2024.
  3. ^ "Total Solar Eclipse of 2077 May 22". EclipseWise.com. Retrieved 22 August 2024.
  4. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  5. ^ "NASA - Catalog of Solar Eclipses of Saros 129". eclipse.gsfc.nasa.gov.

References

[edit]