Jump to content

Solar eclipse of August 20, 1952

From Wikipedia, the free encyclopedia
Solar eclipse of August 20, 1952
Map
Type of eclipse
NatureAnnular
Gamma−0.6102
Magnitude0.942
Maximum eclipse
Duration400 s (6 min 40 s)
Coordinates21°42′S 64°06′W / 21.7°S 64.1°W / -21.7; -64.1
Max. width of band264 km (164 mi)
Times (UTC)
Greatest eclipse15:13:35
References
Saros144 (13 of 70)
Catalog # (SE5000)9403

An annular solar eclipse occurred at the Moon's descending node of orbit on Wednesday, August 20, 1952,[1] with a magnitude of 0.942. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring 1.2 days after apogee (on August 19, 1952, at 12:00 UTC), the Moon's apparent diameter was smaller.[2]

Annularity was visible from Peru including the capital city Lima, northeastern Chile, Bolivia including the constitutional capital Sucre and seat of government La Paz, Argentina, Paraguay, southern Brazil and Uruguay. A partial eclipse was visible for most of Central America, the Caribbean, and South America.

Eclipse details

[edit]

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[3]

August 20, 1952 Solar Eclipse Times
Event Time (UTC)
First Penumbral External Contact 1952 August 20 at 12:22:27.8 UTC
First Umbral External Contact 1952 August 20 at 13:36:36.8 UTC
First Central Line 1952 August 20 at 13:39:39.7 UTC
First Umbral Internal Contact 1952 August 20 at 13:42:44.8 UTC
Greatest Duration 1952 August 20 at 15:00:09.1 UTC
Greatest Eclipse 1952 August 20 at 15:13:35.2 UTC
Ecliptic Conjunction 1952 August 20 at 15:20:50.2 UTC
Equatorial Conjunction 1952 August 20 at 15:48:35.8 UTC
Last Umbral Internal Contact 1952 August 20 at 16:44:03.7 UTC
Last Central Line 1952 August 20 at 16:47:08.7 UTC
Last Umbral External Contact 1952 August 20 at 16:50:11.3 UTC
Last Penumbral External Contact 1952 August 20 at 18:04:27.3 UTC
August 20, 1952 Solar Eclipse Parameters
Parameter Value
Eclipse Magnitude 0.94203
Eclipse Obscuration 0.88742
Gamma −0.61023
Sun Right Ascension 09h58m50.8s
Sun Declination +12°20'20.6"
Sun Semi-Diameter 15'48.6"
Sun Equatorial Horizontal Parallax 08.7"
Moon Right Ascension 09h57m52.3s
Moon Declination +11°50'44.7"
Moon Semi-Diameter 14'43.1"
Moon Equatorial Horizontal Parallax 0°54'01.0"
ΔT 30.2 s

Eclipse season

[edit]

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of August 1952
August 5
Ascending node (full moon)
August 20
Descending node (new moon)
Partial lunar eclipse
Lunar Saros 118
Annular solar eclipse
Solar Saros 144
[edit]

Eclipses in 1952

[edit]

Metonic

[edit]

Tzolkinex

[edit]

Half-Saros

[edit]

Tritos

[edit]

Solar Saros 144

[edit]

Inex

[edit]

Triad

[edit]

Solar eclipses of 1950–1953

[edit]

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[4]

The partial solar eclipse on July 11, 1953 occurs in the next lunar year eclipse set.

Solar eclipse series sets from 1950 to 1953
Ascending node   Descending node
Saros Map Gamma Saros Map Gamma
119 March 18, 1950

Annular (non-central)
0.9988 124 September 12, 1950

Total
0.8903
129 March 7, 1951

Annular
−0.242 134 September 1, 1951

Annular
0.1557
139 February 25, 1952

Total
0.4697 144 August 20, 1952

Annular
−0.6102
149 February 14, 1953

Partial
1.1331 154 August 9, 1953

Partial
−1.344

Saros 144

[edit]

This eclipse is a part of Saros series 144, repeating every 18 years, 11 days, and containing 70 events. The series started with a partial solar eclipse on April 11, 1736. It contains annular eclipses from July 7, 1880 through August 27, 2565. There are no hybrid or total eclipses in this set. The series ends at member 70 as a partial eclipse on May 5, 2980. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity will be produced by member 51 at 9 minutes, 52 seconds on December 29, 2168. All eclipses in this series occur at the Moon’s descending node of orbit.[5]

Series members 5–26 occur between 1801 and 2200:
5 6 7

May 25, 1808

June 5, 1826

June 16, 1844
8 9 10

June 27, 1862

July 7, 1880

July 18, 1898
11 12 13

July 30, 1916

August 10, 1934

August 20, 1952
14 15 16

August 31, 1970

September 11, 1988

September 22, 2006
17 18 19

October 2, 2024

October 14, 2042

October 24, 2060
20 21 22

November 4, 2078

November 15, 2096

November 27, 2114
23 24 25

December 7, 2132

December 19, 2150

December 29, 2168
26

January 9, 2187

Metonic series

[edit]

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

22 eclipse events between March 27, 1884 and August 20, 1971
March 27–29 January 14 November 1–2 August 20–21 June 8
108 110 112 114 116

March 27, 1884

August 20, 1895

June 8, 1899
118 120 122 124 126

March 29, 1903

January 14, 1907

November 2, 1910

August 21, 1914

June 8, 1918
128 130 132 134 136

March 28, 1922

January 14, 1926

November 1, 1929

August 21, 1933

June 8, 1937
138 140 142 144 146

March 27, 1941

January 14, 1945

November 1, 1948

August 20, 1952

June 8, 1956
148 150 152 154

March 27, 1960

January 14, 1964

November 2, 1967

August 20, 1971

Tritos series

[edit]

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

The partial solar eclipses on December 7, 2170 (part of Saros 164) and November 7, 2181 (part of Saros 165) are also a part of this series but are not included in the table below.

Series members between 1801 and 2105

September 28, 1810
(Saros 131)

August 27, 1821
(Saros 132)

July 27, 1832
(Saros 133)

June 27, 1843
(Saros 134)

May 26, 1854
(Saros 135)

April 25, 1865
(Saros 136)

March 25, 1876
(Saros 137)

February 22, 1887
(Saros 138)

January 22, 1898
(Saros 139)

December 23, 1908
(Saros 140)

November 22, 1919
(Saros 141)

October 21, 1930
(Saros 142)

September 21, 1941
(Saros 143)

August 20, 1952
(Saros 144)

July 20, 1963
(Saros 145)

June 20, 1974
(Saros 146)

May 19, 1985
(Saros 147)

April 17, 1996
(Saros 148)

March 19, 2007
(Saros 149)

February 15, 2018
(Saros 150)

January 14, 2029
(Saros 151)

December 15, 2039
(Saros 152)

November 14, 2050
(Saros 153)

October 13, 2061
(Saros 154)

September 12, 2072
(Saros 155)

August 13, 2083
(Saros 156)

July 12, 2094
(Saros 157)

June 12, 2105
(Saros 158)

Inex series

[edit]

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200

November 29, 1807
(Saros 139)

November 9, 1836
(Saros 140)

October 19, 1865
(Saros 141)

September 29, 1894
(Saros 142)

September 10, 1923
(Saros 143)

August 20, 1952
(Saros 144)

July 31, 1981
(Saros 145)

July 11, 2010
(Saros 146)

June 21, 2039
(Saros 147)

May 31, 2068
(Saros 148)

May 11, 2097
(Saros 149)

April 22, 2126
(Saros 150)

April 2, 2155
(Saros 151)

March 12, 2184
(Saros 152)

Notes

[edit]
  1. ^ "August 20, 1952 Annular Solar Eclipse". timeanddate. Retrieved 5 August 2024.
  2. ^ "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 5 August 2024.
  3. ^ "Annular Solar Eclipse of 1952 Aug 20". EclipseWise.com. Retrieved 5 August 2024.
  4. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  5. ^ "NASA - Catalog of Solar Eclipses of Saros 144". eclipse.gsfc.nasa.gov.

References

[edit]