Solar eclipse of February 16, 2045
Solar eclipse of February 16, 2045 | |
---|---|
Type of eclipse | |
Nature | Annular |
Gamma | −0.3125 |
Magnitude | 0.9285 |
Maximum eclipse | |
Duration | 467 s (7 min 47 s) |
Coordinates | 28°18′S 166°12′W / 28.3°S 166.2°W |
Max. width of band | 281 km (175 mi) |
Times (UTC) | |
Greatest eclipse | 23:56:07 |
References | |
Saros | 131 (52 of 70) |
Catalog # (SE5000) | 9607 |
An annular solar eclipse will occur at the Moon's ascending node of orbit on Thursday, February 16, 2045,[1] with a magnitude of 0.9285. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 2.8 days after apogee (on February 14, 2045, at 3:00 UTC), the Moon's apparent diameter will be smaller.[2]
The path of annularity will be visible from parts of New Zealand, the Cook Islands, French Polynesia, and Kiribati. A partial solar eclipse will be visible for parts of Australia, Antarctica, Oceania, Hawaii, and southwestern North America.
Images
[edit]Eclipse details
[edit]Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[3]
Event | Time (UTC) |
---|---|
First Penumbral External Contact | 2045 February 16 at 20:54:17.1 UTC |
First Umbral External Contact | 2045 February 16 at 22:00:55.6 UTC |
First Central Line | 2045 February 16 at 22:04:06.6 UTC |
First Umbral Internal Contact | 2045 February 16 at 22:07:18.0 UTC |
First Penumbral Internal Contact | 2045 February 16 at 23:22:03.4 UTC |
Equatorial Conjunction | 2045 February 16 at 23:38:01.6 UTC |
Greatest Duration | 2045 February 16 at 23:38:37.2 UTC |
Ecliptic Conjunction | 2045 February 16 at 23:52:22.4 UTC |
Greatest Eclipse | 2045 February 16 at 23:56:06.6 UTC |
Last Penumbral Internal Contact | 2045 February 17 at 00:30:36.9 UTC |
Last Umbral Internal Contact | 2045 February 17 at 01:45:08.0 UTC |
Last Central Line | 2045 February 17 at 01:48:17.4 UTC |
Last Umbral External Contact | 2045 February 17 at 01:51:26.3 UTC |
Last Penumbral External Contact | 2045 February 17 at 02:57:59.4 UTC |
Parameter | Value |
---|---|
Eclipse Magnitude | 0.92847 |
Eclipse Obscuration | 0.86205 |
Gamma | −0.31254 |
Sun Right Ascension | 22h03m27.1s |
Sun Declination | -11°55'04.8" |
Sun Semi-Diameter | 16'11.2" |
Sun Equatorial Horizontal Parallax | 08.9" |
Moon Right Ascension | 22h03m57.6s |
Moon Declination | -12°10'17.7" |
Moon Semi-Diameter | 14'48.9" |
Moon Equatorial Horizontal Parallax | 0°54'22.2" |
ΔT | 81.3 s |
Eclipse season
[edit]This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.
February 16 Ascending node (new moon) |
March 3 Descending node (full moon) |
---|---|
Annular solar eclipse Solar Saros 131 |
Penumbral lunar eclipse Lunar Saros 143 |
Related eclipses
[edit]Eclipses in 2045
[edit]- An annular solar eclipse on February 16.
- A penumbral lunar eclipse on March 3.
- A total solar eclipse on August 12.
- A penumbral lunar eclipse on August 27.
Metonic
[edit]- Preceded by: Solar eclipse of April 30, 2041
- Followed by: Solar eclipse of December 5, 2048
Tzolkinex
[edit]- Preceded by: Solar eclipse of January 5, 2038
- Followed by: Solar eclipse of March 30, 2052
Half-Saros
[edit]- Preceded by: Lunar eclipse of February 11, 2036
- Followed by: Lunar eclipse of February 22, 2054
Tritos
[edit]- Preceded by: Solar eclipse of March 20, 2034
- Followed by: Solar eclipse of January 16, 2056
Solar Saros 131
[edit]- Preceded by: Solar eclipse of February 6, 2027
- Followed by: Solar eclipse of February 28, 2063
Inex
[edit]- Preceded by: Solar eclipse of March 9, 2016
- Followed by: Solar eclipse of January 27, 2074
Triad
[edit]- Preceded by: Solar eclipse of April 19, 1958
- Followed by: Solar eclipse of December 19, 2131
Solar eclipses of 2044–2047
[edit]This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[4]
The partial solar eclipses on June 23, 2047 and December 16, 2047 occur in the next lunar year eclipse set.
Solar eclipse series sets from 2044 to 2047 | ||||||
---|---|---|---|---|---|---|
Ascending node | Descending node | |||||
Saros | Map | Gamma | Saros | Map | Gamma | |
121 | February 28, 2044 Annular |
−0.9954 | 126 | August 23, 2044 Total |
0.9613 | |
131 | February 16, 2045 Annular |
−0.3125 | 136 | August 12, 2045 Total |
0.2116 | |
141 | February 5, 2046 Annular |
0.3765 | 146 | August 2, 2046 Total |
−0.535 | |
151 | January 26, 2047 Partial |
1.045 | 156 | July 22, 2047 Partial |
−1.3477 |
Saros 131
[edit]This eclipse is a part of Saros series 131, repeating every 18 years, 11 days, and containing 70 events. The series started with a partial solar eclipse on August 1, 1125. It contains total eclipses from March 27, 1522 through May 30, 1612; hybrid eclipses from June 10, 1630 through July 24, 1702; and annular eclipses from August 4, 1720 through June 18, 2243. The series ends at member 70 as a partial eclipse on September 2, 2369. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of totality was produced by member 28 at 58 seconds on May 30, 1612, and the longest duration of annularity was produced by member 50 at 7 minutes, 54 seconds on January 26, 2009. All eclipses in this series occur at the Moon’s ascending node of orbit.[5]
Series members 39–60 occur between 1801 and 2200: | ||
---|---|---|
39 | 40 | 41 |
September 28, 1810 |
October 9, 1828 |
October 20, 1846 |
42 | 43 | 44 |
October 30, 1864 |
November 10, 1882 |
November 22, 1900 |
45 | 46 | 47 |
December 3, 1918 |
December 13, 1936 |
December 25, 1954 |
48 | 49 | 50 |
January 4, 1973 |
January 15, 1991 |
January 26, 2009 |
51 | 52 | 53 |
February 6, 2027 |
February 16, 2045 |
February 28, 2063 |
54 | 55 | 56 |
March 10, 2081 |
March 21, 2099 |
April 2, 2117 |
57 | 58 | 59 |
April 13, 2135 |
April 23, 2153 |
May 5, 2171 |
60 | ||
May 15, 2189 |
Metonic series
[edit]The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.
21 eclipse events between July 13, 2018 and July 12, 2094 | ||||
---|---|---|---|---|
July 12–13 | April 30–May 1 | February 16–17 | December 5–6 | September 22–23 |
117 | 119 | 121 | 123 | 125 |
July 13, 2018 |
April 30, 2022 |
February 17, 2026 |
December 5, 2029 |
September 23, 2033 |
127 | 129 | 131 | 133 | 135 |
July 13, 2037 |
April 30, 2041 |
February 16, 2045 |
December 5, 2048 |
September 22, 2052 |
137 | 139 | 141 | 143 | 145 |
July 12, 2056 |
April 30, 2060 |
February 17, 2064 |
December 6, 2067 |
September 23, 2071 |
147 | 149 | 151 | 153 | 155 |
July 13, 2075 |
May 1, 2079 |
February 16, 2083 |
December 6, 2086 |
September 23, 2090 |
157 | ||||
July 12, 2094 |
Tritos series
[edit]This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||||
---|---|---|---|---|
January 1, 1805 (Saros 109) |
October 31, 1826 (Saros 111) |
August 28, 1848 (Saros 113) | ||
July 29, 1859 (Saros 114) |
June 28, 1870 (Saros 115) |
May 27, 1881 (Saros 116) |
April 26, 1892 (Saros 117) |
March 29, 1903 (Saros 118) |
February 25, 1914 (Saros 119) |
January 24, 1925 (Saros 120) |
December 25, 1935 (Saros 121) |
November 23, 1946 (Saros 122) |
October 23, 1957 (Saros 123) |
September 22, 1968 (Saros 124) |
August 22, 1979 (Saros 125) |
July 22, 1990 (Saros 126) |
June 21, 2001 (Saros 127) |
May 20, 2012 (Saros 128) |
April 20, 2023 (Saros 129) |
March 20, 2034 (Saros 130) |
February 16, 2045 (Saros 131) |
January 16, 2056 (Saros 132) |
December 17, 2066 (Saros 133) |
November 15, 2077 (Saros 134) |
October 14, 2088 (Saros 135) |
September 14, 2099 (Saros 136) |
August 15, 2110 (Saros 137) |
July 14, 2121 (Saros 138) |
June 13, 2132 (Saros 139) |
May 14, 2143 (Saros 140) |
April 12, 2154 (Saros 141) |
March 12, 2165 (Saros 142) |
February 10, 2176 (Saros 143) |
January 9, 2187 (Saros 144) |
December 9, 2197 (Saros 145) |
Inex series
[edit]This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||
---|---|---|
July 27, 1813 (Saros 123) |
July 8, 1842 (Saros 124) |
June 18, 1871 (Saros 125) |
May 28, 1900 (Saros 126) |
May 9, 1929 (Saros 127) |
April 19, 1958 (Saros 128) |
March 29, 1987 (Saros 129) |
March 9, 2016 (Saros 130) |
February 16, 2045 (Saros 131) |
January 27, 2074 (Saros 132) |
January 8, 2103 (Saros 133) |
December 19, 2131 (Saros 134) |
November 27, 2160 (Saros 135) |
November 8, 2189 (Saros 136) |
References
[edit]- ^ "February 16–17, 2045 Annular Solar Eclipse". timeanddate. Retrieved 15 August 2024.
- ^ "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 15 August 2024.
- ^ "Annular Solar Eclipse of 2045 Feb 16". EclipseWise.com. Retrieved 15 August 2024.
- ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
- ^ "NASA - Catalog of Solar Eclipses of Saros 131". eclipse.gsfc.nasa.gov.