Template:Infobox element/symbol-to-oxidation-state/sandbox
Appearance
This is the template sandbox page for Template:Infobox element/symbol-to-oxidation-state (diff). |
Obsolete for Infobox element. Please see Template:Element-symbol-to-oxidation-state-data
Content maintenance (editing this data set)
[edit]- Oxidation state data ( )
- Standard comments (like, "predicted") ( )
Usage
[edit]Automated used in {{Infobox element}} (talk):
- Hg: {{Infobox element/symbol-to-oxidation-state|symbol=Hg}} → −2 , +1, +2 (a mildly basic oxide)
- Hs: {{Infobox element/symbol-to-oxidation-state|symbol=Hs}} → (+2), (+3), (+4), (+6), +8[1][2][3] (parenthesized: prediction)
Comment options
[edit]|comment= options (as of November 2018):
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
comment=acidic | (an acidic oxide) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
comment=mildly acidic | (a mildly acidic oxide) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
comment=strongly acidic | (a strongly acidic oxide) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
comment=amphoteric | (an amphoteric oxide) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
comment=basic | (a basic oxide) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
comment=weakly basic | (a weakly basic oxide) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
comment=mildly basic | (a mildly basic oxide) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
comment=strongly basic | (a strongly basic oxide) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
comment=strongly basic expected | (expected to have a strongly basic oxide) -- Ra | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
comment=oxidizes oxygen | (oxidizes oxygen) -- F | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
comment=depending | (depending on the oxidation state, an acidic, basic, or amphoteric oxide) -- Cr, Mn | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
comment=rarely non-0, weakly acidic | (rarely more than 0; a weakly acidic oxide) -- Xe | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
comment=rarely non-0, unk oxide | (rarely more than 0; oxide is unknown) -- Kr | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
comment=parenthesized | (parenthesized: prediction) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
comment=predicted | (predicted) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
comment=<any text> | <any text>, including blank | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
WP:ENGVAR (set |engvar= in article page)
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
By default, element articles (and so infoboxes) are in en-US .In article space, one can call an infobox with |engvar=en-GB, en-OED , which changes these spellings
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
comment=parenthesized
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|engvar= |
(parenthesized: prediction) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|engvar=en-US (default) |
(parenthesized: prediction) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|engvar=en-GB |
(brackets: prediction) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|engvar=en-OED |
(brackets: prediction) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|engvar=en-FOO |
(parenthesized: prediction) |
Data
[edit]Z | Name | Symbol | complete | main | group | val | oxidation state (P1121) | note |
---|---|---|---|---|---|---|---|---|
1 | hydrogen | H | −1, 0, +1 (an amphoteric oxide) | −1, +1 | 1 | I | -1, 1, 0 | |
2 | helium | He | 0 | 0 | 18 | 0 | ||
3 | lithium | Li | 0[4], +1 (a strongly basic oxide) | +1 | 1 | I | 1 | |
4 | beryllium | Be | 0,[5] +1,[6] +2 (an amphoteric oxide) | +2 | 2 | II | 2, 1[7] | |
5 | boron | B | −5, −1, 0,[8] +1, +2, +3[9][10] (a mildly acidic oxide) | +3 | 13 | III | 2, 3, 1 | |
6 | carbon | C | −4, −3, −2, −1, 0, +1,[11] +2, +3,[12] +4[13] (a mildly acidic oxide) | −4, −3, −2, −1, 0, +1, +2, +3, +4 | 14 | IV | -4, -3, -2, -1, 1, 2, 3, 4, 0 | |
7 | nitrogen | N | −3, −2, −1, 0,[14] +1, +2, +3, +4, +5 (a strongly acidic oxide) | −3, +3, +5 | 15 | V | -3, -2, -1, 1, 2, 3, 4, 5 | |
8 | oxygen | O | −2, −1, 0, +1, +2 | −2 | 16 | VI | -2, -1, 1, 2 | |
9 | fluorine | F | −1, 0[15] (oxidizes oxygen) | −1 | 17 | VII | -1 | |
10 | neon | Ne | 0 | 0 | 18 | 0 | ||
11 | sodium | Na | −1, 0,[16] +1 (a strongly basic oxide) | +1 | 1 | I | -1, 1, 0 | |
12 | magnesium | Mg | 0,[17] +1,[18] +2 (a strongly basic oxide) | +2 | 2 | II | 1, 2 | |
13 | aluminium | Al | −2, −1, 0,[19] +1,[20] +2,[21] +3 (an amphoteric oxide) | +3 | 13 | III | 1, 2, 3 | |
14 | silicon | Si | −4, −3, −2, −1, 0,[22] +1,[23] +2, +3, +4 (an amphoteric oxide) | +4 | 14 | IV | -4, -3, -2, -1, 1, 2, 3, 4 | |
15 | phosphorus | P | −3, −2, −1, 0,[24] +1,[25] +2, +3, +4, +5 (a mildly acidic oxide) | −3, +3, +5 | 15 | V | -3, -2, -1, 1, 2, 3, 4, 5 | |
16 | sulfur | S | −2, −1, 0, +1, +2, +3, +4, +5, +6 (a strongly acidic oxide) | −2, +2, +4, +6 | 16 | VI | -2, -1, 1, 2, 3, 4, 5, 6 | |
17 | chlorine | Cl | −1, 0, +1, +2, +3, +4, +5, +6, +7 (a strongly acidic oxide) | −1, +1, +3, +5, +7 | 17 | VII | -1, 1, 2, 3, 4, 5, 6, 7 | |
18 | argon | Ar | 0 | 0 | 18 | 0 | ||
19 | potassium | K | −1, +1 (a strongly basic oxide) | +1 | 1 | I | -1, 1[26] | |
20 | calcium | Ca | +1,[27] +2 (a strongly basic oxide) | +2 | 2 | II | 1, 2 | |
21 | scandium | Sc | 0,[28] +1,[29] +2,[30] +3 (an amphoteric oxide) | +3 | 3 | III | 1, 2, 3 | |
22 | titanium | Ti | −2, −1, 0,[31] +1, +2, +3, +4[32] (an amphoteric oxide) | +2, +3, +4 | 4 | IV | -1, 1, 2, 4, 3[33] | |
23 | vanadium | V | −3, −1, 0, +1, +2, +3, +4, +5 (an amphoteric oxide) | +2, +3, +4, +5 | 5 | V | 5, -1, 1, 2, 3, 4 | |
24 | chromium | Cr | −4, −2, −1, 0, +1, +2, +3, +4, +5, +6 (depending on the oxidation state, an acidic, basic, or amphoteric oxide) | +2, +3, +6 | 6 | VI | 3, -2, -1, 1, 2, 4, 5, 6 | |
25 | manganese | Mn | −3, −1, 0, +1, +2, +3, +4, +5, +6, +7 (depending on the oxidation state, an acidic, basic, or amphoteric oxide) | +2, +3, +4, +6, +7 | 7 | VII | 2, -3, -2, -1, 1, 3, 4, 5, 6, 7 | |
26 | iron | Fe | −4, −2, −1, 0, +1,[34] +2, +3, +4, +5,[35] +6, +7[36] (an amphoteric oxide) | +2, +3 | 8 | VIII | 2, 3, -2, -1, 1, 4, 5, 6 | |
27 | cobalt | Co | −3, −1, 0, +1, +2, +3, +4, +5[37] (an amphoteric oxide) | +2, +3 | 9 | VIII | 2, -1, 1, 3, 4, 5 | |
28 | nickel | Ni | −2, −1, 0, +1,[38] +2, +3, +4[39] (a mildly basic oxide) | +2 | 10 | VIII | -1, 1, 2, 3, 4 | |
29 | copper | Cu | −2, 0,[40] +1, +2, +3, +4 (a mildly basic oxide) | +1, +2 | 11 | I | 1, 2, 3, 4 | |
30 | zinc | Zn | −2, 0, +1, +2 (an amphoteric oxide) | +2 | 12 | II | 1, 2 | |
31 | gallium | Ga | −5, −4, −3,[41] −2, −1, 0, +1, +2, +3[42] (an amphoteric oxide) | +3 | 13 | III | 1, 2, 3 | |
32 | germanium | Ge | −4, −3, −2, −1, 0,[43] +1, +2, +3, +4 (an amphoteric oxide) | +2, +4 | 14 | IV | -4, -3, -2, -1, 1, 2, 3, 4 | |
33 | arsenic | As | −3, −2, −1, 0,[44] +1,[45] +2, +3, +4, +5 (a mildly acidic oxide) | −3, +3, +5 | 15 | V | -3, 1, 2, 3, 4 | |
34 | selenium | Se | −2, −1, 0,[46] +1,[47] +2, +3, +4, +5, +6 (a strongly acidic oxide) | −2, +2, +4, +6 | 16 | VI | -2, 2, 4, 6, 1 | |
35 | bromine | Br | −1, 0, +1, +2,[48] +3, +4, +5, +7 (a strongly acidic oxide) | −1, +1, +3, +5 | 17 | VII | ||
36 | krypton | Kr | 0, +1, +2 (rarely more than 0; oxide is unknown) | 0 | 18 | 0 | ||
37 | rubidium | Rb | −1, +1 (a strongly basic oxide) | +1 | 1 | I | 1 | |
38 | strontium | Sr | +1,[49] +2 (a strongly basic oxide) | +2 | 2 | II | 2 | |
39 | yttrium | Y | 0,[50] +1, +2, +3 (a weakly basic oxide) | +3 | 3 | III | 3 | |
40 | zirconium | Zr | +2,[51] +4[52] | +4 | 4 | IV | 4[53] | |
41 | niobium | Nb | −3, −1, 0, +1, +2, +3, +4, +5 (a mildly acidic oxide) | +5 | 5 | V | 5,[54] 2,[54] 3,[54] 4[54] | |
42 | molybdenum | Mo | −4, −2, −1, 0, +1,[citation needed] +2, +3, +4, +5, +6 (a strongly acidic oxide) | +4, +6 | 6 | VI | 6,[55] 0,[55] 5,[55] 4,[55] 3,[55] 2[55] | |
43 | technetium | Tc | −1, 0, +1,[citation needed] +2, +3, +4, +5, +6, +7 (a strongly acidic oxide) | +4, +7 | 7 | VII | 4,[56] 6,[56] 7[56] | |
44 | ruthenium | Ru | −4, −2, 0, +1,[citation needed] +2, +3, +4, +5, +6, +7, +8 (a mildly acidic oxide) | +3, +4 | 8 | VIII | 3,[57] 4,[57] 1,[57] 2,[57] 5,[57] 6,[57] 7,[57] 8[57] | |
45 | rhodium | Rh | −3[58], −1, 0, +1, +2, +3, +4, +5, +6, +7[59] (an amphoteric oxide) | +3 | 9 | VIII | 3,[60] 1,[60] 2,[60] 4,[60] 5,[60] 6[60] | |
46 | palladium | Pd | 0, +1, +2, +3, +4, +5[61] (a mildly basic oxide) | 0, +2, +4 | 10 | VIII | ||
47 | silver | Ag | −2, −1, 0,[62] +1, +2, +3 (an amphoteric oxide) | +1 | 11 | I | ||
48 | cadmium | Cd | −2, +1, +2 (a mildly basic oxide) | +2 | 12 | II | ||
49 | indium | In | −5, −2, −1, 0,[63] +1, +2, +3[64] (an amphoteric oxide) | +3 | 13 | III | ||
50 | tin | Sn | −4, −3, −2, −1, 0,[65] +1,[66] +2, +3,[67] +4 (an amphoteric oxide) | +2, +4 | 14 | IV | ||
51 | antimony | Sb | −3, −2, −1, 0,[68] +1, +2, +3, +4, +5 (an amphoteric oxide) | +3, +5 | 15 | V | ||
52 | tellurium | Te | −2, −1, 0, +1, +2, +3, +4, +5, +6 (a mildly acidic oxide) | −2, +2, +4, +6 | 16 | VI | ||
53 | iodine | I | −1, 0, +1, +2,[69] +3, +4, +5, +6, +7 (a strongly acidic oxide) | −1, +1, +3, +5, +7 | 17 | VII | ||
54 | xenon | Xe | 0, +2, +4, +6, +8 (rarely more than 0; a weakly acidic oxide) | 0 | 18 | 0 | ||
55 | caesium | Cs | −1, +1[70] (a strongly basic oxide) | +1 | 1 | I | 1 | |
56 | barium | Ba | +1, +2 (a strongly basic oxide) | +2 | 2 | II | 2 | |
57 | lanthanum | La | 0,[50] +1,[71] +2, +3 (a strongly basic oxide) | +3 | f-block groups | - | ||
58 | cerium | Ce | +1, +2, +3, +4 (a mildly basic oxide) | +3, +4 | f-block groups | - | ||
59 | praseodymium | Pr | 0,[50] +1,[72] +2, +3, +4, +5 (a mildly basic oxide) | +3 | f-block groups | - | ||
60 | neodymium | Nd | 0,[50] +2, +3, +4 (a mildly basic oxide) | +3 | f-block groups | - | ||
61 | promethium | Pm | +2, +3 (a mildly basic oxide) | +3 | f-block groups | - | 2, 3 | |
62 | samarium | Sm | 0,[50] +1,[73] +2, +3 (a mildly basic oxide) | +3 | f-block groups | - | ||
63 | europium | Eu | 0,[50] +2, +3 (a mildly basic oxide) | +2, +3 | f-block groups | - | ||
64 | gadolinium | Gd | 0,[50] +1, +2, +3 (a mildly basic oxide) | +3 | f-block groups | - | ||
65 | terbium | Tb | 0,[50] +1,[71] +2, +3, +4 (a weakly basic oxide) | +3 | f-block groups | - | ||
66 | dysprosium | Dy | 0,[50] +1, +2, +3, +4 (a weakly basic oxide) | +3 | f-block groups | - | 2, 3, 4 | |
67 | holmium | Ho | 0,[50] +1, +2, +3 (a basic oxide) | +3 | f-block groups | - | 2, 3 | |
68 | erbium | Er | 0,[50] +1, +2, +3 (a basic oxide) | +3 | f-block groups | - | ||
69 | thulium | Tm | 0,[50] +1,[71] +2, +3 (a basic oxide) | +3 | f-block groups | - | ||
70 | ytterbium | Yb | 0,[50] +1,[71] +2, +3 (a basic oxide) | +3 | f-block groups | - | ||
71 | lutetium | Lu | 0,[50] +1, +2, +3 (a weakly basic oxide) | +3 | 3 | III | 3 | |
72 | hafnium | Hf | −2, 0, +1, +2, +3, +4 (an amphoteric oxide) | +4 | 4 | IV | 4[74] | |
73 | tantalum | Ta | −3, −1, 0, +1, +2, +3, +4, +5 (a mildly acidic oxide) | +5 | 5 | V | 2,[75] 3,[75] 4,[75] 5[75] | |
74 | tungsten | W | −4, −2, −1, 0, +1, +2, +3, +4, +5, +6 (a mildly acidic oxide) | +4, +6 | 6 | VI | 2,[76] 3,[76] 4,[76] 5,[76] 6[76] | |
75 | rhenium | Re | −3, −1, 0, +1, +2, +3, +4, +5, +6, +7 (a mildly acidic oxide) | +3, +4, +7 | 7 | VII | 3,[77] 5,[77] 7,[77] 1,[77] 2,[77] 4,[77] 6[77] | |
76 | osmium | Os | −4, −2, −1, 0, +1, +2, +3, +4, +5, +6, +7, +8 (a mildly acidic oxide) | +2, +3, +4, +8 | 8 | VIII | 4,[78] 2,[78] 8,[78] 6,[78] 3[78] | |
77 | iridium | Ir | −3, –2, −1, 0, +1, +2, +3, +4, +5, +6, +7, +8, +9[79] | +1, +3, +4 | 9 | VIII | ||
78 | platinum | Pt | −3, −2, −1, 0, +1, +2, +3, +4, +5, +6 (a mildly basic oxide) | +2, +4 | 10 | VIII | ||
79 | gold | Au | −3, −2, −1, 0,[80] +1, +2, +3, +5 (an amphoteric oxide) | +1, +3 | 11 | I | ||
80 | mercury | Hg | −2 , +1, +2 (a mildly basic oxide) | +1, +2 | 12 | II | ||
81 | thallium | Tl | −5,[81] −2, −1, +1, +2, +3 (a mildly basic oxide) | +1, +3 | 13 | III | ||
82 | lead | Pb | −4, −2, −1, 0,[82] +1, +2, +3, +4 (an amphoteric oxide) | +2, +4 | 14 | IV | ||
83 | bismuth | Bi | −3, −2, −1, 0,[83] +1, +2, +3, +4, +5 (a mildly acidic oxide) | +3 | 15 | V | ||
84 | polonium | Po | −2, +2, +4, +5,[84] +6 (an amphoteric oxide) | −2, +2, +4 | 16 | VI | ||
85 | astatine | At | −1, +1, +3, +5, +7[85] | −1, +1 | 17 | VII | ||
86 | radon | Rn | 0, +2, +6 | 0 | 18 | 0 | ||
87 | francium | Fr | +1 (expected to have a strongly basic oxide) | +1 | 1 | I | 1 | |
88 | radium | Ra | +2 (expected to have a strongly basic oxide) | +2 | 2 | II | 2 | |
89 | actinium | Ac | +3 (a strongly basic oxide) | +3 | f-block groups | - | 3 | |
90 | thorium | Th | −1,[86] +1, +2, +3, +4 (a weakly basic oxide) | +4 | f-block groups | - | 4, 3, 2, 1 | |
91 | protactinium | Pa | +2, +3, +4, +5 (a weakly basic oxide) | +5 | f-block groups | - | ||
92 | uranium | U | −1,[86] +1, +2, +3,[87] +4, +5, +6 (an amphoteric oxide) | +4, +6 | f-block groups | - | ||
93 | neptunium | Np | +2, +3, +4,[88] +5, +6, +7 (an amphoteric oxide) | +5 | f-block groups | - | ||
94 | plutonium | Pu | +2, +3, +4, +5, +6, +7, +8 (an amphoteric oxide) | +4 | f-block groups | - | ||
95 | americium | Am | +2, +3, +4, +5, +6, +7 (an amphoteric oxide) | +3 | f-block groups | - | ||
96 | curium | Cm | +3, +4, +5,[89] +6[90] (an amphoteric oxide) | +3 | f-block groups | - | ||
97 | berkelium | Bk | +2, +3, +4, +5[89] | +3 | f-block groups | - | ||
98 | californium | Cf | +2, +3, +4, +5[91][89] | +3 | f-block groups | - | ||
99 | einsteinium | Es | +2, +3, +4 | +3 | f-block groups | - | ||
100 | fermium | Fm | +2, +3 | +3 | f-block groups | - | ||
101 | mendelevium | Md | +2, +3 | +3 | f-block groups | - | ||
102 | nobelium | No | +2, +3 | +2 | f-block groups | - | ||
103 | lawrencium | Lr | +3 | +3 | 3 | III | ||
104 | rutherfordium | Rf | (+2), (+3), +4[92][93][2] (parenthesized: prediction) | (+3), +4 (parenthesized: prediction) | 4 | IV | ||
105 | dubnium | Db | (+3), (+4), +5[93][2] (parenthesized: prediction) | +5 | 5 | V | ||
106 | seaborgium | Sg | 0, (+3), (+4), (+5), +6[93][2] (parenthesized: prediction) | (+4), +6 (parenthesized: prediction) | 6 | VI | ||
107 | bohrium | Bh | (+3), (+4), (+5), +7[93][2] (parenthesized: prediction) | (+3), (+4), (+5), +7 (parenthesized: prediction) | 7 | VII | ||
108 | hassium | Hs | (+2), (+3), (+4), (+6), +8[94][2][3] (parenthesized: prediction) | (+3), (+4) (parenthesized: prediction) | 8 | VIII | ||
109 | meitnerium | Mt | (+1), (+3), (+4), (+6), (+8), (+9) (predicted)[93][95][96][2] | (+1), (+3), (+6) (predicted) | 9 | VIII | ||
110 | darmstadtium | Ds | (0), (+2), (+4), (+6), (+8) (predicted)[93][2] | (0), (+2), (+4) (predicted) | 10 | VIII | ||
111 | roentgenium | Rg | (−1), (+1), (+3), (+5), (+7) (predicted)[93][2][97] | (+3) (predicted) | 11 | I | ||
112 | copernicium | Cn | 0, (+1), +2, (+4), (+6) (parenthesized: prediction)[93][98][2][99] | 0, +2 | 12 | II | ||
113 | nihonium | Nh | (−1), (+1), (+3), (+5) (predicted)[93][2][100] | (+1), (+3) (predicted) | 13 | III | ||
114 | flerovium | Fl | (0), (+1), (+2), (+4), (+6) (predicted)[93][2][101] | (+2) (predicted) | 14 | IV | ||
115 | moscovium | Mc | (+1), (+3) (predicted)[93][2] | (+1), (+3) (predicted) | 15 | V | ||
116 | livermorium | Lv | (−2),[102] (+2), (+4) (predicted)[93] | (+2) (predicted) | 16 | VI | ||
117 | tennessine | Ts | (−1), (+1), (+3), (+5) (predicted)[2][93] | (+1), (+3) (predicted) | 17 | VII | ||
118 | oganesson | Og | (−1),[93] (0), (+1),[103] (+2),[104] (+4),[104] (+6)[93] (predicted) | (+2), (+4) (predicted) | 18 | 0 | -1, 0, 1, 2, 4, 6 | |
119 | ununennium | Uue | (+1), (+3), (+5) (predicted)[93][105] | (+1) (predicted) | 1 | I | ||
120 | unbinilium | Ubn | (+1),[106] (+2), (+4), (+6) (predicted)[93][105] | (+2) (predicted) | 2 | II | ||
121 | unbiunium | Ubu | (+1), (+3) (predicted)[93][107] | (+3) (predicted) | g-block groups | - | ||
122 | unbibium | Ubb | (+4) (predicted)[108] | (+4) (predicted) | g-block groups | - | ||
123 | unbitrium | Ubt | (+5) (predicted)[108] | (+5) (predicted) | g-block groups | - | ||
124 | unbiquadium | Ubq | (+6) (predicted)[108] | (+6) (predicted) | g-block groups | - | ||
125 | unbipentium | Ubp | (+1), (+6), (+7) (predicted)[108] | (+6), (+7) (predicted) | g-block groups | - | ||
126 | unbihexium | Ubh | (+1), (+2), (+4), (+6), (+8) (predicted)[108] | (+4), (+6), (+8) (predicted) | g-block groups | - |
See also
[edit]- Oxidation state
- List of oxidation states of the elements, {{List of oxidation states of the elements}}
Templates used:
- ^ Hoffman, Darleane C.; Lee, Diana M.; Pershina, Valeria (2006). "Transactinides and the future elements". In Morss; Edelstein, Norman M.; Fuger, Jean (eds.). The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Dordrecht, The Netherlands: Springer Science+Business Media. p. 1691. ISBN 978-1-4020-3555-5.
- ^ a b c d e f g h i j k l m n Fricke, Burkhard (1975). "Superheavy elements: a prediction of their chemical and physical properties". Recent Impact of Physics on Inorganic Chemistry. Structure and Bonding. 21: 89–144. doi:10.1007/BFb0116498. ISBN 978-3-540-07109-9. Retrieved 4 October 2013.
- ^ a b Düllmann, C. E. (2008). Investigation of group 8 metallocenes @ TASCA (PDF). 7th Workshop on Recoil Separator for Superheavy Element Chemistry TASCA 08. Archived from the original (PDF) on 30 April 2014. Retrieved 28 August 2020.
- ^ Li(0) atoms have been observed in various small lithium-chloride clusters; see Milovanović, Milan; Veličković, Suzana; Veljkovićb, Filip; Jerosimić, Stanka (October 30, 2017). "Structure and stability of small lithium-chloride LinClm(0,1+) (n ≥ m, n = 1–6, m = 1–3) clusters". Physical Chemistry Chemical Physics. 19 (45): 30481–30497. doi:10.1039/C7CP04181K. PMID 29114648.
- ^ Be(0) has been observed; see "Beryllium(0) Complex Found". Chemistry Europe. 13 June 2016.
- ^ "Beryllium: Beryllium(I) Hydride compound data" (PDF). bernath.uwaterloo.ca. Retrieved 2007-12-10.
- ^ http://bernath.uwaterloo.ca/media/252.pdf.
{{cite web}}
: Missing or empty|title=
(help) - ^ Braunschweig, H.; Dewhurst, R. D.; Hammond, K.; Mies, J.; Radacki, K.; Vargas, A. (2012). "Ambient-Temperature Isolation of a Compound with a Boron-Boron Triple Bond". Science. 336 (6087): 1420–2. Bibcode:2012Sci...336.1420B. doi:10.1126/science.1221138. PMID 22700924. S2CID 206540959.
- ^ Zhang, K.Q.; Guo, B.; Braun, V.; Dulick, M.; Bernath, P.F. (1995). "Infrared Emission Spectroscopy of BF and AIF" (PDF). J. Molecular Spectroscopy. 170 (1): 82. Bibcode:1995JMoSp.170...82Z. doi:10.1006/jmsp.1995.1058.
- ^ Schroeder, Melanie. Eigenschaften von borreichen Boriden und Scandium-Aluminium-Oxid-Carbiden (PDF) (in German). p. 139.
- ^ "Fourier Transform Spectroscopy of the Electronic Transition of the Jet-Cooled CCI Free Radical" (PDF). Retrieved 2007-12-06.
- ^ "Fourier Transform Spectroscopy of the System of CP" (PDF). Retrieved 2007-12-06.
- ^ "Carbon: Binary compounds". Retrieved 2007-12-06.
- ^ Tetrazoles contain a pair of double-bonded nitrogen atoms with oxidation state 0 in the ring. A Synthesis of the parent 1H-tetrazole, CH2N4 (two atoms N(0)) is given in Henry, Ronald A.; Finnegan, William G. (1954). "An Improved Procedure for the Deamination of 5-Aminotetrazole". Journal of the American Chemical Society. 76 (1): 290–291. doi:10.1021/ja01630a086. ISSN 0002-7863.
- ^ Himmel, D.; Riedel, S. (2007). "After 20 Years, Theoretical Evidence That 'AuF7' Is Actually AuF5·F2". Inorganic Chemistry. 46 (13). 5338–5342. doi:10.1021/ic700431s.
- ^ The compound NaCl has been shown in experiments to exists in several unusual stoichiometries under high pressure, including Na3Cl in which contains a layer of sodium(0) atoms; see Zhang, W.; Oganov, A. R.; Goncharov, A. F.; Zhu, Q.; Boulfelfel, S. E.; Lyakhov, A. O.; Stavrou, E.; Somayazulu, M.; Prakapenka, V. B.; Konôpková, Z. (2013). "Unexpected Stable Stoichiometries of Sodium Chlorides". Science. 342 (6165): 1502–1505. arXiv:1310.7674. Bibcode:2013Sci...342.1502Z. doi:10.1126/science.1244989. PMID 24357316. S2CID 15298372.
- ^ Mg(0) has been synthesized in a compound containing a Na2Mg22+ cluster coordinated to a bulky organic ligand; see Rösch, B.; Gentner, T. X.; Eyselein, J.; Langer, J.; Elsen, H.; Li, W.; Harder, S. (2021). "Strongly reducing magnesium(0) complexes". Nature. 592 (7856): 717–721. Bibcode:2021Natur.592..717R. doi:10.1038/s41586-021-03401-w. PMID 33911274. S2CID 233447380
- ^ Bernath, P. F.; Black, J. H. & Brault, J. W. (1985). "The spectrum of magnesium hydride" (PDF). Astrophysical Journal. 298: 375. Bibcode:1985ApJ...298..375B. doi:10.1086/163620.. See also Low valent magnesium compounds.
- ^ Unstable carbonyl of Al(0) has been detected in reaction of Al2(CH3)6 with carbon monoxide; see Sanchez, Ramiro; Arrington, Caleb; Arrington Jr., C. A. (December 1, 1989). "Reaction of trimethylaluminum with carbon monoxide in low-temperature matrixes". American Chemical Society. 111 (25): 9110-9111. doi:10.1021/ja00207a023. OSTI 6973516.
- ^ Dohmeier, C.; Loos, D.; Schnöckel, H. (1996). "Aluminum(I) and Gallium(I) Compounds: Syntheses, Structures, and Reactions". Angewandte Chemie International Edition. 35 (2): 129–149. doi:10.1002/anie.199601291.
- ^ Tyte, D. C. (1964). "Red (B2Π–A2σ) Band System of Aluminium Monoxide". Nature. 202 (4930): 383. Bibcode:1964Natur.202..383T. doi:10.1038/202383a0. S2CID 4163250.
- ^ "New Type of Zero-Valent Tin Compound". Chemistry Europe. 27 August 2016.
- ^ Ram, R. S.; et al. (1998). "Fourier Transform Emission Spectroscopy of the A2D–X2P Transition of SiH and SiD" (PDF). J. Mol. Spectr. 190 (2): 341–352. doi:10.1006/jmsp.1998.7582. PMID 9668026.
- ^ Wang, Yuzhong; Xie, Yaoming; Wei, Pingrong; King, R. Bruce; Schaefer, Iii; Schleyer, Paul v. R.; Robinson, Gregory H. (2008). "Carbene-Stabilized Diphosphorus". Journal of the American Chemical Society. 130 (45): 14970–1. doi:10.1021/ja807828t. PMID 18937460.
- ^ Ellis, Bobby D.; MacDonald, Charles L. B. (2006). "Phosphorus(I) Iodide: A Versatile Metathesis Reagent for the Synthesis of Low Oxidation State Phosphorus Compounds". Inorganic Chemistry. 45 (17): 6864–74. doi:10.1021/ic060186o. PMID 16903744.
- ^ Google Maps, 7.4.0, Wikidata Q12013
- ^ Krieck, Sven; Görls, Helmar; Westerhausen, Matthias (2010). "Mechanistic Elucidation of the Formation of the Inverse Ca(I) Sandwich Complex [(thf)3Ca(μ-C6H3-1,3,5-Ph3)Ca(thf)3] and Stability of Aryl-Substituted Phenylcalcium Complexes". Journal of the American Chemical Society. 132 (35): 12492–12501. doi:10.1021/ja105534w. PMID 20718434.
- ^ Cloke, F. Geoffrey N.; Khan, Karl & Perutz, Robin N. (1991). "η-Arene complexes of scandium(0) and scandium(II)". J. Chem. Soc., Chem. Commun. (19): 1372–1373. doi:10.1039/C39910001372.
- ^ Smith, R. E. (1973). "Diatomic Hydride and Deuteride Spectra of the Second Row Transition Metals". Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences. 332 (1588): 113–127. Bibcode:1973RSPSA.332..113S. doi:10.1098/rspa.1973.0015. S2CID 96908213.
- ^ McGuire, Joseph C.; Kempter, Charles P. (1960). "Preparation and Properties of Scandium Dihydride". Journal of Chemical Physics. 33 (5): 1584–1585. Bibcode:1960JChPh..33.1584M. doi:10.1063/1.1731452.
- ^ Jilek, Robert E.; Tripepi, Giovanna; Urnezius, Eugenijus; Brennessel, William W.; Young, Victor G. Jr.; Ellis, John E. (2007). "Zerovalent titanium–sulfur complexes. Novel dithiocarbamato derivatives of Ti(CO)6:[Ti(CO)4(S2CNR2)]−". Chem. Commun. (25): 2639–2641. doi:10.1039/B700808B. PMID 17579764.
- ^ Andersson, N.; et al. (2003). "Emission spectra of TiH and TiD near 938 nm" (PDF). J. Chem. Phys. 118 (8): 10543. Bibcode:2003JChPh.118.3543A. doi:10.1063/1.1539848.
- ^ https://www.chemistryscl.com/advancedlevel/general/oxidation-states-elements/index.php.
{{cite web}}
: Missing or empty|title=
(help) - ^ Ram, R. S.; Bernath, P. F. (2003). "Fourier transform emission spectroscopy of the g4Δ–a4Δ system of FeCl". Journal of Molecular Spectroscopy. 221 (2): 261. Bibcode:2003JMoSp.221..261R. doi:10.1016/S0022-2852(03)00225-X.
- ^ Demazeau, G.; Buffat, B.; Pouchard, M.; Hagenmuller, P. (1982). "Recent developments in the field of high oxidation states of transition elements in oxides stabilization of six-coordinated Iron(V)". Zeitschrift für anorganische und allgemeine Chemie. 491: 60–66. doi:10.1002/zaac.19824910109.
- ^ Lu, J.; Jian, J.; Huang, W.; Lin, H.; Li, J; Zhou, M. (2016). "Experimental and theoretical identification of the Fe(VII) oxidation state in FeO4−". Physical Chemistry Chemical Physics. 18 (45): 31125–31131. Bibcode:2016PCCP...1831125L. doi:10.1039/C6CP06753K. PMID 27812577.
- ^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. pp. 1117–1119. ISBN 978-0-08-037941-8.
- ^ Pfirrmann, Stefan; Limberg, Christian; Herwig, Christian; Stößer, Reinhard; Ziemer, Burkhard (2009). "A Dinuclear Nickel(I) Dinitrogen Complex and its Reduction in Single-Electron Steps". Angewandte Chemie International Edition. 48 (18): 3357–61. doi:10.1002/anie.200805862. PMID 19322853.
- ^ Carnes, Matthew; Buccella, Daniela; Chen, Judy Y.-C.; Ramirez, Arthur P.; Turro, Nicholas J.; Nuckolls, Colin; Steigerwald, Michael (2009). "A Stable Tetraalkyl Complex of Nickel(IV)". Angewandte Chemie International Edition. 48 (2): 290–4. doi:10.1002/anie.200804435. PMID 19021174.
- ^ Moret, Marc-Etienne; Zhang, Limei; Peters, Jonas C. (2013). "A Polar Copper–Boron One-Electron σ-Bond". J. Am. Chem. Soc. 135 (10): 3792–3795. doi:10.1021/ja4006578. PMID 23418750.
- ^ Ga(−3) has been observed in LaGa, see Dürr, Ines; Bauer, Britta; Röhr, Caroline (2011). "Lanthan-Triel/Tetrel-ide La(Al,Ga)x(Si,Ge)1-x. Experimentelle und theoretische Studien zur Stabilität intermetallischer 1:1-Phasen" (PDF). Z. Naturforsch. (in German). 66b: 1107–1121.
- ^ Hofmann, Patrick (1997). Colture. Ein Programm zur interaktiven Visualisierung von Festkörperstrukturen sowie Synthese, Struktur und Eigenschaften von binären und ternären Alkali- und Erdalkalimetallgalliden (PDF) (Thesis) (in German). PhD Thesis, ETH Zurich. p. 72. doi:10.3929/ethz-a-001859893. hdl:20.500.11850/143357. ISBN 978-3728125972.
- ^ "New Type of Zero-Valent Tin Compound". Chemistry Europe. 27 August 2016.
- ^ Abraham, Mariham Y.; Wang, Yuzhong; Xie, Yaoming; Wei, Pingrong; Shaefer III, Henry F.; Schleyer, P. von R.; Robinson, Gregory H. (2010). "Carbene Stabilization of Diarsenic: From Hypervalency to Allotropy". Chemistry: A European Journal. 16 (2): 432–5. doi:10.1002/chem.200902840. PMID 19937872.
- ^ Ellis, Bobby D.; MacDonald, Charles L. B. (2004). "Stabilized Arsenic(I) Iodide: A Ready Source of Arsenic Iodide Fragments and a Useful Reagent for the Generation of Clusters". Inorganic Chemistry. 43 (19): 5981–6. doi:10.1021/ic049281s. PMID 15360247.
- ^ A Se(0) atom has been identified using DFT in [ReOSe(2-pySe)3]; see Cargnelutti, Roberta; Lang, Ernesto S.; Piquini, Paulo; Abram, Ulrich (2014). "Synthesis and structure of [ReOSe(2-Se-py)3]: A rhenium(V) complex with selenium(0) as a ligand". Inorganic Chemistry Communications. 45: 48–50. doi:10.1016/j.inoche.2014.04.003. ISSN 1387-7003.
- ^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
- ^ Br(II) is known to occur in bromine monoxide radical; see Kinetics of the bromine monoxide radical + bromine monoxide radical reaction
- ^ Colarusso, P.; Guo, B.; Zhang, K.-Q.; Bernath, P. F. (1996). "High-Resolution Infrared Emission Spectrum of Strontium Monofluoride" (PDF). J. Molecular Spectroscopy. 175 (1): 158. Bibcode:1996JMoSp.175..158C. doi:10.1006/jmsp.1996.0019.
- ^ a b c d e f g h i j k l m n Yttrium and all lanthanides except Ce and Pm have been observed in the oxidation state 0 in bis(1,3,5-tri-t-butylbenzene) complexes, see Cloke, F. Geoffrey N. (1993). "Zero Oxidation State Compounds of Scandium, Yttrium, and the Lanthanides". Chem. Soc. Rev. 22: 17–24. doi:10.1039/CS9932200017. and Arnold, Polly L.; Petrukhina, Marina A.; Bochenkov, Vladimir E.; Shabatina, Tatyana I.; Zagorskii, Vyacheslav V.; Cloke (2003-12-15). "Arene complexation of Sm, Eu, Tm and Yb atoms: a variable temperature spectroscopic investigation". Journal of Organometallic Chemistry. 688 (1–2): 49–55. doi:10.1016/j.jorganchem.2003.08.028.
- ^ Calderazzo, Fausto; Pampaloni, Guido (January 1992). "Organometallics of groups 4 and 5: Oxidation states II and lower". Journal of Organometallic Chemistry. 423 (3): 307–328. doi:10.1016/0022-328X(92)83126-3.
- ^ Ma, Wen; Herbert, F. William; Senanayake, Sanjaya D.; Yildiz, Bilge (2015-03-09). "Non-equilibrium oxidation states of zirconium during early stages of metal oxidation". Applied Physics Letters. 106 (10). doi:10.1063/1.4914180. ISSN 0003-6951.
- ^ https://www.britannica.com/science/zirconium.
{{cite web}}
: Missing or empty|title=
(help) - ^ a b c d https://www.britannica.com/science/niobium.
{{cite web}}
: Missing or empty|title=
(help) - ^ a b c d e f https://www.britannica.com/science/molybdenum.
{{cite web}}
: Missing or empty|title=
(help) - ^ a b c https://www.britannica.com/science/technetium.
{{cite web}}
: Missing or empty|title=
(help) - ^ a b c d e f g h https://www.britannica.com/science/ruthenium.
{{cite web}}
: Missing or empty|title=
(help) - ^ Ellis J E. Highly Reduced Metal Carbonyl Anions: Synthesis, Characterization, and Chemical Properties. Adv. Organomet. Chem, 1990, 31: 1-51.
- ^ Rh(VII) is known in the RhO3+ cation, see Da Silva Santos, Mayara; Stüker, Tony; Flach, Max; Ablyasova, Olesya S.; Timm, Martin; von Issendorff, Bernd; Hirsch, Konstantin; Zamudio‐Bayer, Vicente; Riedel, Sebastian; Lau, J. Tobias (2022). "The Highest Oxidation State of Rhodium: Rhodium(VII) in [RhO3]+". Angew. Chem. Int. Ed. 61 (38): e202207688. doi:10.1002/anie.202207688. PMC 9544489. PMID 35818987.
- ^ a b c d e f https://www.britannica.com/science/rhodium.
{{cite web}}
: Missing or empty|title=
(help) - ^ Palladium(V) has been identified in complexes with organosilicon compounds containing pentacoordinate palladium; see Shimada, Shigeru; Li, Yong-Hua; Choe, Yoong-Kee; Tanaka, Masato; Bao, Ming; Uchimaru, Tadafumi (2007). "Multinuclear palladium compounds containing palladium centers ligated by five silicon atoms". Proceedings of the National Academy of Sciences. 104 (19): 7758–7763. doi:10.1073/pnas.0700450104. PMC 1876520. PMID 17470819.
- ^ Ag(0) has been observed in carbonyl complexes in low-temperature matrices: see McIntosh, D.; Ozin, G. A. (1976). "Synthesis using metal vapors. Silver carbonyls. Matrix infrared, ultraviolet-visible, and electron spin resonance spectra, structures, and bonding of silver tricarbonyl, silver dicarbonyl, silver monocarbonyl, and disilver hexacarbonyl". J. Am. Chem. Soc. 98 (11): 3167–75. doi:10.1021/ja00427a018.
- ^ Unstable In(0) carbonyls and clusters have been detected, see [1], p. 6.
- ^ Guloy, A. M.; Corbett, J. D. (1996). "Synthesis, Structure, and Bonding of Two Lanthanum Indium Germanides with Novel Structures and Properties". Inorganic Chemistry. 35 (9): 2616–22. doi:10.1021/ic951378e. PMID 11666477.
- ^ "New Type of Zero-Valent Tin Compound". Chemistry Europe. 27 August 2016.
- ^ "HSn". NIST Chemistry WebBook. National Institute of Standards and Technology. Retrieved 23 January 2013.
- ^ "SnH3". NIST Chemistry WebBook. National Institure of Standards and Technology. Retrieved 23 January 2013.
- ^ Anastas Sidiropoulos (2019). "Studies of N-heterocyclic Carbene (NHC) Complexes of the Main Group Elements" (PDF). p. 39. doi:10.4225/03/5B0F4BDF98F60. S2CID 132399530.
- ^ I(II) is known to exist in monoxide (IO); see Nikitin, I V (31 August 2008). "Halogen monoxides". Russian Chemical Reviews. 77 (8): 739–749. Bibcode:2008RuCRv..77..739N. doi:10.1070/RC2008v077n08ABEH003788. S2CID 250898175.
- ^ Dye, J. L. (1979). "Compounds of Alkali Metal Anions". Angewandte Chemie International Edition. 18 (8): 587–598. doi:10.1002/anie.197905871.
- ^ a b c d La(I), Pr(I), Tb(I), Tm(I), and Yb(I) have been observed in MB8− clusters; see Li, Wan-Lu; Chen, Teng-Teng; Chen, Wei-Jia; Li, Jun; Wang, Lai-Sheng (2021). "Monovalent lanthanide(I) in borozene complexes". Nature Communications. 12 (1): 6467. doi:10.1038/s41467-021-26785-9. PMC 8578558. PMID 34753931.
- ^ Chen, Xin; et al. (2019-12-13). "Lanthanides with Unusually Low Oxidation States in the PrB3– and PrB4– Boride Clusters". Inorganic Chemistry. 58 (1): 411–418. doi:10.1021/acs.inorgchem.8b02572. PMID 30543295. S2CID 56148031.
- ^ SmB6- cluster anion has been reported and contains Sm in rare oxidation state of +1; see Paul, J. Robinson; Xinxing, Zhang; Tyrel, McQueen; Kit, H. Bowen; Anastassia, N. Alexandrova (2017). "SmB6– Cluster Anion: Covalency Involving f Orbitals". J. Phys. Chem. A 2017, 121, 8, 1849–1854. 121 (8): 1849–1854. doi:10.1021/acs.jpca.7b00247. PMID 28182423. S2CID 3723987..
- ^ https://www.britannica.com/science/hafnium.
{{cite web}}
: Missing or empty|title=
(help) - ^ a b c d https://www.britannica.com/science/tantalum.
{{cite web}}
: Missing or empty|title=
(help) - ^ a b c d e https://www.britannica.com/science/tungsten-chemical-element.
{{cite web}}
: Missing or empty|title=
(help) - ^ a b c d e f g https://www.britannica.com/science/rhenium.
{{cite web}}
: Missing or empty|title=
(help) - ^ a b c d e https://www.britannica.com/science/osmium.
{{cite web}}
: Missing or empty|title=
(help) - ^ Wang, Guanjun; Zhou, Mingfei; Goettel, James T.; Schrobilgen, Gary G.; Su, Jing; Li, Jun; Schlöder, Tobias; Riedel, Sebastian (2014). "Identification of an iridium-containing compound with a formal oxidation state of IX". Nature. 514 (7523): 475–477. Bibcode:2014Natur.514..475W. doi:10.1038/nature13795. PMID 25341786. S2CID 4463905.
- ^ Mézaille, Nicolas; Avarvari, Narcis; Maigrot, Nicole; Ricard, Louis; Mathey, François; Le Floch, Pascal; Cataldo, Laurent; Berclaz, Théo; Geoffroy, Michel (1999). "Gold(I) and Gold(0) Complexes of Phosphinine‐Based Macrocycles". Angewandte Chemie International Edition. 38 (21): 3194–3197. doi:10.1002/(SICI)1521-3773(19991102)38:21<3194::AID-ANIE3194>3.0.CO;2-O. PMID 10556900.
- ^ Dong, Z.-C.; Corbett, J. D. (1996). "Na23K9Tl15.3: An Unusual Zintl Compound Containing Apparent Tl57−, Tl48−, Tl37−, and Tl5− Anions". Inorganic Chemistry. 35 (11): 3107–12. doi:10.1021/ic960014z. PMID 11666505.
- ^ Pb(0) carbonyls have been observered in reaction between lead atoms and carbon monoxide; see Ling, Jiang; Qiang, Xu (2005). "Observation of the lead carbonyls PbnCO (n=1–4): Reactions of lead atoms and small clusters with carbon monoxide in solid argon". The Journal of Chemical Physics. 122 (3): 034505. 122 (3): 34505. Bibcode:2005JChPh.122c4505J. doi:10.1063/1.1834915. ISSN 0021-9606. PMID 15740207.
- ^ Bi(0) state exists in a N-heterocyclic carbene complex of dibismuthene; see Deka, Rajesh; Orthaber, Andreas (May 6, 2022). "Carbene chemistry of arsenic, antimony, and bismuth: origin, evolution and future prospects". Royal Society of Chemistry. 51 (22): 8540–8556. doi:10.1039/d2dt00755j. PMID 35578901. S2CID 248675805.
- ^ Thayer, John S. (2010). "Relativistic Effects and the Chemistry of the Heavier Main Group Elements". Relativistic Methods for Chemists. Challenges and Advances in Computational Chemistry and Physics. 10: 78. doi:10.1007/978-1-4020-9975-5_2. ISBN 978-1-4020-9974-8.
- ^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 28. ISBN 978-0-08-037941-8.
- ^ a b Th(-I) and U(-I) have been detected in the gas phase as octacarbonyl anions; see Chaoxian, Chi; Sudip, Pan; Jiaye, Jin; Luyan, Meng; Mingbiao, Luo; Lili, Zhao; Mingfei, Zhou; Gernot, Frenking (2019). "Octacarbonyl Ion Complexes of Actinides [An(CO)8]+/− (An=Th, U) and the Role of f Orbitals in Metal–Ligand Bonding". Chemistry (Weinheim an der Bergstrasse, Germany). 25 (50): 11772–11784. 25 (50): 11772–11784. doi:10.1002/chem.201902625. ISSN 0947-6539. PMC 6772027. PMID 31276242.
- ^ Morss, L.R.; Edelstein, N.M.; Fuger, J., eds. (2006). The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Netherlands: Springer. ISBN 978-9048131464.
- ^ Np(II), (III) and (IV) have been observed, see Dutkiewicz, Michał S.; Apostolidis, Christos; Walter, Olaf; Arnold, Polly L (2017). "Reduction chemistry of neptunium cyclopentadienide complexes: from structure to understanding". Chem. Sci. 8 (4): 2553–2561. doi:10.1039/C7SC00034K. PMC 5431675. PMID 28553487.
- ^ a b c Kovács, Attila; Dau, Phuong D.; Marçalo, Joaquim; Gibson, John K. (2018). "Pentavalent Curium, Berkelium, and Californium in Nitrate Complexes: Extending Actinide Chemistry and Oxidation States". Inorg. Chem. 57 (15). American Chemical Society: 9453–9467. doi:10.1021/acs.inorgchem.8b01450. OSTI 1631597. PMID 30040397. S2CID 51717837.
- ^ Domanov, V. P.; Lobanov, Yu. V. (October 2011). "Formation of volatile curium(VI) trioxide CmO3". Radiochemistry. 53 (5). SP MAIK Nauka/Interperiodica: 453–6. doi:10.1134/S1066362211050018. S2CID 98052484.
- ^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 1265. ISBN 978-0-08-037941-8.
- ^ "Rutherfordium". Royal Chemical Society. Retrieved 2019-09-21.
- ^ a b c d e f g h i j k l m n o p q r Hoffman, Darleane C.; Lee, Diana M.; Pershina, Valeria (2006). "Transactinides and the future elements". In Morss; Edelstein, Norman M.; Fuger, Jean (eds.). The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Dordrecht, The Netherlands: Springer Science+Business Media. ISBN 978-1-4020-3555-5.
- ^ Hoffman, Darleane C.; Lee, Diana M.; Pershina, Valeria (2006). "Transactinides and the future elements". In Morss; Edelstein, Norman M.; Fuger, Jean (eds.). The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Dordrecht, The Netherlands: Springer Science+Business Media. p. 1691. ISBN 978-1-4020-3555-5.
- ^ Ionova, G. V.; Ionova, I. S.; Mikhalko, V. K.; Gerasimova, G. A.; Kostrubov, Yu. N.; Suraeva, N. I. (2004). "Halides of Tetravalent Transactinides (Rf, Db, Sg, Bh, Hs, Mt, 110th Element): Physicochemical Properties". Russian Journal of Coordination Chemistry. 30 (5): 352. doi:10.1023/B:RUCO.0000026006.39497.82. S2CID 96127012.
- ^ Himmel, Daniel; Knapp, Carsten; Patzschke, Michael; Riedel, Sebastian (2010). "How Far Can We Go? Quantum-Chemical Investigations of Oxidation State +IX". ChemPhysChem. 11 (4): 865–9. doi:10.1002/cphc.200900910. PMID 20127784.
- ^ Conradie, Jeanet; Ghosh, Abhik (15 June 2019). "Theoretical Search for the Highest Valence States of the Coinage Metals: Roentgenium Heptafluoride May Exist". Inorganic Chemistry. 2019 (58): 8735–8738. doi:10.1021/acs.inorgchem.9b01139. PMID 31203606. S2CID 189944098.
- ^ Gäggeler, Heinz W.; Türler, Andreas (2013). "Gas Phase Chemistry of Superheavy Elements". The Chemistry of Superheavy Elements. Springer Science+Business Media. pp. 415–483. doi:10.1007/978-3-642-37466-1_8. ISBN 978-3-642-37465-4. Retrieved 2018-04-21.
- ^ Hu, Shu-Xian; Zou, Wenli (23 September 2021). "Stable copernicium hexafluoride (CnF6) with an oxidation state of VI+". Physical Chemistry Chemical Physics. 2022 (24): 321–325. doi:10.1039/D1CP04360A. PMID 34889909.
- ^ Thayer, John S. (2010). "Relativistic Effects and the Chemistry of the Heavier Main Group Elements". In Barysz, Maria; Ishikawa, Yasuyuki (eds.). Relativistic Methods for Chemists. Challenges and Advances in Computational Chemistry and Physics. Vol. 10. Springer. pp. 63–67. doi:10.1007/978-1-4020-9975-5_2. ISBN 978-1-4020-9974-8.
- ^ Schwerdtfeger, Peter; Seth, Michael (2002). "Relativistic Quantum Chemistry of the Superheavy Elements. Closed-Shell Element 114 as a Case Study" (PDF). Journal of Nuclear and Radiochemical Sciences. 3 (1): 133–136. doi:10.14494/jnrs2000.3.133. Retrieved 12 September 2014.
- ^ Thayer, John S. (2010). "Relativistic Effects and the Chemistry of the Heavier Main Group Elements". Relativistic Methods for Chemists. Challenges and Advances in Computational Chemistry and Physics. 10: 83. doi:10.1007/978-1-4020-9975-5_2. ISBN 978-1-4020-9974-8.
- ^ Han, Young-Kyu; Bae, Cheolbeom; Son, Sang-Kil; Lee, Yoon Sup (2000). "Spin–orbit effects on the transactinide p-block element monohydrides MH (M=element 113–118)". Journal of Chemical Physics. 112 (6): 2684. Bibcode:2000JChPh.112.2684H. doi:10.1063/1.480842.
- ^ a b Kaldor, Uzi; Wilson, Stephen (2003). Theoretical Chemistry and Physics of Heavy and Superheavy Elements. Springer. p. 105. ISBN 978-1402013713. Retrieved 2008-01-18.
- ^ a b Cao, Chang-Su; Hu, Han-Shi; Schwarz, W. H. Eugen; Li, Jun (2022). "Periodic Law of Chemistry Overturns for Superheavy Elements". ChemRxiv (preprint). doi:10.26434/chemrxiv-2022-l798p. Retrieved 16 November 2022.
- ^ Thayer, John S. (2010). "Relativistic Effects and the Chemistry of the Heavier Main Group Elements". Relativistic Methods for Chemists. Challenges and Advances in Computational Chemistry and Physics. 10: 84. doi:10.1007/978-1-4020-9975-5_2. ISBN 978-1-4020-9974-8.
- ^ Amador, Davi H. T.; de Oliveira, Heibbe C. B.; Sambrano, Julio R.; Gargano, Ricardo; de Macedo, Luiz Guilherme M. (12 September 2016). "4-Component correlated all-electron study on Eka-actinium Fluoride (E121F) including Gaunt interaction: Accurate analytical form, bonding and influence on rovibrational spectra". Chemical Physics Letters. 662: 169–175. Bibcode:2016CPL...662..169A. doi:10.1016/j.cplett.2016.09.025. hdl:11449/168956.
- ^ a b c d e Pyykkö, Pekka (2011). "A suggested periodic table up to Z ≤ 172, based on Dirac–Fock calculations on atoms and ions". Physical Chemistry Chemical Physics. 13 (1): 161–8. Bibcode:2011PCCP...13..161P. doi:10.1039/c0cp01575j. PMID 20967377.