The neuropeptide FF receptors[1] are members of the G-protein coupled receptor superfamily of integral membrane proteins which bind the pain modulatory neuropeptides AF and FF.[2]
The Neuropeptide FF receptor family is a member of the G protein-coupled receptor superfamily containing two subtypes, NPFF1 and NPFF2, which exhibit a high affinity for Neuropeptide FF (NPFF) peptides. NPFF1 is broadly distributed in the central nervous system with the highest levels found in the limbic system and the hypothalamus. NPFF2 is present in high density, particularly in mammals in the superficial layers of the spinal cord where it is involved in nociception and modulation of opioid functions. These receptors participate to the modulation of opioid receptor function in the brain and spinal cord, and can either reduce or increase opioid receptor function depending which tissue they are released in, reflecting a complex role for neuropeptide FF in pain responses.
[3][4][5][6][7]
NPFF receptors are coupled to G proteins and regulate adenylyl cyclase in recombinant cell lines (CHO, HEK 293, SH-SY5Y). NPFF receptors are also coupled to voltage-gated N-type Ca2+ channels.
^Parker RM, Copeland NG, Eyre HJ, Liu M, Gilbert DJ, Crawford J, Couzens M, Sutherland GR, Jenkins NA, Herzog H (2000). "Molecular cloning and characterisation of GPR74 a novel G-protein coupled receptor closest related to the Y-receptor family". Brain Res. Mol. Brain Res. 77 (2): 199–208. doi:10.1016/S0169-328X(00)00052-8. PMID10837915.
^Cline MA, Mathews DS (2008). "Anoretic effects of neuropeptide FF are mediated via central mu and kappa subtypes of opioid receptors and receptor ligands". General and Comparative Endocrinology. 159 (2–3): 125–9. doi:10.1016/j.ygcen.2008.09.001. PMID18823989.
^Mollereau C, Mazarguil H, Marcus D, Quelven I, Kotani M, Lannoy V, Dumont Y, Quirion R, Detheux M, Parmentier M, Zajac JM (2002). "Pharmacological characterization of human NPFF(1) and NPFF(2) receptors expressed in CHO cells by using NPY Y(1) receptor antagonists". Eur. J. Pharmacol. 451 (3): 245–56. doi:10.1016/S0014-2999(02)02224-0. PMID12242085.
^Fang Q, Guo J, He F, Peng YL, Chang M, Wang R (September 2006). "In vivo inhibition of neuropeptide FF agonism by BIBP3226, an NPY Y1 receptor antagonist". Peptides. 27 (9): 2207–13. doi:10.1016/j.peptides.2006.04.002. PMID16762456. S2CID34414256.
^Fang Q, Wang YQ, He F, Guo J, Guo J, Chen Q, Wang R (April 2008). "Inhibition of neuropeptide FF (NPFF)-induced hypothermia and anti-morphine analgesia by RF9, a new selective NPFF receptors antagonist". Regulatory Peptides. 147 (1–3): 45–51. doi:10.1016/j.regpep.2007.12.007. PMID18276024. S2CID37436256.
^Wang YQ, Guo J, Wang SB, Fang Q, He F, Wang R (July 2008). "Neuropeptide FF receptors antagonist, RF9, attenuates opioid-evoked hypothermia in mice". Peptides. 29 (7): 1183–90. doi:10.1016/j.peptides.2008.02.016. PMID18406009. S2CID10797657.
"Neuropeptide FF Receptors". IUPHAR Database of Receptors and Ion Channels. International Union of Basic and Clinical Pharmacology. Archived from the original on 2016-03-03. Retrieved 2007-11-03.