Jump to content

Solar eclipse of December 25, 1954

From Wikipedia, the free encyclopedia
Solar eclipse of December 25, 1954
Map
Type of eclipse
NatureAnnular
Gamma−0.2576
Magnitude0.9323
Maximum eclipse
Duration459 s (7 min 39 s)
Coordinates38°24′S 68°12′E / 38.4°S 68.2°E / -38.4; 68.2
Max. width of band262 km (163 mi)
Times (UTC)
Greatest eclipse7:36:42
References
Saros131 (47 of 70)
Catalog # (SE5000)9409

An annular solar eclipse occurred at the Moon's ascending node of orbit on Saturday, December 25, 1954 (also known as "The Christmas 1954 solar eclipse"),[1] with a magnitude of 0.9323. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometers wide. Occurring about 4.9 days after apogee (on December 21, 1954, at 8:50 UTC), the Moon's apparent diameter was smaller.[2]

Annularity was visible from the southwestern tip of South West Africa (Now Namibia), Union of South Africa (Now South Africa), Ashmore and Cartier Islands except Cartier Island, Indonesia and Portuguese Timor (Now East Timor). A partial eclipse was visible for parts of Southern Africa, Antarctica, Southeast Asia, and Australia.

Eclipse details

[edit]

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[3]

December 25, 1954 Solar Eclipse Times
Event Time (UTC)
First Penumbral External Contact 1954 December 25 at 04:35:22.0 UTC
First Umbral External Contact 1954 December 25 at 05:40:42.2 UTC
First Central Line 1954 December 25 at 05:43:40.3 UTC
First Umbral Internal Contact 1954 December 25 at 05:46:38.6 UTC
First Penumbral Internal Contact 1954 December 25 at 06:56:43.3 UTC
Greatest Duration 1954 December 25 at 07:29:49.2 UTC
Equatorial Conjunction 1954 December 25 at 07:32:58.2 UTC
Ecliptic Conjunction 1954 December 25 at 07:33:39.3 UTC
Greatest Eclipse 1954 December 25 at 07:36:42.4 UTC
Last Penumbral Internal Contact 1954 December 25 at 08:16:48.3 UTC
Last Umbral Internal Contact 1954 December 25 at 09:26:50.4 UTC
Last Central Line 1954 December 25 at 09:29:46.5 UTC
Last Umbral External Contact 1954 December 25 at 09:32:42.2 UTC
Last Penumbral External Contact 1954 December 25 at 10:37:59.4 UTC
December 25, 1954 Solar Eclipse Parameters
Parameter Value
Eclipse Magnitude 0.93233
Eclipse Obscuration 0.86925
Gamma −0.25762
Sun Right Ascension 18h12m59.7s
Sun Declination -23°24'41.6"
Sun Semi-Diameter 16'15.7"
Sun Equatorial Horizontal Parallax 08.9"
Moon Right Ascension 18h13m07.2s
Moon Declination -23°38'40.4"
Moon Semi-Diameter 14'56.4"
Moon Equatorial Horizontal Parallax 0°54'49.7"
ΔT 31.1 s

Eclipse season

[edit]

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of December 1954–January 1955
December 25
Ascending node (new moon)
January 8
Descending node (full moon)
Annular solar eclipse
Solar Saros 131
Penumbral lunar eclipse
Lunar Saros 143
[edit]

Eclipses in 1954

[edit]

Metonic

[edit]

Tzolkinex

[edit]

Half-Saros

[edit]

Tritos

[edit]

Solar Saros 131

[edit]

Inex

[edit]

Triad

[edit]

Solar eclipses of 1953–1956

[edit]

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[4]

The partial solar eclipses on February 14, 1953 and August 9, 1953 occur in the previous lunar year eclipse set.

Solar eclipse series sets from 1953 to 1956
Descending node   Ascending node
Saros Map Gamma Saros Map Gamma
116 July 11, 1953

Partial
1.4388 121 January 5, 1954

Annular
−0.9296
126 June 30, 1954

Total
0.6135 131 December 25, 1954

Annular
−0.2576
136 June 20, 1955

Total
−0.1528 141 December 14, 1955

Annular
0.4266
146 June 8, 1956

Total
−0.8934 151 December 2, 1956

Partial
1.0923

Saros 131

[edit]

This eclipse is a part of Saros series 131, repeating every 18 years, 11 days, and containing 70 events. The series started with a partial solar eclipse on August 1, 1125. It contains total eclipses from March 27, 1522 through May 30, 1612; hybrid eclipses from June 10, 1630 through July 24, 1702; and annular eclipses from August 4, 1720 through June 18, 2243. The series ends at member 70 as a partial eclipse on September 2, 2369. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 28 at 58 seconds on May 30, 1612, and the longest duration of annularity was produced by member 50 at 7 minutes, 54 seconds on January 26, 2009. All eclipses in this series occur at the Moon’s ascending node of orbit.[5]

Series members 39–60 occur between 1801 and 2200:
39 40 41

September 28, 1810

October 9, 1828

October 20, 1846
42 43 44

October 30, 1864

November 10, 1882

November 22, 1900
45 46 47

December 3, 1918

December 13, 1936

December 25, 1954
48 49 50

January 4, 1973

January 15, 1991

January 26, 2009
51 52 53

February 6, 2027

February 16, 2045

February 28, 2063
54 55 56

March 10, 2081

March 21, 2099

April 2, 2117
57 58 59

April 13, 2135

April 23, 2153

May 5, 2171
60

May 15, 2189

Metonic series

[edit]

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

22 eclipse events between December 24, 1916 and July 31, 2000
December 24–25 October 12 July 31–August 1 May 19–20 March 7
111 113 115 117 119

December 24, 1916

July 31, 1924

May 19, 1928

March 7, 1932
121 123 125 127 129

December 25, 1935

October 12, 1939

August 1, 1943

May 20, 1947

March 7, 1951
131 133 135 137 139

December 25, 1954

October 12, 1958

July 31, 1962

May 20, 1966

March 7, 1970
141 143 145 147 149

December 24, 1973

October 12, 1977

July 31, 1981

May 19, 1985

March 7, 1989
151 153 155

December 24, 1992

October 12, 1996

July 31, 2000

Tritos series

[edit]

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200

March 4, 1802
(Saros 117)

February 1, 1813
(Saros 118)

January 1, 1824
(Saros 119)

November 30, 1834
(Saros 120)

October 30, 1845
(Saros 121)

September 29, 1856
(Saros 122)

August 29, 1867
(Saros 123)

July 29, 1878
(Saros 124)

June 28, 1889
(Saros 125)

May 28, 1900
(Saros 126)

April 28, 1911
(Saros 127)

March 28, 1922
(Saros 128)

February 24, 1933
(Saros 129)

January 25, 1944
(Saros 130)

December 25, 1954
(Saros 131)

November 23, 1965
(Saros 132)

October 23, 1976
(Saros 133)

September 23, 1987
(Saros 134)

August 22, 1998
(Saros 135)

July 22, 2009
(Saros 136)

June 21, 2020
(Saros 137)

May 21, 2031
(Saros 138)

April 20, 2042
(Saros 139)

March 20, 2053
(Saros 140)

February 17, 2064
(Saros 141)

January 16, 2075
(Saros 142)

December 16, 2085
(Saros 143)

November 15, 2096
(Saros 144)

October 16, 2107
(Saros 145)

September 15, 2118
(Saros 146)

August 15, 2129
(Saros 147)

July 14, 2140
(Saros 148)

June 14, 2151
(Saros 149)

May 14, 2162
(Saros 150)

April 12, 2173
(Saros 151)

March 12, 2184
(Saros 152)

February 10, 2195
(Saros 153)

Inex series

[edit]

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200

April 4, 1810
(Saros 126)

March 15, 1839
(Saros 127)

February 23, 1868
(Saros 128)

February 1, 1897
(Saros 129)

January 14, 1926
(Saros 130)

December 25, 1954
(Saros 131)

December 4, 1983
(Saros 132)

November 13, 2012
(Saros 133)

October 25, 2041
(Saros 134)

October 4, 2070
(Saros 135)

September 14, 2099
(Saros 136)

August 25, 2128
(Saros 137)

August 5, 2157
(Saros 138)

July 16, 2186
(Saros 139)

References

[edit]
Notes
  1. ^ "December 25, 1954 Annular Solar Eclipse". timeanddate. Retrieved 5 August 2024.
  2. ^ "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 5 August 2024.
  3. ^ "Annular Solar Eclipse of 1954 Dec 25". EclipseWise.com. Retrieved 5 August 2024.
  4. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  5. ^ "NASA - Catalog of Solar Eclipses of Saros 131". eclipse.gsfc.nasa.gov.
Sources