Jump to content

2022 in paleontology

From Wikipedia, the free encyclopedia

List of years in paleontology (table)
In paleobotany
2019
2020
2021
2022
2023
2024
2025
In arthropod paleontology
2019
2020
2021
2022
2023
2024
2025
In paleoentomology
2019
2020
2021
2022
2023
2024
2025
In paleomalacology
2019
2020
2021
2022
2023
2024
2025
In reptile paleontology
2019
2020
2021
2022
2023
2024
2025
In archosaur paleontology
2019
2020
2021
2022
2023
2024
2025
In mammal paleontology
2019
2020
2021
2022
2023
2024
2025
In paleoichthyology
2019
2020
2021
2022
2023
2024
2025

Paleontology or palaeontology is the study of prehistoric life forms on Earth through the examination of plant and animal fossils.[1] This includes the study of body fossils, tracks (ichnites), burrows, cast-off parts, fossilised feces (coprolites), palynomorphs and chemical residues. Because humans have encountered fossils for millennia, paleontology has a long history both before and after becoming formalized as a science. This article records significant discoveries and events related to paleontology that occurred or were published in the year 2022.

Flora

[edit]

Plants

[edit]

Fungi

[edit]

Newly named fungi

[edit]
Name Novelty Status Authors Age Type locality Location Notes Images

Meliolinites bhutanensis[2]

Sp. nov

In press

Bera et al.

Miocene-Pliocene

Bhutan

A member of the family Meliolaceae.

Zygosporium miochinensis[3]

Sp. nov

Bera et al.

Pliocene

Bhutan

A member of Xylariales belonging to the family Zygosporiaceae.

Zygosporium oligocenicum[4]

Sp. nov

Worobiec in Worobiec & Erdei

Oligocene

Hungary

A member of Xylariales belonging to the family Zygosporiaceae.

Zygosporium palaeotuberculatum[3]

Sp. nov

Bera et al.

Miocene-Pliocene

India

A member of Xylariales belonging to the family Zygosporiaceae.

Mycological research

[edit]

"Algae"

[edit]
Name Novelty Status Authors Age Type locality Location Notes Images

Amsassia talimuensis[7]

Sp. nov

Valid

Shen, Liu & Wu

Ordovician

Lianglitage Formation

China

A calcareous organism, probably a green alga with affinities to Cladophora.

Calathophycus[8]

Gen. et sp. nov

Valid

Tang in Tang et al.

Cambrian (Fortunian)

Kuanchuanpu Formation

China

Probably a eukaryotic multicellular alga of uncertain affinities. Genus includes new species C. irregulatus.

Jiuqunaoella sergeevii[9]

Sp. nov

Singh & Sharma

Mesoproterozoic

Singhora Group

India

A multicellular eukaryote, probably an alga.

Palaeoscytosiphon[9]

Gen. et sp. nov

Singh & Sharma

Mesoproterozoic

Singhora Group

India

A multicellular eukaryote, probably a brown alga. Genus includes new species P. shuklaii.

Qingjiangthallus[10]

Gen. et sp. nov

Li & Zhang in Li et al.

Cambrian Stage 3

Shuijingtuo Formation

China

A red alga, possibly a member of the family Florideophyceae. Genus includes new species Q. cystocarpium.

Reptamsassia[11]

Gen. et 2 sp. nov

Valid

Lee, Elias & Pratt

Ordovician (Floian)

Boat Harbour Formation

Canada
( Newfoundland and Labrador)

A calcareous alga (possibly green alga) related to Amsassia. Genus includes new species R. divergens and R. minuta.

Floral research

[edit]
  • Sforna et al. (2022) report the discovery of bound nickel-tetrapyrrole moieties preserved within cells of a ~1-billion-years-old eukaryote Arctacellularia tetragonala from the BII Group of the Mbuji-Mayi Supergroup (Democratic Republic of the Congo), identify the tetrapyrrole moieties as chlorophyll derivatives, and interpret A. tetragonala as one of the earliest known multicellular algae.[12]
  • A study on the mode of preservation of macroalgae and associated filamentous microfossils from the Tonian Dolores Creek Formation (Yukon, Canada) is published by Maloney et al. (2022).[13]
  • Li et al. (2022) study the morphology and growth features of Gesinella, and interpret this organism as a likely eukaryotic macroalga and a benthic metaphyte.[14]
  • Retallack (2022) argues that Late Silurian and Early Devonian nematophytes would have towered over land plants from the same fossil plant assemblages, including vascular plant trees, that nematophytes were branched and formed closed canopies, that there were extensive networks of nutrient-gathering glomeromycotan mycorrhizae in Ordovician to Devonian paleosols, and that the environment with nematophytes as the tallest elements of terrestrial vegetation and soils riddled with mycorrhizae may have nurtured, sheltered and facilitated the evolution of early land plants.[15]

Cnidarians

[edit]

Newly named cnidarians

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Acropora suwanneensis[16]

Sp. nov

Valid

Wallace & Portell

Early Oligocene

Suwannee Limestone

United States
( Florida)

A species of Acropora.

Acropora upchurchi[16]

Sp. nov

Valid

Wallace & Portell

Early Oligocene

Suwannee Limestone

United States
( Florida)

A species of Acropora.

Arctophyllum shuangjingziense[17]

Sp. nov

Yang et al.

Carboniferous (Pennsylvanian)

China

A rugose coral.

Auroralumina[18]

Gen. et sp. nov

Valid

Dunn et al.

Ediacaran

Bradgate Formation

United Kingdom

A stem-medusozoan. The type species is A. attenboroughii.

Corwenia tirhelensis[19]

Sp. nov

In press

Rodríguez et al.

Carboniferous (Bashkirian)

Tirhela Formation

Morocco

A rugose coral belonging to the family Aulophyllidae.

Glyptoconularia antiatlasica[20]

Sp. nov

Valid

Van Iten, Gutiérrez-Marco & Cournoyer

Ordovician (Darriwilian)

Taddrist Formation

Morocco

A conulariid.

Gracilopora delicata[21]

Sp. nov

Valid

Niko

Devonian (Givetian)

Naidaijin Formation

Japan

A coral belonging to the group Favositida and the family Pachyporidae.

Grypophyllum schroederi[22]

Sp. nov

Valid

Coen-Aubert

Devonian (Givetian)

Dreimühlen Formation

Germany

A rugose coral belonging to the family Ptenophyllidae.

Heterocyathus filkorni[23]

Sp. nov

In press

Videira-Santos, Tobin & Scheffler

Late Cretaceous (Santonian to Campanian)

Santa Marta Formation

Antarctica

A species of Heterocyathus.

?Holoconularia rossica[24]

Sp. nov

Van Iten, Mironenko & Vinn

Carboniferous (Serpukhovian)

Gurovo Formation

Russia

A conulariid.

Ilankirus[25]

Gen. et sp. nov

Valid

Sarsembaev & Marusin

Cambrian Stage 2

Russia

A conulariid. Genus includes new species I. kessyusensis.

Klaamannipora densitabulata[21]

Sp. nov

Valid

Niko

Devonian (Givetian)

Naidaijin Formation

Japan

A coral belonging to the group Favositida and the family Favositidae.

Lafustalcyon[26]

Gen. et sp. nov

In press

Denayer et al.

Carboniferous (Serpukhovian)

France

An alcyonacean octocoral. Genus includes new species L. vachardi.

Macgeea mistiaeni[22]

Sp. nov

Valid

Coen-Aubert

Devonian (Givetian)

Dreimühlen Formation

Germany

A rugose coral belonging to the family Phillipsastreidae.

Marennophyllum[22]

Gen. et comb. et sp. nov

Valid

Coen-Aubert

Devonian (Givetian)

Mont d'Haurs Formation

Belgium
Germany

A rugose coral belonging to the family Cystiphyllidae. The type species is "Cystiphylloides" marennense Coen-Aubert (2019); genus also includes "Paralytophyllum" praecipuum Wedekind & Vollbrecht (1931), as well as new species M. wenningi.

Octapyrgites denticulus[27]

Sp. nov

Valid

Yong et al.

Cambrian

Kuanchuanpu Formation

China

A microscopic, sedentary medusozoan.

Paraconularia ediacara[28]

Sp. nov

Leme, Van Iten & Simões

Latest Ediacaran

Tamengo Formation

Brazil

The earliest so far confirmed Conulariid cnidarian.

Pinacopora baltica[29]

Sp. nov

Valid

Plusquellec, Eyzenga & van Keulen

Ordovician (Katian)

Germany

A tabulate coral belonging to the group Heliolitida and the family Proporidae.

Pseudofavosites asoensis[21]

Sp. nov

Valid

Niko

Devonian (Givetian)

Naidaijin Formation

Japan

A coral belonging to the group Favositida and the family Pseudofavositidae.

Rayaphyllia[30]

Gen. et sp. et comb. nov

Valid

Löser

Cretaceous

San Juan Raya Formation

Italy
Mexico
China?

A stony coral belonging to the superfamily Misistelloidea and the family Rayasmiliidae. The type species is R. atheca; genus also includes "Thecosmilia" distefanoi Prever (1909) and possibly also "Montlivaltoides" ngariensis He & Xiao (1990).

Rayasmilia[30]

Gen. et sp. et comb. nov

Valid

Löser

Late Jurassic to Late Cretaceous (Cenomanian)

San Juan Raya Formation

China
Crimean Peninsula
France
Italy
Japan
Mexico
Slovakia
Spain
Tanzania
United States

A stony coral belonging to the superfamily Misistelloidea, the type genus of the new family Rayasmiliidae. The type species is R. salvata; genus also includes multiple species formerly assigned to the genera Aulophyllia, Axosmilia, Coelosmilia, Lophosmilia, Peplosmilia, Pleurosmilia, Rhipidosmilia, Saltocyathus, Sphenotrochus and Thecosmilia.

Semenomalophyllia[26]

Gen. nov

In press

Denayer et al.

Carboniferous (Serpukhovian)

France

A colonial heterocoral. Genus includes S. herbigi, S. perretae, S. weyeri and S. webbi.

Septuconularia crassiformis[31]

Sp. nov

Valid

Song et al.

Cambrian Stage 2

Yanjiahe Formation

China

A member of the family Hexangulaconulariidae.

Sonoraphyllia[30]

Gen. et sp. et comb. nov

Valid

Löser

Late Jurassic (Tithonian) to Cretaceous (Albian, possibly Cenomanian)

Cerro de Oro Formation

China
Czech Republic
Japan
Mexico
Spain
United States
Italy?

A stony coral belonging to the superfamily Misistelloidea and the family Rayasmiliidae. The type species is S. aurea; genus also includes "Aplophyllia" marini Bataller (1947), "Aplosmilia" tolmachoffana Wells (1932), "Placophyllia" baingoinensis Wang, Sun, Wang, Zheng, Yue & Liao (2020), "Placophyllia" bandeli Baron-Szabo (1998), "Placophyllia" florosa Eliášová (1976), and "Thecosmilia" hideshimaensis Eguchi (1951).

Stephanocyathus (Stephanocyathus) taguchii[32]

Sp. nov

Valid

Niko & Suzuki

Miocene

Takakura Formation

Japan

A caryophylloid coral.

Stylomaeandra neuquensis[33]

Sp. nov

In press

Garberoglio, Löser & Lazo

Early Cretaceous (ValanginianHauterivian)

Agrio Formation

Argentina

A stony coral belonging to the family Latomeandridae.

Syringopora paraconferta[34]

Sp. nov

Valid

Ohar

Carboniferous (Mississippian)

Ukraine

A tabulate coral.

Thamnopora miyamotoi[21]

Sp. nov

Valid

Niko

Devonian (Givetian)

Naidaijin Formation

Japan

A coral belonging to the group Favositida and the family Pachyporidae.

Thamnoptychia tanimotoi[21]

Sp. nov

Valid

Niko

Devonian (Givetian)

Naidaijin Formation

Japan

A coral belonging to the group Favositida and the family Pachyporidae.

Cnidarian research

[edit]
  • A study on the taphonomy and systematics of conulariid specimens from the Silurian (Telychian) Waukesha Lagerstätte (Wisconsin, United States) is published by Miller et al. (2022).[35]
  • Wang et al. (2022) describe phosphatized muscle fibers preserved in three dimensions in post-embryonic stages of olivooids from the Cambrian (Fortunian) Kuanchuanpu Formation (China) – representing the oldest occurrence of muscle tissue in cnidarians, and in animals in general, reported to date – and evaluate the implications of this finding and fossil evidence from ecdysozoans for the knowledge of the evolution of the muscle systems of early animals.[36]
  • Zhang et al. (2022) describe the first known soft tissues of Gangtoucunia aspera, and interpret this taxon as a total group medusozoan.[37]
  • A study on changes in the functional diversity of tabulate coral assemblages across the Devonian and early Carboniferous, and on their implications for the knowledge of the impact of extinction events from this time period on tabulate corals, is published by Bridge et al. (2022).[38]
  • A study on the interactions between conulariid specimens, and attached epibionts from the Silurian (Telychian) Waukesha Lagerstätte (Wisconsin, United States) is published by April et al. (2022).[39]

Arthropods

[edit]

Bryozoans

[edit]

New named bryozoans

[edit]
Name Novelty Status Authors Age Type locality Location Notes Images

Albardonia[40]

Gen. et sp. nov

Valid

Ernst & Carrera

Ordovician (Sandbian)

La Pola Formation

Argentina

A trepostome belonging to the family Heterotrypidae. The type species is A. bifoliata.

Antropora ramaniaensis[41]

Sp. nov

Valid

Sonar, Pawar & Wayal

Miocene (Burdigalian)

Chhasra Formation

India

A species of Antropora.

Argentinopora[40]

Gen. et sp. nov

Valid

Ernst & Carrera

Ordovician (Sandbian)

La Pola Formation

Argentina

A trepostome of uncertain affinities. The type species is A. robusta.

Attinopora atlantica[42]

Sp. nov

López-Gappa & Pérez

Miocene

Monte León Formation

Argentina

A member of the family Cinctiporidae.

Burdwoodipora griffini[43]

Sp. nov

Valid

Pérez & López-Gappa

Miocene (Burdigalian)

Monte León Formation

Argentina

Canda ukirensis[41]

Sp. nov

Valid

Sonar, Pawar & Wayal

Miocene (Burdigalian)

Chhasra Formation

India

A species of Canda.

Chazydictya ornata[40]

Sp. nov

Valid

Ernst & Carrera

Ordovician (Sandbian)

La Pola Formation

Argentina

A cryptostome belonging to the family Escharoporidae.

Dianulites pakriensis[44]

Sp. nov

Valid

Ernst

Ordovician (Darriwilian)

Estonia

A member of Stenolaemata belonging to the superorder Palaeostomata, the order Esthonioporata and the family Dianulitidae.

Dyscritella felixi[45]

Sp. nov

Valid

Ernst et al.

Carboniferous (Pennsylvanian)

Graham Formation

United States
( Texas)

Fenestella salairica[46]

Sp. nov

Valid

Mesentseva

Devonian (Emsian)

Russia

A fenestellid bryozoan.

Hemitrypa aktaschensis[46]

Sp. nov

Valid

Mesentseva

Devonian (Emsian)

Russia

A fenestellid bryozoan.

Hemitrypa cyathiformis[46]

Sp. nov

Valid

Mesentseva

Devonian (Emsian)

Russia

A fenestellid bryozoan.

Heterotrypa enodis[40]

Sp. nov

Valid

Ernst & Carrera

Ordovician (Sandbian)

La Pola Formation

Argentina

A trepostome belonging to the family Heterotrypidae.

Hillmeropora volgogradensis[47]

Sp. nov

Valid

Koromyslova & Pervushov

Late Cretaceous (Turonian)

Russia
( Volgograd Oblast)

Homotrypa cochlea[48]

Sp. nov

Valid

Buttler, Cherns & McCobb

Silurian (Ludlow)

Upper Leintwardine Formation

United Kingdom

Iodictyum akaishiensis[49]

Sp. nov

Valid

Arakawa

Miocene (Langhian)

Moniwa Formation

Japan

A member of the family Phidoloporidae. Published online in 2022, but the issue date is listed as January 2023.[49]

Laminoporina[50]

Gen. et sp. nov

Valid

Bizzarini

Late Triassic (Carnian)

San Cassiano Formation

Italy

A member of Stenolaemata belonging to the group Cyclostomida. The type species is L. giampetrii.

Laxifenestella magnifenestrula[46]

Sp. nov

Valid

Mesentseva

Devonian (Emsian)

Russia

A fenestellid bryozoan.

Laxifenestella texana[45]

Sp. nov

Valid

Ernst et al.

Carboniferous (Pennsylvanian)

Graham Formation

United States
( Texas)

Micropora mikesmithi[51]

Sp. nov

Valid

Taylor & Villier

Late Cretaceous (Campanian)

Aubeterre Formation

France

A member of the family Microporidae.

Microporella gladirostra[52]

Sp. nov

Valid

Ramsfjell, Taylor & Di Martino

Miocene (Otaian and Altonian)

White Rock Limestone Formation

New Zealand

A species of Microporella.

Microporella incurvata[52]

Sp. nov

Valid

Ramsfjell, Taylor & Di Martino

Miocene (Otaian and Altonian)

Clifden Limestone Formation

New Zealand

A species of Microporella.

Microporella whiterocki[52]

Sp. nov

Valid

Ramsfjell, Taylor & Di Martino

Miocene (Otaian)

White Rock Limestone Formation

New Zealand

A species of Microporella.

Mishulgella vachardi[53]

Sp. nov

Valid

Ernst, Krainer & Lucas

Carboniferous (Pennsylvanian)

United States
( New Mexico)

A trepostome bryozoan.

Nicholsonella spinigera[40]

Sp. nov

Valid

Ernst & Carrera

Ordovician (Sandbian)

La Pola Formation

Argentina

A trepostome of uncertain affinities.

Odontoporella miocenica[43]

Sp. nov

Valid

Pérez & López-Gappa

Miocene (Burdigalian)

Monte León Formation

Argentina

Pakripora[44]

Gen. et sp. nov

Valid

Ernst

Ordovician (Darriwilian)

Estonia

A member of Trepostomata of uncertain phylogenetic placement. The type species is P. cavernosa.

Pavolunulites mirabilis[47]

Sp. nov

Valid

Koromyslova & Pervushov

Late Cretaceous (Turonian)

Russia
( Volgograd Oblast)

A member of Flustrina belonging to the family Lunulitidae.

Platelinella[51]

Gen. et sp. nov

Valid

Taylor & Villier

Late Cretaceous (Campanian)

Biron Formation

France

A member of the family Microporidae. The type species is P. solea.

Pollexelea[54]

Gen. et sp. nov

Valid

Taylor

Early Cretaceous (Albian)

India

A cyclostome belonging to the family Eleidae. The type species is P. badvei.

Primorella zhankurganica[55]

Sp. nov

Valid

Tolokonnikova & Fedorov

Carboniferous (Tournaisian)

Orgalysay Formation

Kazakhstan

Pseudostictoporella simplex[40]

Sp. nov

Valid

Ernst & Carrera

Ordovician (Sandbian)

La Pola Formation

Argentina

A cryptostome belonging to the family Stictoporellidae.

Rarifenestella ornamentum[46]

Sp. nov

Valid

Mesentseva

Devonian (Emsian)

Russia

A fenestellid bryozoan.

Reptomultelea cuffeyi[54]

Sp. nov

Valid

Taylor

Early Cretaceous (Albian)

United States
( Texas)

A cyclostome belonging to the family Eleidae.

Thalamoporella badvei[56]

Sp. nov

Valid

Sonar, Pawar & Wayal

Miocene (Aquitanian)

Kharinadi Formation

India

A species of Thalamoporella.

Thalamoporella bhujensis[56]

Sp. nov

Valid

Sonar, Pawar & Wayal

Miocene (Aquitanian)

Kharinadi Formation

India

A species of Thalamoporella.

Xenotrypa argentinensis[40]

Sp. nov

Valid

Ernst & Carrera

Ordovician (Sandbian)

La Pola Formation

Argentina

A cystoporate belonging to the family Xenotrypidae.

Bryozoan research

[edit]
  • Fossils which might represent the oldest bryozoans with calcareous skeletons reported to date are described from the Cambrian Harkless Formation (Nevada, United States) by Pruss et al. (2022).[57]
  • A study on the impact of paleolatitude on the calcification of cryptostome and trepostome bryozoans through the Paleozoic is published by Reid, Wyse Jackson & Key (2022).[58]
  • A study on the diversity of bryozoans from the Ordovician (Tremadocian) Fenhsiang Formation (China) is published by Ma et al. (2022).[59]
  • A study on the diversification dynamics of cheilostome bryozoans since the Late Jurassic is published by Moharrek et al. (2022).[60]
  • A study on the phylogenetic relationships and evolutionary history of cheilostome bryozoans is published by Orr et al. (2022), who interpret their findings as indicating that named cheilostome genera and species are natural groupings, and that skeletal traits can be used to assign fossil or contemporary specimens to cheilostome species.[61]

Brachiopods

[edit]

Newly named brachiopods

[edit]
Name Novelty Status Authors Age Type locality Location Notes Images

Alaskomicospirifer[62]

Gen. et sp. nov

Valid

Baranov & Blodgett

Devonian (Eifelian)

United States
( Alaska)

A member of Spiriferida belonging to the superfamily Ambocoelioidea and the family Rhynchospiriferidae. Genus includes new species A. boreus.

Allorhynchus scientiana[63]

Sp. nov

Valid

Torres-Martínez & Sour-Tovar

Carboniferous (Serpukhovian)

Ixtaltepec Formation

Mexico

A member of Rhynchonellida belonging to the superfamily Wellerelloidea and the family Allorhynchidae.

Altynorthis[64]

Gen. et 2 sp. et comb. nov

In press

Popov & Cocks

Ordovician

Berkutsyur Formation

Kazakhstan

A member of the family Plectorthidae. The type species is A. vinogradovae; genus also includes new species A. betpakdalensis, as well as "Hesperorthis" tabylgatensis Misius (1986).

Anchorhynchia multicostata[65]

Sp. nov

Valid

Viaretti et al.

Permian (Kungurian)

Batain Group

Oman

A member of Rhynchonellida belonging to the family Wellerellidae.

Andronovia[66]

Gen. et sp. nov

Valid

Baranov & Blodgett

Devonian (Emsian)

Russia

A member of Pentamerida belonging to the group Pentameridina and the family Gypidulidae. The type species is A. geremgandzhensis.

Anemonaria kitakamiense[67]

Sp. nov

Valid

Tazawa in Tazawa & Shintani

Permian (SakmarianKungurian)

Japan

A member of Productida belonging to the family Paucispiniferidae.

Anthracospirifer oaxacaensis[63]

Sp. nov

Valid

Torres-Martínez & Sour-Tovar

Carboniferous (Moscovian)

Ixtaltepec Formation

Mexico

A member of Spiriferida belonging to the superfamily Spiriferoidea and the family Spiriferidae.

Apatomorpha akbakaiensis[64]

Sp. nov

In press

Popov & Cocks

Ordovician

Baigara Formation

Kazakhstan

Aperispirifer demulceatus[68]

Sp. nov

Valid

Waterhouse

Permian

 Australia

A member of the family Trigonotretidae.

Aploobolus[64]

Gen. et sp. nov

In press

Popov & Cocks

Ordovician (Sandbian)

Kopkurgan Formation

Kazakhstan

A member of the family Obolidae. The type species is A. tenuis.

Apousiella belliloci aramaris[69]

Ssp. nov

In press

García-Alcalde

Devonian (Frasnian)

Piñeres Formation

Spain

A member of Spiriferida belonging to the family Mucrospiriferidae.

Apousiella dorlodoti peranensis[69]

Ssp. nov

In press

García-Alcalde

Devonian (Givetian)

Candás Formation

Spain

A member of Spiriferida belonging to the family Mucrospiriferidae.

Apousiella mozarti[69]

Sp. nov

In press

García-Alcalde

Devonian (Givetian or Frasnian)

Candás Formation

Spain

A member of Spiriferida belonging to the family Mucrospiriferidae.

Aramazdospirifer[70]

Gen. et comb. nov

Valid

Serobyan et al.

Devonian (Famennian)

Armenia

A member of the family Cyrtospiriferidae. The type species is "Spirifer" orbelianus Abich (1858).

Araxathyris minor[71]

Sp. nov

Valid

Wu et al.

Permian (Wuchiapingian)

Shuizhutang Formation

China

Arzonellina bogicae[72]

Sp. nov

In press

Vörös

Early Jurassic (Sinemurian?)

Brachiopodal Hierlatz Limestone

Hungary

A member of Terebratulida belonging to the family Arzonellinidae.

Baeorhynchia begini[73]

Sp. nov

Valid

Feldman, Blodgett & Wilson

Middle Jurassic (Callovian)

Matmor Formation

Israel

A member of Rhynchonellida.

Baitalorhyncha[64]

Gen. et sp. nov

In press

Popov & Cocks

Ordovician

Kazakhstan

A member of the family Sphenotretidae. The type species is B. rectimarginata.

Batenevotreta? mexicana[74]

Sp. nov

Valid

Holmer et al.

Cambrian (Wuliuan)

El Gavilán Formation

Mexico

A member of Acrotretida, possibly a member of the family Scaphelasmatidae.

Bimuria karatalensis[64]

Sp. nov

In press

Popov & Cocks

Ordovician

Kazakhstan

A member of the family Bimuriidae.

Brachiobittnerella[75]

Nom. nov

Ceccolini & Cianferoni

Triassic

Hungary
Tajikistan

A member of Thecideida belonging to the family Thecospirellidae; a replacement name for Bittnerella Dagys (1974).

Brachiokasakhstania[75]

Nom. nov

Ceccolini & Cianferoni

Permian

Canada

A member of Spiriferida belonging to the family Spiriferidae; a replacement name for Kasakhstania Besnossova (1968).

Brachiosvalbardia[75]

Nom. nov

Ceccolini & Cianferoni

Late Paleozoic

Australia
Greenland
Norway
Russia

A member of Productida belonging to the family Rugosochonetidae; a replacement name for Svalbardia Barkhatova (1970).

Brachiotesuquea[75]

Nom. nov

Ceccolini & Cianferoni

Carboniferous

United States
( New Mexico)

A member of Productida belonging to the family Productidae; a replacement name for Tesuquea Sutherland & Harlow (1973).

Calloria? hilleri[76]

Sp. nov

Valid

Cooper

Miocene

Monzi Formation

South Africa

Possibly a species of Calloria.

Callytharrella websteri[65]

Sp. nov

Valid

Viaretti et al.

Permian (Kungurian)

Batain Group

Oman

A member of Productida belonging to the family Productidae.

Cheeneetnukispirifer[62]

Gen. et sp. nov

Valid

Baranov & Blodgett

Devonian (Eifelian)

United States
( Alaska)

A member of Spiriferida belonging to the superfamily Ambocoelioidea and the family Ambocoeliidae. Genus includes new species C. rarus.

Cirpa lucentina[77]

Sp. nov

Valid

Baeza-Carratalá & García Joral

Early Jurassic (Pliensbachian)

Gavilán Formation

Spain

A member of Rhynchonellida belonging to the family Wellerellidae.

Cleiothyridina elevata[68]

Sp. nov

Valid

Waterhouse

Permian

 Australia

Clorinda cappsi[78]

Sp. nov

Valid

Blodgett, Baranov & Santucci

Devonian (Emsian)

Shellabarger Limestone

United States
( Alaska)

A member of Pentamerida belonging to the group Pentameridina and the family Clorindidae.

Costirhynchopsis xui[79]

Sp. nov

Valid

Guo et al.

Middle Triassic (Anisian)

China

Costistriispira[64]

Gen. et sp. nov

In press

Popov & Cocks

Ordovician (Sandbian)

Kopkurgan Formation

Kazakhstan

A member of Lissatrypoidea belonging to the family Kellerellidae. The type species is C. proavia.

Crenulatomargus[79]

Gen. et sp. nov

Valid

Guo et al.

Middle Triassic (Anisian)

China

Genus includes new species C. terebratuliformis.

Cuninulus eulenbergensis[80]

Sp. nov

Valid

Wenndorf

Devonian

Germany

A member of Rhynchonellida belonging to the family Nucinulidae.

Cuninulus filiplicatus[80]

Sp. nov

Valid

Wenndorf

Devonian (Emsian)

A member of Rhynchonellida belonging to the family Nucinulidae.

Cuninulus trostiensis[80]

Sp. nov

Valid

Wenndorf

Devonian

Germany

A member of Rhynchonellida belonging to the family Nucinulidae.

Cuninulus vitelliacensis[80]

Sp. nov

Valid

Wenndorf

Devonian (Emsian)

Germany

A member of Rhynchonellida belonging to the family Nucinulidae.

Doughlatomena[64]

Gen. et sp. nov

In press

Popov & Cocks

Ordovician

Kazakhstan

A member of the family Rafinesquinidae. The type species is D. splendens.

Eiratrypa[81]

Gen. et comb. nov

Unavailable

Baarli

Silurian (Aeronian and Telychian)

Norway
Russia
Sweden
United Kingdom

A member of the family Atrypidae. The type species is "Protatrypa" thorslundi Boucot & Johnson (1964); genus also includes "Atrypa" orbicularis Sowerby (1839) and "Atrypa" antiqua Kulkov in Kulkov & Severgina (1989). The name is not unavailable as the e-publication lacks proof of registration in ZooBank.

Eoanastrophia tozodoviensis[82]

Sp. nov

Valid

Shcherbanenko & Sennikov

Late Ordovician

Russia

A member of Pentamerida.

Eodmitria briceae[69]

Sp. nov

In press

García-Alcalde

Devonian (Givetian or Frasnian)

Candás Formation

Spain

A member of Spiriferida belonging to the family Cyrtospiriferidae.

Eucalathis davidi[83]

Sp. nov

Valid

Dulai

Pliocene

Italy

A species of Eucalathis.

Eucalathis dorae[83]

Sp. nov

Valid

Dulai

Pliocene

Italy

A species of Eucalathis.

Fuchsinulus[80]

Gen. et comb. sp. nov

Valid

Wenndorf

Devonian

Germany

A member of Rhynchonellida belonging to the family Nucinulidae. Genus includes F. mediorhenanus (Fuchs, 1912) and F. furcaradiatus (Dahmer, 1923), as well as new species F. lahnsteinensis.

Geothomasia delicatula[68]

Sp. nov

Valid

Waterhouse

Permian

 Australia

A member of Spiriferida belonging to the family Ingelarellidae.

Glosseudesia inexpectata[84]

Sp. nov

Mojon in Mojon & De Kaenel

Early Cretaceous (Barremian)

Saars Formation

Switzerland

Hirnantia notiskuani[85]

Sp. nov

Valid

Zimmt & Jin

Ordovician (Hirnantian)

Ellis Bay Formation

Canada
( Quebec)

A member of Enteletoidea belonging to the family Draboviidae.

Ingelarella canalis[86]

Sp. nov

Valid

Waterhouse

Permian

Barfield Formation

 Australia

A member of Spiriferida belonging to the family Ingelarellidae.

Isbellina[68]

Gen. et comb. nov

Valid

Waterhouse

Permian

 Australia

A member of Strophomenata belonging to the superfamily Orthotetoidea and the family Schuchertellidae. The type species is "Streptorhynchus" pelicanensis Fletcher (1952).

Ivdelinia (Ivdelinia) tweeti[78]

Sp. nov

Valid

Blodgett, Baranov & Santucci

Devonian (Emsian)

Shellabarger Limestone

United States
( Alaska)

A member of Pentamerida belonging to the group Pentameridina and the family Gypidulidae.

Jakutoproductus japonicus[67]

Sp. nov

Valid

Tazawa in Tazawa & Shintani

Permian (Sakmarian)

Japan

A member of Productida belonging to the family Avoniidae.

Kallirhynchia radulovici[73]

Sp. nov

Valid

Feldman, Blodgett & Wilson

Middle Jurassic (Callovian)

Matmor Formation

Israel

A member of Rhynchonellida.

Kassinella simorini[64]

Sp. nov

In press

Popov & Cocks

Ordovician

Kopkurgan Formation

Kazakhstan

Lahninulus[80]

Gen. et 3 sp. nov

Valid

Wenndorf

Devonian

Germany

A member of Rhynchonellida belonging to the family Nucinulidae. Genus includes new species L. emsensis, L. flabelliplicatus and L. steinmeyeri.

Lapinulus eichelei[80]

Sp. nov

Valid

Wenndorf

Devonian (Emsian)

A member of Rhynchonellida belonging to the family Nucinulidae.

Lapinulus frankei[80]

Sp. nov

Valid

Wenndorf

Devonian

Germany

A member of Rhynchonellida belonging to the family Nucinulidae.

Lapinulus haigerensis[80]

Sp. nov

Valid

Wenndorf

Devonian (Emsian)

Germany

A member of Rhynchonellida belonging to the family Nucinulidae.

Lapinulus? leudersdorfensis[80]

Sp. nov

Valid

Wenndorf

Devonian

Germany

A member of Rhynchonellida belonging to the family Nucinulidae.

Lapinulus? molliformis[80]

Sp. nov

Valid

Wenndorf

Devonian

Germany

A member of Rhynchonellida belonging to the family Nucinulidae.

Lapinulus pila luxemburgensis[80]

Ssp. nov

Valid

Wenndorf

Devonian (Emsian)

A member of Rhynchonellida belonging to the family Nucinulidae.

Lapinulus pila taunusiensis[80]

Ssp. nov

Valid

Wenndorf

Devonian (Emsian)

Germany

A member of Rhynchonellida belonging to the family Nucinulidae.

Leiorhynchoidea perrilliatae[63]

Sp. nov

Valid

Torres-Martínez & Sour-Tovar

Carboniferous (Moscovian)

Ixtaltepec Formation

Mexico

A member of Rhynchonellida belonging to the superfamily Pugnacoidea and the family Petasmariidae.

Lepidomena betpakdalensis[64]

Sp. nov

In press

Popov & Cocks

Ordovician

Baigara Formation

Kazakhstan

Lepismatina? inusitata[79]

Sp. nov

Valid

Guo et al.

Middle Triassic (Anisian)

China

Lictorthis[64]

Gen. et comb. nov

In press

Popov & Cocks

Ordovician

Kazakhstan

A member of the family Plectorthidae. The type species is "Plectorthis" licta Popov & Cocks (2006).

Linoproductus huananensis[71]

Sp. nov

Valid

Wu et al.

Permian (Wuchiapingian)

Shuizhutang Formation

China

Lydirhyncha[64]

Gen. et comb. nov

In press

Popov & Cocks

Ordovician

China
Kazakhstan

A member of the family Ancistrorhynchidae. The type species is "Rhynchotrema" zhejiangensis Wang in Wang & Jin (1964); genus also includes "Rhynchotrema" gushanensis Liang in Liu et al. (1983) and "Rhynchotrema" tarimensis Sproat & Zhan (2018).

Maorielasma deflata[87]

Sp. nov

Valid

Waterhouse

Permian

Mantuan Formation

 Australia

A member of Spiriferinida belonging to the superfamily Pennospiriferinoidea and the family Reticulariinidae.

Megerlina lesterkingi[76]

Sp. nov

Valid

Cooper

Miocene

Monzi Formation

South Africa

A species of Megerlina.

Micopisticospirifer[62]

Gen. et sp. nov

Valid

Baranov & Blodgett

Devonian (Eifelian)

United States
( Alaska)

A member of Spiriferida belonging to the superfamily Ambocoelioidea and the family Ambocoeliidae. Genus includes new species M. simplex.

Nonauria[88]

Gen. et comb. et sp. nov

Valid

Waterhouse

Permian

Barfield Formation

 Australia

A member of Productida belonging to the superfamily Strophalosioidea and the family Dasyalosiidae. The type species is "Acanthalosia" parfreyi Waterhouse (2001); genus also includes new species N. commarginalis.[89]

Pentagonospirifer[90]

Gen. et sp. nov

Valid

Serobyan et al.

Devonian (Famennian)

Armenia

A cyrtospiriferid brachiopod. The type species is P. abrahamyanae.

Permasyrinx mundanus[68]

Sp. nov

Valid

Waterhouse

Permian

 Australia

A member of Spiriferinida belonging to the family Syringothyridae.

Permophricodothyris flata[71]

Sp. nov

Valid

Wu et al.

Permian (Wuchiapingian)

Shuizhutang Formation

China

Phaceloorthis? corrugata[64]

Sp. nov

In press

Popov & Cocks

Ordovician

Kazakhstan

Piarorhynchella selongensis[91]

Sp. nov

Valid

Wang & Chen in Wang et al.

Early Triassic

China

Proconchidium schleyi[92]

Sp. nov

Valid

Jin et al.

Late Ordovician

Greenland

Prodavidsonia ebbighauseni[93]

Sp. nov

Valid

Halamski & Baliński in Halamski, Baliński & Koppka

Devonian (Eifelian)

Taboumakhlouf Formation

Morocco

A member of the family Davidsoniidae.

Pseudostrophalosia furcalina[68]

Sp. nov

Valid

Waterhouse

Permian

 Australia

A member of Productida belonging to the superfamily Strophalosioidea and the family Dasyalosiidae.

Pseudostrophalosia routi cryptica[94]

Ssp. nov

Valid

Waterhouse

Permian

Blenheim Formation

 Australia

A member of Productida belonging to the superfamily Strophalosioidea and the family Dasyalosiidae.

Qilianoconcha circularis[79]

Sp. nov

Valid

Guo et al.

Middle Triassic (Anisian)

China

Retimarginifera auriculata[65]

Sp. nov

Valid

Viaretti et al.

Permian (Kungurian)

Batain Group

Oman

A member of Productida belonging to the family Productellidae.

Rhynchogilviella[75]

Nom. nov

Ceccolini & Cianferoni

Devonian

Australia
Canada
Russia

A member of Rhynchonellata belonging to the group Atrypida and the family Atrypinidae; a replacement name for Ogilviella Lenz (1968).

Rhyncholeptospira[75]

Nom. nov

Ceccolini & Cianferoni

Devonian

United States
( New York)

A member of Athyridida belonging to the family Rhynchospirinidae; a replacement name for Leptospira Boucot, Johnson & Staton (1964).

Schwagerispira cheni[91]

Sp. nov

Valid

Wang & Chen in Wang et al.

Early Triassic

China

Schwagerispira elegans[79]

Sp. nov

Valid

Guo et al.

Middle Triassic (Anisian)

China

Selongthyris[91]

Gen. et sp. nov

Valid

Wang & Chen in Wang et al.

Early Triassic

China

Genus includes new species S. plana.

Sonculina baigarensis[64]

Sp. nov

In press

Popov & Cocks

Ordovician

Kazakhstan

Sphriganaria anyamiae[95]

Sp. nov

Feldman, Radulović & Ahmad

Middle Jurassic (Callovian)

Mughanniyya Formation

Jordan

Spinatrypa ennigaldinannae[93]

Sp. nov

Valid

Halamski & Baliński in Halamski, Baliński & Koppka

Devonian (Eifelian)

Taboumakhlouf Formation

Morocco

A member of the family Atrypidae.

Spiriarchboldiella[75]

Nom. nov

Ceccolini & Cianferoni

Permian

Indonesia

A member of Spiriferida belonging to the family Spiriferellidae; a replacement name for Archboldiella Winkler Prins (2008).

Spiriferella posterosulcata[65]

Sp. nov

Valid

Viaretti et al.

Permian (Kungurian-Roadian)

Batain Group

Oman

A member of Spiriferida belonging to the family Spiriferellidae.

Stenoscisma qararensis[65]

Sp. nov

Valid

Viaretti et al.

Permian (Kungurian-Roadian)

Batain Group

Oman

A member of Rhynchonellida belonging to the family Stenoscismatidae.

Sulcicosta lata[68]

Sp. nov

Valid

Waterhouse

Permian

 Australia

A member of Spiriferinida belonging to the family Syringothyridae.

Tcherskidium lonei[92]

Sp. nov

Valid

Jin et al.

Late Ordovician

United States
( Alaska)

Tenticospirifer? sinuosus[69]

Sp. nov

In press

García-Alcalde

Devonian (Frasnian)

Piñeres Formation

Spain

A member of Spiriferida belonging to the family Cyrtospiriferidae.

Terebratulina savagei[76]

Sp. nov

Valid

Cooper

Miocene

Monzi Formation

South Africa

A species of Terebratulina.

Terrakea elongata planidisca[68]

Ssp. nov

Valid

Waterhouse

Permian

 Australia

A member of Productida belonging to the superfamily Proboscidelloidea and the family Paucispinauriidae.

Terrakea macrospina[87]

Sp. nov

Valid

Waterhouse

Permian

Mantuan Formation

 Australia

A member of Productida belonging to the superfamily Proboscidelloidea and the family Paucispinauriidae.

Testaprica alperovichi[64]

Sp. nov

In press

Popov & Cocks

Ordovician

Kazakhstan

Thecidanella[75]

Nom. nov

Ceccolini & Cianferoni

Late Cretaceous

France

A member of Thecideida belonging to the family Thecideidae; a replacement name for Danella Pajaud (1966).

Tianjunospina[79]

Gen. et sp. nov

Valid

Guo et al.

Middle Triassic (Anisian)

China

Genus includes new species T. junheensis.

Tornatospirifer[90]

Gen. et comb. nov

Valid

Serobyan et al.

Devonian (Famennian)

Armenia

A cyrtospiriferid brachiopod. The type species is T. armenicus.

Tyloplecta liannanensis[71]

Sp. nov

Valid

Wu et al.

Permian (Wuchiapingian)

Shuizhutang Formation

China

Waagenoconcha peregoedovi[96]

Sp. nov

Valid

Makoshin

Early Permian

Kubalakh Formation

Russia

A member of Productida.

Brachiopod research

[edit]
  • Redescription and a study on the phylogenetic affinities of Diandongia pista is published by Wang et al. (2022).[97]
  • A study on the phylogenetic relationships of the Ordovician and Silurian members of Atrypida is published by Baarli, Huang & Maroja (2022).[98]
  • A study on the phylogenetic relationships and biogeography of members of the family Nisusiidae is published by Oh et al. (2022).[99]
  • Evidence indicating that microstructure, maximum thickness and shell spiral characterization can aid taxonomic identification of gigantoproductid brachiopods is published by Mateos-Carralafuente et al. (2022).[100]
  • Description of remains of the rhynchonellid Erymnaria from the early Ypresian-aged Chruteren Member of the Euthal Formation, Switzerland, representing the first known occurrence of the genus in the Chruteren Member, is published by Sulser et al. (2022).[101]

Molluscs

[edit]

Echinoderms

[edit]

Newly named echinoderms

[edit]
Name Novelty Status Authors Age Type locality Location Notes Images

Acriaster aresensis[102]

Sp. nov

Valid

Forner in Forner et al.

Early Cretaceous (Barremian)

Artoles Formation

Spain

A sea urchin belonging to the group Cassiduloida and the family Archiaciidae.

Aliopsis[103]

Gen. et comb. nov

Abdelhamid, Abdelghany & Abu Saima

Late Cretaceous (Maastrichtian)

United Arab Emirates/Oman border region

A sea urchin belonging to the group Arbacioida and the family Acropeltidae. The type species is "Glyphopneustes" hattaensis Ali (1992).

Angulocrinus tomaszi[104]

Sp. nov

Valid

Zamora

Late Jurassic (Oxfordian)

Yatova Formation

Spain

A crinoid belonging to the group Millericrinida and the family Millericrinidae.

Anticostiechinus[105]

Gen. et sp. nov

Valid

Thompson, Ausich & Cournoyer

Silurian

Canada
( Quebec)

A sea urchin belonging to the family Echinocystitidae. Genus includes new species A. petryki.

Arauricystis clariondi[106]

Sp. nov

In press

Lefebvre et al.

Ordovician

Izegguirene Formation

Czech Republic
Morocco

A cornute stylophoran belonging to the family Cothurnocystidae.

Astroblastocystis[107]

Nom. nov

Sałamatin & Kaczmarek

Ordovician

Russia

A replacement name for Blastocystis Jaekel (1918).

Atelestocrinus baumilleri[108]

Sp. nov

Valid

Gahn

Carboniferous (Viséan)

Ramp Creek Formation

United States
( Indiana)

A cladid crinoid belonging to the group Dendrocrinida.

Ausichicrinites[109]

Gen. et sp. nov

Valid

Salamon et al.

Late Jurassic (Tithonian)

Antalo Limestone

Ethiopia

A member of Comatulida. The type species is A. zelenskyyi.

Bohemiaecystis chouberti[106]

Sp. nov

In press

Lefebvre et al.

Ordovician

Morocco

A cornute stylophoran.

Catopygus vilari[110]

Sp. nov

Valid

Forner

Early Cretaceous (Aptian)

Forcall Formation

Spain

A sea urchin belonging to the group Cassiduloida.

Clypeaster surarui[111]

Nom. nov

Valid

Carrasco & Trif

Eocene

Romania

A species of Clypeaster; a replacement name for Clypeaster (Palaeanthus) transsylvanicus Șuraru, Gábos & Șuraru (1967).

Codiacrinus sevastopuloi[112]

Sp. nov

Valid

Ausich et al.

Devonian (Emsian)

Poland

A cyathoform cladid crinoid.

Cyclaster jamiei[113]

Sp. nov

Valid

McNamara & Martin

Eocene

Manypeaks limestone

Australia

A sea urchin belonging to the group Spatangoida and the family Micrasteridae.

Destombesicarpus[106]

Gen. et 2 sp. nov

In press

Lefebvre et al.

Ordovician

Czech Republic
Morocco

A cornute stylophoran belonging to the family Chauvelicystidae. Genus includes new species D. izegguirenensis and D. budili.

Diamphidiocystis regnaulti[114]

Sp. nov

In press

Lefebvre et al.

Ordovician

Czech Republic
France
Morocco

An anomalocystitid mitrate.

Eurhodia westaustraliae[113]

Sp. nov

Valid

McNamara & Martin

Eocene

Nanarup limestone

Australia

A species of Eurhodia.

Exallocrinus[115]

Gen. et sp. nov

In press

Webster, Heward & Ausich

Permian (Wordian)

Khuff Formation

Oman

A crinoid, possibly a member of the family Ampelocrinidae. The type species is E. khuffensis.

Fossulaster susae[113]

Sp. nov

Valid

McNamara & Martin

Eocene

Nanarup limestone

Australia

A sand dollar belonging to the family Fossulasteridae.

Furculaster[116]

Gen. et sp. nov

In press

Gale

Late Cretaceous

Europe

A starfish belonging to the family Korethrasteridae. Genus includes new species F. cretae.

Gillechinus kaitae[113]

Sp. nov

Valid

McNamara & Martin

Eocene

Manypeaks limestone

Australia

A sea urchin belonging to the group Spatangoida and the family Maretiidae.

Habanaster itzae[117]

Sp. nov

In press

Villier et al.

Eocene (Lutetian)

Anotz Formation

Spain

A heart urchin belonging to the family Ovulasteridae.

Kutscheraster[116]

Gen. et sp. nov

In press

Gale

Late Cretaceous (Maastrichtian)

Germany

A starfish belonging to the group Velatida. Genus includes new species K. ruegenensis.

Milonicystis reboulorum[106]

Sp. nov

In press

Lefebvre et al.

Ordovician

Morocco

A cornute stylophoran.

Muldaster[118]

Gen. et sp. nov

Valid

Thuy, Eriksson & Numberger-Thuy in Thuy et al.

Silurian (Wenlock)

Halla Formation

Sweden

A brittle star. The type species is M. haakei.

Neobothriocidaris pentlandensis[119]

Sp. nov

Valid

Thompson et al.

Silurian

Sweden
United Kingdom

A sea urchin.

Ohiocrinus byeongseoni[120]

Sp. nov

Valid

Park et al.

Ordovician (Darriwilian)

Jigunsan Formation

South Korea

A cincinnaticrinid crinoid.

Ophiobartia[121]

Gen. et sp. nov

Valid

Loba in Loba & Radwańska

Late Jurassic (Kimmeridgian)

Poland

A brittle star belonging to the group Ophiacanthida. The type species is O. radwanskii.

Ophiodoris niersteinensis[122]

Sp. nov

Valid

Thuy, Nungesser & Numberger-Thuy

Oligocene (Rupelian)

Bodenheim Formation

Germany

A brittle star belonging to the family Ophionereididae.

Ophiopetagno[118]

Gen. et sp. nov

Valid

Thuy, Eriksson & Numberger-Thuy in Thuy et al.

Silurian (Wenlock)

Fröjel Formation

Sweden

A brittle star. The type species is O. paicei.

Ophiura pohangensis[123]

Sp. nov

Valid

Ishida et al.

Miocene

Duho Formation

South Korea

A species of Ophiura.

Ophiura tankardi[122]

Sp. nov

Valid

Thuy, Nungesser & Numberger-Thuy

Oligocene (Rupelian)

Bodenheim Formation

Germany

A species of Ophiura.

Oretanocalix julioi[124]

Sp. nov

In press

Paul & Gutiérrez-Marcos

Ordovician (Darriwilian)

Navas de Estena Formation

Spain

A member of Diploporita belonging to the family Aristocystitidae.

Orthopsis kiseljaki[125]

Sp. nov

Valid

Stecher

Late Triassic (Rhaetian)

Kössen Formation

Austria

A sea urchin belonging to the group Carinacea and the family Orthopsidae.

Parahybocrinus[126]

Gen. et sp. nov

Valid

Guensburg & Sprinkle

Ordovician (Floian)

Fillmore Formation

United States
( Utah)

A cladid crinoid belonging to the group Hybocrinida. The type species is P. siewersi.

Peedeeaster[127]

Gen. et sp. nov

Valid

Mah

Late Cretaceous (Maastrichtian)

Peedee Formation

United States
( North Carolina)

A starfish belonging to the family Goniasteridae. The type species is P. sandersoni.

Pteraster angulatus[116]

Sp. nov

In press

Gale

Late Cretaceous

Europe

A starfish, a species of Pteraster.

Pteraster balticus[116]

Sp. nov

In press

Gale

Late Cretaceous (Maastrichtian)

Germany

A starfish, a species of Pteraster.

Pteraster cretachiton[116]

Sp. nov

In press

Gale

Late Cretaceous

Europe

A starfish, a species of Pteraster.

Pteraster kutscheri[116]

Sp. nov

In press

Gale

Late Cretaceous (Campanian[128] and Maastrichtian)

Germany
United Kingdom[128]

A starfish, a species of Pteraster.

Pteraster lyddenensis[128]

Sp. nov

Valid

Gale

Late Cretaceous (Cenomanian)

Grey Chalk Subgroup of the Chalk Group

United Kingdom

A starfish, a species of Pteraster. Published online in 2022, but the issue date is listed as February 2023.[128]

Pteraster nudus[116]

Sp. nov

In press

Gale

Late Cretaceous

United Kingdom

A starfish, a species of Pteraster.

Pteraster paucispinus[116]

Sp. nov

In press

Gale

Late Cretaceous (Maastichtian)

Germany

A starfish, a species of Pteraster.

Pteraster seafordensis[116]

Sp. nov

In press

Gale

Late Cretaceous (Coniacian–Santonian)

United Kingdom

A starfish, a species of Pteraster.

Pteraster turoniense[116]

Sp. nov

In press

Gale

Late Cretaceous (Turonian)

Bridgwick Marl

France
United Kingdom

A starfish, a species of Pteraster.

Sprinkleoglobus[129]

Gen. et sp. et comb. nov

Valid

Zhao et al.

Cambrian

Maotianshan Shale Member of the Yu'anshan Formation

China
United States
( Utah)

A member of Edrioasteroidea, possibly belonging to Edrioasterida. The type species is S. extenuatus; genus also includes "Totiglobus" lloydi Sprinkle (1985).

Syndiasmocrinus[126]

Gen. et sp. nov

Valid

Guensburg & Sprinkle

Ordovician (Floian)

Ninemile Formation

United States
( Nevada
 Utah)

A cladid crinoid belonging to the group Hybocrinida. The type species is S. apokalypto.

Thoralicarpus[106]

Gen. et 2 sp. et comb. nov

In press

Lefebvre et al.

Ordovician

Czech Republic
France
Morocco
Spain

A cornute stylophoran belonging to the family Scotiaecystidae. Genus includes new species T. bounemrouensis and T. prokopi, as well as "Bohemiaecystis" jefferiesi Gil Cid et al. (1996) and "Scotiaecystis" guilloui Lefebvre & Vizcaïno (1999).

Triadoleucella[130]

Gen. et sp. nov

Ishida et al.

Late Triassic (Carnian)

Vietnam

A brittle star belonging to the group Ophioleucida. Genus includes new species T. meensis. Published online in 2022, but the issue date is listed as April 2023.[130]

Yorkicystis[131][132]

Gen. et sp. nov

Zamora et al.

Cambrian

Kinzers Formation

United States
( Pennsylvania)

An edrioasteroid. The type species is Y. haefneri.

Zygocycloides? foerstei[133]

Sp. nov

Valid

Ausich & Zehler

Silurian (Aeronian)

Brassfield Formation

United States
( Ohio)

A member of Cyclocystoidea belonging to the family Cyclocystoididae.

Echinoderm research

[edit]
  • A study on the evolution of the anatomy and life habits of Cambrian–Ordovician echinoderms is published by Novack-Gottshall et al. (2022).[134]
  • A study on the morphology of the internal bars in Lagynocystis pyramidalis and Jaekelocarpus oklahomensis, reevaluating the evidence for gill bars in stylophorans, is published by Álvarez-Armada et al. (2022).[135]
  • A study on dispersal patterns and morphological changes in sphaeronitid diploporans across the Ordovician–Silurian boundary is published by Sheffield et al. (2022).[136]
  • A study on the morphology and paleoecology of calceocrinid crinoids is published by Ausich (2022).[137]
  • A study on the phylogeny and divergence times of major lineages of sea urchins, comparing phylogenomic data with the fossil record, is published by Mongiardino Koch et al. (2022).[138]
  • Redescription of Cantabrigiaster fezouataensis is published by Blake & Hotchkiss (2022), who synonymize the genus Cantabrigiaster with the chinianasterid somasteroid genus Villebrunaster, and consider the interpretations of a close phylogenetic linkage between crinoids and starfish and an edrioasteroid ancestry of starfish to be inadequately supported.[139]

Hemichordates

[edit]
Name Novelty Status Authors Age Type locality Location Notes Images

Acrograptus(?) artus[140]

Sp. nov

Maletz

Ordovician (Floian)

Sweden

A graptolite.

Anjigraptus[141]

Gen. et sp. nov

Valid

Muir et al.

Ordovician (Hirnantian)

China

A graptolite. The type species is A. wangi.

Hemichordate research

[edit]

Conodonts

[edit]

New taxa

[edit]
Name Novelty Status Authors Age Type locality Location Notes Images

Amorphognathus viirae[143]

Sp. nov

Paiste, Männik & Meidla

Ordovician (Sandbian)

Estonia
Sweden
Poland?
United States?

Belodella salairica[144]

Sp. nov

Valid

Izokh

Devonian

Russia

Caudicriodus yolkini[144]

Sp. nov

Valid

Izokh

Devonian

Russia

Condorodus[145]

Gen. et 3 sp. nov

Valid

Carlorosi, Mestre & Heredia

Ordovician

San Juan Formation

Argentina

The type species is C. chilcaensis; genus also includes C. diablensis and C. gracielae.

Discretella pseudodieneri[146]

Sp. nov

Leu & Goudemand in Leu et al.

Early Triassic

Luolou Formation

China
Japan

A member of the family Gondolellidae belonging to the subfamily Mullerinae.

Heckelina[147]

Gen. et comb. nov

Barrick, Hogancamp & Rosscoe

Carboniferous (Pennsylvanian)

China
Russia
Ukraine
United States

Genus includes "Streptognathodus" simulator Ellison (1941), "Streptognathodus" praenuntius Chernykh (2005), "Streptognathodus" auritus Chernykh (2005), "Idiognathodus" eudoraensis Barrick, Heckel & Boardman (2008), "Idiognathodus" lateralis Hogancamp, Barrick & Straussand (2016) and "Idiognathodus" abdivitus Hogancamp & Barrick (2018).

Icriodus olgaborisovnae[148]

Sp. nov

Valid

Nazarova & Kononova

Devonian (Eifelian)

Russia

Idiognathodus praeguizhouensis[149]

Sp. nov

Valid

Hu, Qi & Wang

Carboniferous (Pennsylvanian)

China

Juanognathus? denticulatus[150]

Sp. nov

Valid

Zhen, Allen & Martin

Early Ordovician

Nambeet Formation

Australia

Neospathodus bevelledi[146]

Sp. nov

Disputed

Leu & Goudemand in Leu et al.

Early Triassic

Luolou Formation

China
Japan
Oman
Vietnam

A member of the family Gondolellidae belonging to the subfamily Neogondolellinae. Argued to be a junior synonym of Neospathodus yangtzeensis by Wu et al. (2023);[151] on the other hand, Leu (2024) argued that N. bevelledi is a senior synonym of N. yangtzeensis.[152]

Novispathodus gryphus[146]

Sp. nov

Leu & Goudemand in Leu et al.

Early Triassic

Luolou Formation

China

A member of the family Gondolellidae belonging to the subfamily Novispathodinae.

Novispathodus praebrevissimus[146]

Sp. nov

Leu & Goudemand in Leu et al.

Early Triassic

Luolou Formation

China
Norway
Oman

A member of the family Gondolellidae belonging to the subfamily Novispathodinae.

Palmatolepis adorfensis[153]

Sp. nov

Valid

Saupe & Becker

Devonian (Frasnian)

Australia
Belgium
Germany
Morocco

Palmatolepis descendens[153]

Sp. nov

Valid

Saupe & Becker

Devonian (Frasnian)

China
Germany

Palmatolepis jamieae rosa[153]

Ssp. nov

Valid

Saupe & Becker

Devonian (Frasnian)

Belgium
China
Germany
Russia

Palmatolepis jamieae savagei[153]

Ssp. nov

Valid

Saupe & Becker

Devonian (Frasnian)

China
Germany
Morocco
Russia

Protognathodus semikockeli[154]

Sp. nov

Valid

Hartenfels et al.

Devonian-Carboniferous transition

Algeria
Austria
Belgium
China
France
Germany
Iran
Italy
Poland
Russia
Spain
United States
Czech Republic?
United Kingdom?

Siphonodella vladimirovi[155]

Nom. nov

Valid

Plotitsyn

Early Carboniferous

Russia
Tajikistan

A member of the family Elictognathidae; a replacement name for Siphonodella diagonalica Pazukhin (1989).

Urdyella[146]

Gen. et. 2 sp. nov

Unavailable

Leu & Goudemand in Leu et al.

Early Triassic

Luolou Formation

China
India
Oman
United States
( Utah)

A member of the family Gondolellidae belonging to the subfamily Cornudininae. The type species is U. unicorna; genus also includes U. tridenta. The name is not available because the article lacks evidence of registering in ZooBank

Research

[edit]
  • A study on the material properties of bioapatite in multiple elements in the coniform-bearing apparatus of Dapsilodus obliquicostatus, representing different ontogenetic stages of development, is published by Shohel et al. (2022).[156]
  • Redescription of Histiodella labiosa and a study on the phylogenetic affinities of members of the genus Histiodella is published by Zhen, Bauer & Bergström (2022).[157]
  • A study aiming to determine whether co-occurring Silurian conodont species from the Gotland succession in Sweden occupied different trophic niches is published by Terrill et al. (2022).[158]
  • A synthesis on the conodont occurrences along northern Gondwana at the Silurian/Devonian boundary is published by Ferretti et al. (2022).[159]
  • A study on the morphological variation of elements of the apparatus of Icriodus alternatus is published by Girard et al. (2022), who interpret their findings as indicating that subspecies of this species described for the end Frasnian and early Famennian constitute end-member morphologies characterizing different growth stages.[160]
  • A study comparing conodont diversity dynamics in Northeast Laurussia and Northeast Siberia during the Tournaisian, and evaluating its implications for the knowledge of the causes of the extinction among conodonts during the middle–late Tournaisian transition, is published by Zhuravlev & Plotitsyn (2022).[161]
  • A study on the apparatus composition of Lochriea commutata, and on its implications for the assignments of other Carbonifeous conodont species to the genus Lochriea, is published by von Bitter, Norby & Stamm (2022).[162]
  • Evidence indicative of impact of ocean temperature changes on the morphology of conodont elements during the Devonian-Carboniferous transition and the Carnian-Norian transition is presented by Souquet et al. (2022).[163]

Fish

[edit]

Amphibians

[edit]

New taxa

[edit]
Name Novelty Status Authors Age Type locality Location Notes Images

Albanerpeton ektopistikon[164]

Sp. nov

Valid

Carrano et al.

Early Cretaceous

Cloverly Formation

United States
( Wyoming)

Baurubatrachus santosdoroi[165]

Sp. nov

Valid

Muzzopappa et al.

Late Cretaceous

Adamantina Formation

Brazil

Buettnererpeton[166]

Gen. et comb. nov

Valid

Gee & Kufner

Late Triassic

Dockum Group

Canada
( Nova Scotia)
United States
( Texas)

A metoposaurid temnospondyl. The type species is "Buettneria" bakeri Case (1931).

Calyptocephalella sauzalensis[167]

Sp. nov

Nicoli et al.

Miocene

El Sauzal Formation

Argentina

A species of Calyptocephalella.

Chemnitzion[168]

Gen. et sp. nov

In press

Werneburg et al.

Permian (SakmarianArtinskian transition)

Leukersdorf Formation

Germany

A zatracheid temnospondyl. The type species is C. richteri.

Cretadhefdaa[169]

Gen. et sp. nov

Valid

Lemierre & Blackburn

Late Cretaceous (Cenomanian)

Kem Kem Group (Douira Formation)

Morocco

A neobatrachian frog with possible hyloid affinities. The type species is C. taouzensis.

Marmorerpeton wakei[170]

Sp. nov

Valid

Jones et al.

Middle Jurassic

Kilmaluag Formation

United Kingdom

A member of the family Karauridae.

Nagini[171]

Gen. et sp. nov

Valid

Mann, Pardo & Maddin

Carboniferous

Francis Creek Shale

United States
( Illinois)

A tetrapod of uncertain phylogenetic placement, a member of the family Molgophidae. The type species is N. mazonense.

Rhinella xerophylla[172]

Sp. nov

In press

Ponssa et al.

Late Pliocene

Uquía Formation

Argentina

A toad, a species of Rhinella.

Termonerpeton[173]

Gen. et sp. nov

Valid

Clack, Smithson & Ruta

Carboniferous (Viséan)

Bathgate Hills Volcanic Formation

United Kingdom

A tetrapod of uncertain affinities, probably a stem-amniote. The type species is T. makrydactylus.

Research

[edit]
  • A study on the bone histology of Whatcheeria deltae is published by Whitney et al. (2022), who interpret their findings as indicating that juveniles of W. deltae grew rapidly and reached skeletal maturity quickly.[174]
  • A study on the anatomy of the Carboniferous temnospondyl specimen from the Joggins Fossil Cliffs (Nova Scotia, Canada) referred to Dendrysekos helogenes is published by Arbez, Atkins & Maddin (2022), who consider the genus Dendrysekos to be likely junior synonym of Dendrerpeton.[175]
  • A study aiming to test whether the hindlimb of Eryops megacephalus may have been capable of salamander-like hindlimb configurations is published by Herbst, Manafzadeh & Hutchinson (2022).[176]
  • A study aiming to determine the body mass of Eryops megacephalus and Paracyclotosaurus davidi is published by Hart, Campione & McCurry (2022).[177]
  • Fossil material of large-bodied capitosaurs and a plagiosaurid is described from the Middle Triassic Fremouw Formation (Antarctica) by Gee & Sidor (2022), who also interpret the historic material from the Fremouw Formation attributed to Trematosauria as exhibiting features indicative of capitosaurian affinities.[178]
  • Redescription of Platycepsion wilkinsoni is published by Witzmann & Schoch (2022), who interpret this brachyopid as a true larva, demonstrating the presence of a larval stage in stereospondyls.[179]
  • New fossil material of Trematolestes hagdorni, providing new information on the ontogeny and adult anatomy of this temnospondyl, is described by Schoch & Mujal (2022).[180]
  • A study on the bone compactness in the pectoral girdle of Metoposaurus krasiejowensis is published by Kalita et al. (2022), who interpret their findings as indicating that compact anterior end of the interclavicles along with the heavy skull of this metoposaurid could have acted as ballast for hydrostatic buoyancy control by shifting the center of mass anteriorly.[181]
  • A study on the tooth microstructure of Metoposaurus krasiejowensis is published by Weryński & Kędzierski (2022), who report the presence of possible predatory adaptations, as well as evidence of seasonal influence on dental histology.[182]
  • Surmik et al. (2022) describe a pathological vertebral intercentrum of Metoposaurus krasiejowensis and diagnose this specimen as affected by osteosarcoma, representing the first unambiguous record of primary malignant bone tumour in a Mesozoic non-amniote.[183]
  • Redescription of Parioxys ferricolus is published by Schoch & Sues (2022).[184]
  • A study on the histology of the dorsal blades of Platyhystrix rugosus is published by Bowler, Sumida & Huttenlocker (2022).[185]
  • A study on the phylogenetic relationships of members of Amphibamiformes is published by Schoch (2022).[186]
  • Revision of the fossil record of Caudata in the Palearctic realm and a study on the biogeographical history of the group is published by Macaluso et al. (2022).[187]
  • A study on the palates of extant and fossil salamanders is published by Jia, Li & Gao (2022), who interpret their findings as indicating that palatal morphology is a reliable proxy in ecological reconstructions for early salamanders.[188]
  • An incomplete salamander dentary, possibly representing a previously unknown genus and species of batrachosauroidid, is described from the Maastrichtian Lance Formation (Wyoming, United States) by Gardner (2022).[189]
  • Skutschas et al. (2022) describe a fragmentary trunk vertebra of a crown salamander from the Bathonian Moskvoretskaya Formation (Moscow Oblast, Russia), potentially representing the oldest record of a member of Salamandroidea reported to date.[190]
  • A study on the phylogenetic relationships of extant and extinct members of the family Ceratophryidae is published by Barcelos et al. (2022).[191]
  • Fossil material of a toad belonging or related to the genus Rhinella is described from the Serravallian Cura-Mallín Formation (Chile) by Guevara et al. (2022), representing the southernmost fossil record of Bufonidae in South America for the Miocene reported to date.[192]
  • A study on the seymouriamorph tracks from the Permian (Asselian) of the Boskovice Basin (Czech Republic), representing one of the oldest known records of seymouriamorphs worldwide, is published by Calábková, Březina & Madzia (2022), who interpret these tracks as evidence of presence of terrestrial seymouriamorphs which were much larger than the largest discosauriscid specimens known from this area, and likely evidence of a habitat shift that occurred relatively late in the ontogenetic development of discosauriscids.[193]
  • A study on the anatomy and pattern of replacement of teeth in Seymouria is published by Maho & Reisz (2022).[194]
  • Jansen & Marjanović (2022) study the microanatomy of the limb bones and axial skeleton of Batropetes palatinus, infer a terrestrial lifestyle for the taxon that involved digging but not outright burrowing, and argue that the presence of strengthened forelimbs in Triadobatrachus in spite of its lack of the ability to jump might have been a former adaptation to forelimb-based digging that made jumping of later anurans possible by exaptation.[195]

Reptiles

[edit]

Synapsids

[edit]

General research

[edit]
  • A study on the morphological diversity of synapsid skulls is published by Marugán-Lobón, Gómez-Recio & Nebreda (2022).[196]

Non-mammalian synapsids

[edit]

New taxa

[edit]
Name Novelty Status Authors Age Type locality Location Notes Images

Bienotheroides xingshanensis[197]

Sp. nov

Valid

Liu et al.

Middle Jurassic

Shaximiao Formation

China

A tritylodontid cynodont.

Cifellilestes[198] Gen. et sp. nov Valid Davis et al. Late Jurassic (Tithonian) Morrison Formation United States A morganucodontan. The type species is C. ciscoensis.
Eoscansor[199] Gen. et sp. nov Valid Lucas et al. Carboniferous (Pennsylvanian) El Cobre Canyon Formation United States ( New Mexico) A varanopid. The type species is E. cobrensis.

Euchambersia liuyudongi[200]

Sp. nov

Liu & Abdala

Permian (Wuchiapingian)

Naobaogou Formation

China

A therocephalian.

Skull (a, c, e, f)

Guttigomphus[201]

Gen. et sp. nov

Valid

Rayner et al.

Probably Middle Triassic (Anisian)

Burgersdorp Formation

South Africa

A trirachodontid cynodont. The type species is G. avilionis.

Kembawacela yajuwayeyi[202] Sp. nov Araújo et al. Permian (Wuchiapingian) Chiweta Beds Malawi A dicynodont belonging to the family Cistecephalidae.

Koksharovia[203]

Gen. et sp. nov

Valid

Suchkova, Golubev & Shumov

Permian

Russia
( Kirov Oblast)

A therocephalian. The type species is K. grechovi. Published online in 2023, but the issue date is listed as December 2022.[203]

Lalieudorhynchus[204]

Gen. et sp. nov

In press

Werneburg et al.

Permian (Roadian/Wordian to early Capitanian)

La Lieude Formation

France

A caseid. The type species is L. gandi.

Notictoides[205]

Gen. et sp. nov

Sidor, Kulik & Huttenlocker

Early Triassic

Fremouw Formation

Antarctica

A therocephalian. Genus includes new species N. absens.

Phorcys[206]

Gen. et sp. nov

In press

Kammerer & Rubidge

Middle Permian (Wordian-Capitanian)

Abrahamskraal Formation

South Africa

An early gorgonopsian. The type species is P. dubei.

Tessellatia[207]

Gen. et sp. nov

Gaetano et al.

Late Triassic (Norian)

Los Colorados Formation

Argentina

A cynodont belonging to the group Probainognathia. The type species is T. bonapartei.

Research

[edit]
  • An overview of the evolution of the brain, sensory organs and behaviour in non-mammalian synapsids is published by Benoit et al. (2022).[208]
  • A study on the anatomy of the skull of Cotylorhynchus romeri is published by Reisz, Scott & Modesto (2022).[209]
  • Evidence of serrations on the tooth crowns (possibly reflecting hypercarnivory), as well as rapid rates of development and reduced longevity of the functional teeth in Mesenosaurus efremovi from the Richards Spur locality (Oklahoma, United States) is presented by Maho et al. (2022).[210]
  • A study on the functional loading regime of the fore- and hindlimb skeleton and the body stem of therapsids, and on its implications for the knowledge of the shift from sprawling to parasagittal locomotion in therapsids, is published by Preuschoft, Krahl & Werneburg (2022).[211]
  • Fossil material of Dicynodon angielczyki is described from the Metangula Graben (Mozambique) and Luangwa Basin (Zambia) by Kammerer et al. (2022), representing the first specimens referable to this species found outside the Ruhuhu Basin (Tanzania).[212]
  • A study on the anatomy of the basicranial axis of emydopoid dicynodonts is published by Macungo et al. (2022), who provide evidence for fossorial adaptations of the basicranium in the studied taxa, and interpret these adaptations as supporting a head-lift digging behaviour for at least some cistecephalids.[213]
  • A study aiming to determine whether the fossil material of Lystrosaurus from Antarctica, South Africa, India and China conforms to Bergmann's rule is published by Kulik & Sidor (2022).[214]
  • New material of the dicynodonts Shaanbeikannemeyeria and Parakannemeyeria, providing a re-description of the morphology and taxonomy of the former taxon, is described from the Middle Triassic Ermaying Formation (Ordos Basin, Shaanxi, China) by Jun Liu (2022).[215]
  • Description of the anatomy of the mandible of Dinodontosaurus brevirostris, based on data from new specimens from the Chañares Formation (Argentina), and a study reevaluating the phylogenetic affinities of this species with the inclusion of the mandibular data is published by Escobar et al. (2022).[216]
  • Sidor (2022) describes articulated pedes of a small gorgonopsian from the upper Permian upper Madumabisa Mudstone Formation (Zambia).[217]
  • A gorgonopsian specimen is described from the Wutonggou Formation (Turpan Basin, Xinjiang, China) by Liu & Yang (2022), who interpret this specimen as indicating that gorgonopsians survived in northern warm temperate zone about ~253.3 million years ago, contemporaneous with the latest records from Russia and South Africa.[218]
  • Presence of mammal-like sternum is reported in a specimen of Gorgonops torvus from the Wuchiapingian of South Africa by Bendel et al. (2022), representing the earliest record of such sternum in a synapsid reported to date.[219]
  • A study on the pattern of tooth replacement in Cynosaurus suppostus, based on data from five specimens inferred to represent an ontogenetic growth series, is published by Norton et al. (2022).[220]
  • A study on the bone histology of Massetognathus pascuali and Probainognathus jenseni, providing evidence of uninterrupted growth pattern in Massetognathus and cyclical growth in Probainognathus, is published by Garcia Marsà, Agnolín & Novas (2022).[221]
  • A study aiming to determine the body mass of Andescynodon mendozensis, Pascualgnathus polanskii, Massetognathus pascuali, Cynognathus crateronotus and Exaeretodon argentinus on the basis of linear measurements and circumferences of postcranial elements of specimens from Triassic units of the Ischigualasto-Villa Union Basin (Argentina) is published by Filippini, Abdala & Cassini (2022).[222]
  • New fossil material of Santacruzodon hopsoni and Chiniquodon sp., providing new information on the anatomy of the former taxon, is described from the Upper Triassic Santacruzodon Assemblage Zone (Santa Cruz Sequence, Santa Maria Supersequence, Brazil) by Melo, Martinelli & Soares (2022).[223]
  • A study on the cranial ontogeny of Exaeretodon argentinus is published by Wynd, Abdala & Nesbitt (2022), who interpret their findings as likely indicating that E. argentinus underwent a dietary shift toward herbivory during growth.[224]
  • A study on the anatomy and phylogenetic affinities of Lumkuia fuzzi is published by Benoit et al. (2022).[225]
  • New fossil material of Lufengia is described from the Lower Jurassic Lufeng Formation (China) by Liu et al. (2022), who interpret Dianzhongia as described on the basis of fossil material of an older individual of Lufengia.[226]
  • Cabreira et al. (2022) provide evidence indicative of the presence of two sets of teeth falling within a range of wide variations of typically mammalian dental patterns in a Late Triassic cynodont Brasilodon, and interpret this finding as potentially pushing the origin of the biological traits related to the presence of two sets of teeth in modern mammals, such as placentation, endothermy, fur or lactation, back to the Norian.[227]
  • Jäger et al. (2022) present evidence of different morphology and different modes of the occlusion of the molars in Erythrotherium parringtoni and Morganucodon watsoni, and interpret their findings as supporting the classification of these mammaliaforms as distinct taxa.[228]
  • Description of the anatomy of the mandible and teeth of Hadrocodium wui, including new information unavailable from previous fossil preparation, is published by Luo et al. (2022).[229]
  • Araújo et al. (2022) argue that morphological changes to the endolymph-filled semicircular ducts of the inner ear of synapsids were related to changes of their body temperatures, and that endothermy evolved abruptly during the Late Triassic in Mammaliamorpha, with all stem mammaliamorphs likely being ectotherms.[230]

Mammals

[edit]

Other animals

[edit]

New taxa

[edit]
Name Novelty Status Authors Age Type locality Location Notes Images

Acanthochaetetes fischeri[231]

Sp. nov

In press

Schlagintweit et al.

Paleocene (Thanetian)

Khurmala Formation

Iran
Iraq

A demosponge belonging to the family Acanthochaetetidae.

Anguiscolex[232]

Gen. et sp. nov

Valid

García-Bellido & Gutiérrez-Marco

Late Ordovician

Morocco

A palaeoscolecid worm. Genus includes new species A. africanus.

Anjiplectella[233]

Gen. et sp. nov

Botting et al.

Ordovician (Hirnantian)

China

A sponge belonging to the family Euplectellidae. The type species is A. davidipharus.

Anticalyptraea madenensis[234]

Sp. nov

In press

Zatoń et al.

Devonian

Morocco

An anticalyptraeid tubeworm.

Archaeopetasus pachybasalis[235]

Sp. nov

Valid

Kouchinsky in Kouchinsky et al.

Cambrian (Tommotian)

Tyuser Formation

Russia
( Sakha)

A chancelloriid.

Boreognathus[236]

Gen. et sp. nov

Shcherbakov, Tzetlin & Zhuravlev

Permian (Kungurian)

Pechora Coal Basin

Russia

A polychaete annelid belonging to the family Atraktoprionidae. Genus includes new species B. pogorevichi.

Buggischicyathus[237]

Gen. et sp. nov

In press

Perejón, Menéndez & Moreno-Eiris in Rodríguez-Martínez et al.

Cambrian Series 2

Mount Wegener Formation

Antarctica

An archaeocyath belonging to the group Ajacicyathida and the family Densocyathidae. The type species is B. microporus.

Cementula radwanskae[238]

Sp. nov

Valid

Słowiński et al.

Middle Jurassic (BathonianCallovian, possibly also Bajocian)

Poland
France?

A polychaete belonging to the family Serpulidae.

Charnia gracilis[239]

Sp. nov

Valid

Wu et al.

Ediacaran

Dengying Formation

China

A rangeomorph.

Clathrodictyon megalamellatum[240]

Sp. nov

Valid

Jeon in Jeon et al.

Ordovician (Katian)

Xiazhen Formation

China

A member of Stromatoporoidea belonging to the group Clathrodictyida.

Conchicolites kroegeri[241]

Sp. nov

Valid

Vinn et al.

Ordovician (Katian)

Hirmuse Formation

Estonia

A member of Cornulitida.

Conchicolites parcecostatis[242]

Sp. nov

Vinn et al.

Ordovician (Katian)

Kõrgessaare Formation

Estonia

A member of Cornulitida.

Conchicolites sutlemaensis[242]

Sp. nov

Vinn et al.

Ordovician (Katian)

Kõrgessaare Formation

Estonia

A member of Cornulitida.

Cornulites lindae[241]

Sp. nov

Valid

Vinn et al.

Ordovician (Katian)

Hirmuse Formation

Estonia

A member of Cornulitida.

Cornulites meidlai[241]

Sp. nov

Valid

Vinn et al.

Ordovician (Katian)

Hirmuse Formation

Estonia

A member of Cornulitida.

Dauritheca[243]

Nom. nov

Valid

Peel & Gubanov

Cambrian

Yuertus Formation

China
Russia
( Zabaykalsky Krai)

A hyolith belonging to the group Orthothecida and the family Triplicatellidae; a replacement name for Pachytheca Qian, Yin & Xiao (2000).

Filogranula spongiophila[238]

Sp. nov

Valid

Słowiński et al.

Late Jurassic (Oxfordian)

Poland

A polychaete belonging to the family Serpulidae.

Germanortmannia[244]

Nom. nov

Valid

Ceccolini & Cianferoni

Late Cretaceous

Germany

A demosponge belonging to the group Astrophorida; a replacement name for Ortmannia Schrammen (1924).

Hadimopanella foveata[235]

Sp. nov

Valid

Kouchinsky in Kouchinsky et al.

Cambrian (Cambrian Stage 4)

Erkeket Formation

Russia
( Sakha)

A palaeoscolecid.

Hadimopanella luchininae[245]

Sp. nov

Valid

Novozhilova

Early Cambrian

Russia

A palaeoscolecid.

Iberogilletia[244]

Nom. nov

Valid

Ceccolini & Cianferoni

Early Cretaceous (Aptian)

Spain

A demosponge belonging to the family Corallistidae; a replacement name for Gilletia Lagneau-Herenger (1962).

Inuitiphlaskus[246]

Gen. et sp. nov

In press

Peel

Cambrian (Wuliuan)

Henson Gletscher Formation

Greenland

A total-group priapulid. The type species is I. kouchinskyi.

Lindstroemiella[247]

Gen. et sp. nov

Valid

Zatoń et al.

Silurian (Ludfordian)

Estonia

A member of Tentaculita. Genus includes new species L. eichwaldi.

Metavermilia (Vepreculina) gollieti[248]

Sp. nov

Kočí, Goedert & Jäger

Eocene

Lincoln Creek Formation

United States
( Washington)

A serpulid annelid.

Nectocollare[249]

Gen. et sp. nov

In press

Botting & Ma

Ordovician

United Kingdom

A sponge, possibly a member of the family Hyalonematidae. Genus includes new species N. zakdouli.

Neodexiospira ferlinghettii[250]

Sp. nov

Valid

Kočí, Goedert & Buckeridge

Early Eocene

Crescent Formation

United States
( Washington)

A polychaete.

Neodexiospira vanslykei[250]

Sp. nov

Valid

Kočí, Goedert & Buckeridge

Late Eocene

Lincoln Creek Formation

United States
( Washington)

A polychaete.

Onuphionella corusca[251]

Sp. nov

Valid

Muir et al.

Ordovician (Sandbian)

First Bani Group

 Morocco

Agglutinated tubes produced by unknown animal. Published online in 2018; the final version of the article naming it was published in 2022.

Paragnaltacyathus[237]

Gen. et sp. nov

In press

Perejón, Menéndez & Moreno-Eiris in Rodríguez-Martínez et al.

Cambrian Series 2

Mount Wegener Formation

Antarctica

An archaeocyath belonging to the group Ajacicyathida and the family Ethmocyathidae. The type species is P. hoeflei.

Parvibellus[252]

Gen. et sp. nov

Liu et al.

Cambrian Stage 3

Yu'anshan Formation

China

A stem-arthropod of uncertain affinitites, possibly a siberiid lobopodian.[253] The type species is P. atavus.

Rotundocyathus glacius[237]

Sp. nov

In press

Perejón, Menéndez & Moreno-Eiris in Rodríguez-Martínez et al.

Cambrian Series 2

Mount Wegener Formation

Antarctica

An archaeocyath belonging to the group Ajacicyathida and the family Ajacicyathidae.

Salanytheca daurica[243]

Sp. nov

Valid

Peel & Gubanov

Cambrian Series 2

Bystraya Formation

Russia
( Zabaykalsky Krai)

A hyolith belonging to the group Orthothecida and the family Triplicatellidae.

Sanshapentella tentoriformis[254]

Sp. nov

Yun et al.

Cambrian Stage 3

Shuijingtuo Formation

China

A hexactinellid sponge.

Santelmocyathus[237]

Gen. et sp. nov

In press

Perejón, Menéndez & Moreno-Eiris in Rodríguez-Martínez et al.

Cambrian Series 2

Mount Wegener Formation

Antarctica

An archaeocyath belonging to the group Ajacicyathida and the family Shackletoncyathidae. The type species is S. santelmoi.

Shackletoncyathus[237]

Gen. et sp. nov

In press

Perejón, Menéndez & Moreno-Eiris in Rodríguez-Martínez et al.

Cambrian Series 2

Mount Wegener Formation

Antarctica

An archaeocyath belonging to the group Ajacicyathida and the family Shackletoncyathidae. The type species is S. buggischi.

Spirobranchus limburgicus[255]

Sp. nov

Valid

Kadolsky

Oligocene (Rupelian)

Borgloon Formation

Belgium

A serpulid annelid, a species of Spirobranchus.

Syringodictyon nevadense[256]

Sp. nov

Valid

Stock

Devonian (Emsian)

McColley Canyon Formation

United States
( Nevada)

A member of Stromatoporoidea.

Teutomastophorus[244]

Nom. nov

Valid

Ceccolini & Cianferoni

Late Cretaceous

Germany

A demosponge belonging to the family Theonellidae; a replacement name for Mastophorus Schrammen (1924).

Trinacriarbuscula[244]

Nom. nov

Valid

Ceccolini & Cianferoni

Permian

Italy

A demosponge belonging to the group Lithistida; a replacement name for Arbuscula Parona (1933).

Triplicatella uslonica[243]

Sp. nov

Valid

Peel & Gubanov

Cambrian Series 2

Bystraya Formation

Russia
( Zabaykalsky Krai)

A hyolith belonging to the group Orthothecida and the family Triplicatellidae.

Turgidaspongia[257]

Gen. et sp. nov

In press

Li et al.

Ordovician-Silurian boundary

China

A hexactinellid sponge belonging to the family Stiodermatidae. The type species is T. porosa.

Wegenercyathus[237]

Gen. et sp. nov

In press

Perejón, Menéndez & Moreno-Eiris in Rodríguez-Martínez et al.

Cambrian Series 2

Mount Wegener Formation

Antarctica

An archaeocyath belonging to the group Ajacicyathida and the family Rudanulidae. The type species is W. sexangulae.

Wronascolex superstes[232]

Sp. nov

Valid

García-Bellido & Gutiérrez-Marco

Late Ordovician

Morocco

A palaeoscolecid worm.

Wufengella[258]

Gen. et sp. nov

Valid

Guo et al.

Cambrian Stage 3

Chiungchussu Formation

China

A tommotiid. The type species is W. bengtsoni.

Research

[edit]
  • A study on the biomarker composition of gut contents in Ediacaran macrofossils is published by Bobrovskiy et al. (2022), who interpret their findings as indicating that Calyptrina and Kimberella possessed a gut, displayed sterol metabolism comparable to extant invertebrates and fed on green algae and bacteria, while Dickinsonia shows no traces of dietary molecules, indicating a different feeding mode and possible external digestion.[259]
  • A study on the fossil record of Petalonamae, their survival of the Ediacaran–Cambrian transition and the timing and causes of their extinction is published by Hoyal Cuthill (2022).[260]
  • Redescription and a study on the life habits of Pteridinium simplex is published by Darroch et al. (2022).[261]
  • A study on the morphological variation and paleobiology of Fractofusus misrai is published by Taylor et al. (2022).[262]
  • Aragonés Suarez & Leys (2022) propose a method for identifying fossil organisms as sponge grade animals, and apply their method to a putative Ediacaran sponge Thectardis avalonensis.[263]
  • A study on the impact of oxygenation pulses during the Cambrian Radiation on archaeocyath reef communities from the Siberian Platform (Sakha, Russia), indicating that oxygenation events created temporary pulses of evolutionary diversification and enhanced ecosystem complexity, is published by Zhuravlev et al. (2022).[264]
  • Putative late Cambrian archaeocyath Antarcticocyathus webersi is reinterpreted as an anthaspidellid sponge by Lee (2022), leaving no evidence of archaeocyaths surviving beyond the middle Cambrian.[265]
  • Spongiostroma mæandrinum is reinterpreted as a keratosan demosponge by Lee & Riding (2022).[266]
  • Osés et al. (2022) describe exceptionally preserved fossil material of Corumbella werneri from the Ediacaran Tamengo Formation (Brazil), report that Corumbella had a biomineralized skeleton with a cataphract organization of calcareous plates and rings (sclerites) that enhanced flexibility, and interpret Corumbella as the oldest animal with a complex cataphract skeleton with biologically-controlled biomineralization reported to date.[267]
  • Bilaterian trace fossils originally reported from the Ediacaran Tacuarí Formation (Uruguay)[268] are reinterpreted as actually Carboniferous–Permian in age and found in strata belonging to the San Gregorio Formation by Verde et al. (2022).[269]
  • A study on the phylogenetic affinities of Amiskwia sagittiformis is published by Bekkouche & Gąsiorowski (2022), who recover this animal as a stem-group chaetognath within the new clade Cucullophora.[270]
  • Liu et al. (2022) transfer "Ambrolinevitus" ventricosus to the genus Paramicrocornus, erect a new family Paramicrocornidae, and evaluate the implications of paramicrocornids for the knowledge of the evolution of hyoliths.[271]
  • New fossil material of Doliutheca orientalis, providing new information on the anatomy of this hyolith, is described from the Cambrian Shipai Formation (China) by Liu et al. (2022), who place this species in the family Paramicrocornidae.[272]
  • Sun, Zhao & Zhu (2022) describe new fossil material of Glossolites magnus, and interpret its anatomy as indicating that this animal wasn't a hyolith.[273]
  • Description of the internal anatomy of embryos of Markuelia hunanensis from the Cambrian (Furongian) Bitiao Formation (Hunan, China) is published by Dong et al. (2022).[274]
  • Putative early deuterostome Saccorhytus coronarius is reinterpreted as an early ecdysozoan by Liu et al. (2022).[275]
  • Strausfeld et al. (2022) describe the fossilized nervous system of Cardiodictyon catenulum, reporting the presence of an unsegmented head and brain comprising three cephalic domains, each of which aligns with one of three components of the foregut and with a pair of head appendages, and interpreting this finding as indicating that cephalic domains of C. catenulum predate the evolution of the euarthropod head;[276] their conclusions are subsequently contested by Budd et al. (2023).[277][278]
  • Evidence that yunnanozoan branchial arches consisted of cellular cartilage with an extracellular matrix dominated by microfibrils (a feature hitherto considered specific to vertebrates) is presented by Tian et al. (2022), who interpret this finding as supporting the conclusion that yunnanozoans were stem vertebrates;[279] their conclusions are subsequently contested by He et al. (2023)[280] and Zhang & Pratt (2023).[281][282]
  • Redescription and a study on the affinities of Odonterpeton triangulare is published by Mann, Pardo & Sues (2022), who name a new recumbirostran clade Chthonosauria containing the families Brachystelechidae and Molgophidae.[283]
  • Klembara et al. (2022) present a reconstruction of the skull of Diadectes absitus.[284]

Other organisms

[edit]

New taxa

[edit]
Name Novelty Status Authors Age Type locality Location Notes Images

Beltanelliformis konovalovi[285]

Sp. nov

Kolesnikov

Ediacaran

Chernyi Kamen Formation

Russia
( Perm Krai
 Sverdlovsk Oblast)

Bursachitina baldonia[286]

Sp. nov

Valid

Nõlvak, Liang & Hints

Ordovician (Darriwilian)

Šakyna Formation

Latvia

A chitinozoan.

Conochitina ulsti[286]

Sp. nov

Valid

Nõlvak, Liang & Hints

Ordovician (Darriwilian)

Šakyna Formation

Latvia

A chitinozoan.

Eremochitina? procera[286]

Sp. nov

Valid

Nõlvak, Liang & Hints

Ordovician (Darriwilian)

Šakyna Formation

Latvia

A chitinozoan.

Ganarake[287]

Gen. et sp. nov

Retallack

Ediacaran

Noonday Formation

United States
( California)

Possible Ediacaran lichen. The type species is G. scalaris.

Glaphyrobalantium[288]

Gen. et sp. nov

Valid

Krings

Early Devonian

Rhynie chert

United Kingdom

An organism of uncertain affinities, possibly a cyanobacterium or microscopic alga. Genus includes new species G. hueberi.

Guangweia[289]

Gen. et sp. nov

Hu et al.

Early Cambrian

China

A frond-like fossil sharing morphological similarities with late Ediacaran frondose organisms. Genus includes new species G. cheni.

Jiumenia[290]

Gen. et sp. nov

Liu & Dong in Liu et al.

Ediacaran-Cambrian

Liuchapo Formation

China

A strip-like fossil. The type species is J. cingula. The genetic name is preoccupied by Jiumenia Yuan (1980).

Longbizuiella[291]

Gen. et sp. nov

In press

Yi et al.

Ediacaran

Liuchapo Formation

China

An organism preserved as a series of uniserially-arranged, uniform-sized, spherical segments, described on the basis of fossils formerly assigned to the genus Horodyskia. The type species is L. hunanensis.

Megasphaerella[292]

Gen. et sp. nov

Valid

Keupp

Early Jurassic (Pliensbachian)

Amaltheenton Formation

Germany

A bivalved calcareous microfossil of uncertain affinities, possibly a member of the family Schizosphaerellaceae. Genus includes new species M. doppelsteini.

Nenoxites irregularis[291]

Sp. nov

In press

Yi et al.

Ediacaran

Liuchapo Formation

China

An organism preserved as uniserially arranged segments, interpret by Yi et al. (2022) as a body fossil rather than a trace fossil.

Nenoxites jishouensis[291]

Sp. nov

In press

Yi et al.

Ediacaran

Liuchapo Formation

China

An organism preserved as serially-arranged, uniform-sized, crescent segments, interpret by Yi et al. (2022) as a body fossil rather than a trace fossil.

Ordinilunulatus[290]

Gen. et comb. nov

Liu & Dong in Liu et al.

Ediacaran-Cambrian

Liuchapo Formation

China

An organism consisting of uniform, evenly spaced disk-shaped segments with a terminal spherical structure. The type species is "Palaeopascichnus" jiumenensis Dong, Xiao, Shen & Zhou (2008).

Parahorodyskia[290]

Gen. et sp. et comb. nov

Liu & Dong in Liu et al.

Ediacaran-Cambrian

Liuchapo Formation

China

An organism consisting of even-sized spherical and ellipsoidal segments with consistent spacing. The type species is P. disjuncta; genus also includes "Horodyskia" minor Dong, Xiao, Shen & Zhou (2008).

Poratusiramus[291]

Gen. et sp. nov

In press

Yi et al.

Ediacaran

Liuchapo Formation

China

An organism preserved as a long horizontal stem with side branches growing upward, with similarities to possible Cambrian dasycladalean algae such as Seletonella. The type species is P. xiangxiensis.

Portfjeldia[293]

Gen. et sp. nov

In press

Willman & Peel

Ediacaran

Portfjeld Formation

Greenland

An organism of uncertain affinities, possibly an alga. Genus includes new species P. aestatis.

Retisphaeridium minimum[294]

Sp. nov

Valid

Palacios in Palacios et al.

Cambrian

Kistedalen Formation

Norway
Poland
Sweden

An acritarch.

Retisphaeridium rugulatum[294]

Sp. nov

Valid

Palacios in Palacios et al.

Cambrian

Kistedalen Formation

Norway

An acritarch.

Sphaerochitina? latviensis[286]

Sp. nov

Valid

Nõlvak, Liang & Hints

Ordovician (Darriwilian)

Baldone Formation

Latvia

A chitinozoan.

Tubula[295]

Gen. et sp. nov

Golubkova et al.

Early Cambrian

Belarus

A microfossil. Genus includes new species T. tortusa.

Research

[edit]
A specimen of the Volyn Biota
Microorganisms in individual primary fluid inclusions in halite at 1,5 km core depth[297]
  • A study on the morphometric variation, taxonomy, stratigraphic distribution and habitat settings of palaeopascichnids is published by Kolesnikov & Desiatkin (2022).[298]
  • Zhang & Zhang (2022) describe new embryo-like Megasphaera fossils from the Ediacaran Zhenba microfossil assemblage, and interpret the studied specimens as inconsistent with the metazoan interpretation of the Ediacaran Megasphaera fossils, and supporting their encysting-protist affinity.[299]
  • A study aiming to determine whether Dickinsonia grew by tissue patterning like animals or by meristems like plants and pseudomeristems like fungi, based on data from damaged specimens from the Ustʹ Pinega Formation (Russia), is published by Retallack (2022).[300]
  • Slater et al. (2022) present a global record of imprint nanoplankton fossils, and interpret their findings as contradicting the view that declines in nanofossil abundance through several past global warming events are evidence of biocalcification crises caused by ocean acidification and related factors.[301]
  • Evidence indicating that benthic foraminifera dispersed in plankton and renewed planktonic foraminifera diversity after the Cretaceous–Paleogene extinction event is presented by Morard et al. (2022).[302]
  • A study on the impact of the Paleocene–Eocene Thermal Maximum on tropical planktic foraminifera in the central Pacific Ocean is published by Hupp, Kelly & Williams (2022).[303]
  • Revision of the taxonomy, regional distribution, ecological preferences and stratigraphic significance of the middle Miocene foraminifera from the northern Namibian continental shelf is published by Bergh & Compton (2022).[304]
  • A study on the taphonomy and morphology of the type material of Charniodiscus concentricus is published by Pérez-Pinedo et al. (2022), who emend the generic diagnosis of Charniodiscus.[305]
  • Scientists report the discovery of 830 million year old microorganisms in fluid inclusions within halite that may, potentially, still be alive. According to the researchers, "This study has implications for the search for life in both terrestrial and extraterrestrial chemical sedimentary rocks."[306][297]

History of life in general

[edit]
  • Eckford-Soper et al. (2022) argue that the size distribution of preserved eukaryotic microfossils dating to 1.7 billion years ago and onward is most compatible with an active eukaryote ecosystem complete with phototrophy, osmotrophy, phagotrophy and mixotrophy.[307]
  • A study on the age of the Lantian biota is published by Yang et al. (2022).[308]
  • A study on ecosystem structure changes during the late Ediacaran is published by Eden, Manica & Mitchell (2022).[309]
  • A global database of the Ediacara Biota is compiled by Evans et al. (2022), who report that ~80% of taxa from the White Sea Ediacaran assemblage (ca. 560–550 million years old) are absent from the Nama interval (ca. 550–539 million years ago), representing a drop in diversity comparable to losses during Phanerozoic mass extinctions, and interpret their findings as indicative of existence of a link between this biotic turnover and environmental change.[310]
  • Green, Renne & Keller (2022) argue that the observed degree of temporal correlation between continental large igneous provinces and faunal turnovers in the Phanerozoic is unlikely to occur by chance, and that continental large igneous provinces might be major driver of extinctions throughout the Phanerozoic.[311]
  • A study on animal cognitive complexity in Cambrian and post-Cambrian marine ecosystems is published by Hsieh, Plotnick & Bush (2022).[312]
  • Review of the morphological, paleontological, developmental and molecular data on the early evolution of deuterostomes is published by Nanglu et al. (2022).[313]
  • A study on the fossil record of Cambrian marine invertebrates is published by Na et al. (2022), who outline time-traceable biogeographic provinces for this period and confirm an increase in regional differences of faunal composition through time.[314]
  • An association of palaeoscolecids, brachiopods and parasitic tube worms, interpreted as record of a brachiopod-dominated, vertically stratified benthic community where the different phyla filled multiple ecological niches, is reported from the Cambrian Stage 4 Wulongqing Formation (China) by Chen et al. (2022).[315]
  • Sun et al. (2022) report the discovery of the Linyi Lagerstätte, a new Drumian lagerstätte from the Zhangxia Formation (Shandong, China) containing a diverse and well-preserved Burgess Shale-type fossil assemblage.[316]
  • A study on the ecological processes that structured the composition of trilobite and echinoderm communities from the Central Anti-Atlas (Morocco), Montagne Noire (France) and Cordillera Oriental (Argentina) during the Early Ordovician is published by Saleh et al. (2022).[317]
  • A new tropical Lagerstätte containing a variety of soft tissues and rich shelly fossils, and preserving a fauna consisting of Cambrian relics as well as of taxa which originated during the Ordovician (Liexi fauna), is reported from the Lower Ordovician Madaoyu Formation (Hunan, China) by Fang et al. (2022).[318]
  • Saleh et al. (2022) describe a new fossil locality from the Ordovician Fezouata Shale (Morocco) named Taichoute, dominated by three-dimensionally preserved and heavily sclerotized fragments of large euarthropods, and extending the temporal distribution of fossil preservation from this formation into the upper Floian.[319]
  • Evidence of symbiotic associations of stromatoporoids with soft-bodied worms, calcareous tentaculitoid tubeworms and rugosans, as well as evidence of symbiotic associations of tabulate corals with cornulitids, is reported from the Silurian of Baltica (Belarus, Moldova, Russia and Ukraine) by Borisenko et al. (2022).[320]
  • Zapalski et al. (2022) report fossils of the cystoporate bryozoan Fistulipora przhidolensis and unidentified trepostomes intergrown with auloporid tabulate corals and putative hydrozoans from the Silurian (Přídolí) Ohesaare Formation (Estonia), and interpret the studied bryozoans and cnidarians as forming mutually beneficial associations, representing the oldest cases of such associations reported to date.[321]
  • A study on the coprolite material from early Tournaisian lacustrine facies at Celsius Bjerg on Ymer Ø in East Greenland is published by Byrne et al. (2022), who identify a greater number of coprolite morphotypes compared to vertebrate taxa known from skeletal material, and interpret this finding as indicative of unexpectedly high vertebrate diversity in the immediate aftermath of the late Devonian extinction.[322]
  • A study on patterns of latitudinal diversity gradients of marine invertebrate fossils during climatic changes from the Carboniferous icehouse to the Triassic greenhouse climates is published by Zhang, Shen & Erwin (2022), who interpret their findings as indicating that peaks of the latitudinal diversity gradients may be shaped by multiple factors rather than alternating icehouse and greenhouse climates.[323]
  • A study on the modifications to cranial anatomy in the early evolution of tetrapods is published by Rawson et al. (2022), who interpret their findings as indicating that reduction in the number of skull bones across the origin of tetrapods was associated with increased density (remaining bones acquired more connections), but also with skulls with fewer bones becoming more integrated and less modular across the fish-tetrapod transition, while no such change to skull construction was found between the first stem tetrapods and crown tetrapods from later in the Paleozoic.[324]
  • A study on rates of evolution and evolutionary constraints during the earliest (Carboniferous–early Permian) radiation of amniotes across their anatomy, examining differences between early synapsids and early reptiles, is published by Brocklehurst, Ford & Benson (2022).[325]
  • Review of the stratigraphic and paleontological data on the Permian equatorial ecosystem from Mallorca (Spain) is published by Matamales-Andreu et al. (2022).[326]
  • New fossil material from the Le Bousquet site in the Permian (Cisuralian) Red Sandstone Group of the Rodez Basin (France), including traces of protostomes, trails of fishes and tetrapod tracks, as well as remains of jellyfishes and plants, is described by Moreau & Gand (2022).[327]
  • Prevec et al. (2022) report a new Permian (probably early Wordian) fossil locality from the Karoo Basin in the Northern Cape Province, South Africa (the Onder Karoo locality), featuring a large abundance of exceptionally preserved fossils of freshwater and terrestrial insects, arachnids and plants.[328]
  • A study on changes in species composition of the brachiopod fossil record from the Permian Kapp Starostin Formation (Spitsbergen, Norway), and on their implications for the knowledge of the global significance of the Capitanian mass extinction event, is published by Lee et al. (2022).[329]
  • A study on changes in the composition of the Sundyr tetrapod assemblage (Russia) during the Middle-Late Permian transition is published by Shishkin (2022).[330]
  • Revision of tetrapod tracks from the Capitanian Pélitique Formation (France) is published by Marchetti et al. (2022).[331]
  • Review of the patterns of the Permian–Triassic extinction event in the ocean and on land, discussing the hypotheses surrounding the kill mechanisms of this extinction, is published by Dal Corso et al. (2022).[332]
  • A study on the ecological selectivity of marine extinctions across the end-Permian mass extinction in the South China region is published by Foster et al. (2022).[333]
  • A study on trace fossils from 400 horizons in 26 sections in South China and adjacent regions, spanning the uppermost Permian to topmost Lower Triassic strata, is published by Feng et al. (2022), who interpret their findings as indicating that a well-established infaunal ecologic structure developed in the late Early Triassic, before the full restoration of the epifauna-dominated ecosystem in the Middle Triassic.[334]
  • A study on an outcrop containing hundreds of Induan tetrapod fossils in the southern Karoo Basin of South Africa, including clusters of up to eight closely spaced Lystrosaurus skeletons (two of which display an envelope which is likely a permineralised mummified skin), is published by Smith, Botha & Viglietti (2022), who interpret this finding as evidence for episodes of drought-induced mass death, indicative of intensification of continental aridity ~252 million years ago by greenhouse gasses from the Siberian traps.[335]
  • A study on the ecological state of the Early Triassic benthic fauna from the Hiraiso Formation (Japan), comparing it with coeval assemblages from around the world, is published by Foster et al. (2022), who interpret their findings as indicating that the studied fauna represents an advanced stage of ecological recovery for the Early Triassic, but not full recovery, and interpret the distribution of the Early Triassic benthic faunas as consistent with the existence of oxygenated habitats associated with shallow marine shelves, serving as refuges for benthic marine ecosystems during the anoxic events, but also argue that the existence of such shallow marine habitable zones was not restricted solely to the anoxic events, and that recovery in shallow marine environments after the end-Permian mass extinction was delayed by some factor other than oxygen stress.[336]
  • Revision of the vertebrate fossil material from the Lower Triassic of the Big Bogdo Mountain (Astrakhan Oblast, Russia) is published by Novikov, Sennikov & Uliakhin (2022), who describe fossil material of land reptiles from the nearshore marine Bogdо Formation which might represent the first record of erythrosuchids from this locality.[337]
  • Diverse assemblage of tetrapods, including a lonchorhynchine trematosaurid, at least two taxa of capitosauroid temnospondyls, a kannemeyeriiform dicynodont, procolophonid parareptiles and several taxa of archosauromorph reptiles (including the first definite record of Tanystropheus from eastern North America), is described from the Middle Triassic Economy Member of the Wolfville Formation (Nova Scotia, Canada) by Sues et al. (2022).[338]
  • Otero et al. (2022) describe new vertebrate remains from the Triassic "Estratos El Bordo" unit in the Atacama Desert (Chile), including freshwater ray-finned fishes and the first known temnospondyl material from the El Bordo Basin.[339]
  • Shi, Chen & Liu (2022) report a new tetrapod locality from the Upper Triassic Tanzhuang Formation (Jiyuan, China), preserving fossil material of a capitosauroid belonging or closely related to the genus Mastodonsaurus (expanding the distribution of its lineage to the Late Triassic of East Asia) and a pelvis of a tetrapod of uncertain affinities.[340]
  • Feng et al. (2022) present evidence of a trophic cascade from the Upper Triassic Xujiahe Formation (Sichuan, China), describing insect eggs placed between the upper and lower cuticles of the ginkgophyte Baiera multipartita, and interpreting punctures on the eggshell surfaces as indicating that the studied eggs were damaged by a predatory insect.[341]
  • A study on the thermal ecology of 13 terrestrial Late Triassic amniotes (synapsids and archosauromorph reptiles) is published by Hartman et al. (2022), who report that thermal tolerances are sufficient to constrain the latitudinal distribution of the studied taxa, with small mammaliamorphs being able to persist at high latitudes with nocturnal activity and daytime burrowing.[342]
  • A study on the impact Early Jurassic Jenkyns Event, affecting terrestrial environments with global warming, perturbation of the carbon cycle, enhanced weathering and wildfires, on terrestrial ecosystems, including plant and dinosaur assemblages, is published by Reolid, Ruebsam & Benton (2022).[343]
  • Allain et al. (2022) describe the Berriasian continental vertebrate fauna from the Angeac-Charente bonebed (France).[344]
  • A study on the diversity of the vertebrates in the Yanliao Biota, comparing this biota with other biotas of similar age, is published by Liu, Wu & Han (2022).[345]
  • Revision of the Early Cretaceous vertebrate fauna from the Khok Pha Suam locality (Khok Kruat Formation, Thailand) is published by Manitkoon et al. (2022).[346]
  • Pochat-Cottilloux, Allain & Lasseron (2022) describe the microvertebrate remains from the Lower Cretaceous Gadoufaoua deposits in the Iullemmeden Basin (Niger), including the first fossil material of Tribodus, Amiiformes, frogs, ornithocheirid pterosaurs and a stem-boreosphenidan mammal from Gadoufaoua.[347]
  • Revision of the Cenomanian continental vertebrate fauna from the Gara Samani area (Algeria) is published by Benyoucef et al. (2022).[348]
  • New fossil material of marine vertebrates (ptychodontid sharks, enchodontid teleosts and mosasaurs) is described from the Upper Cretaceous (Coniacian-Santonian) Karababa Formation (Turkey) by Bardet et al. (2022), extending known geographic range of the genera Platecarpus and Enchodus, and possibly of the species Ptychodus mortoni.[349]
  • A diverse biotic community comprising bacteria, fungi, nematodes, several types of arthropods, and marine bivalves is reported from the fossil wood assemblage from the Santonian Mzamba Formation (South Africa) by Philippe et al. (2022).[350]
  • A diverse vertebrate fauna, sharing similarities with lowland to marginal marine ecosystems in the Oldman and Dinosaur Park formations (which were deposited in southern Alberta prior to the gap in the terrestrial fossil record caused by a transgression of the inland Bearpaw Seaway during the latter part of the Campanian), is described from the Unit 3 of the strictly terrestrial Wapiti Formation (Alberta, Canada) by Fanti et al. (2022).[351]
  • Description of the Late Cretaceous (Campanian–Maastrichtian) vertebrate fauna from the J&M site (Williams Fork Formation; Colorado, United States) is published by Brand et al. (2022).[352]
  • A study on the Late Cretaceous trace fossil assemblage from the Chicxulub area (Gulf of Mexico), revealing the presence of a diverse macrobenthic tracemaker community in the Yucatán area prior to the Chicxulub impact event, is published by Rodríguez-Tovar et al. (2022).[353]
  • A study on the magnitude of ecological change from the Campanian to the Danian, as indicated by fossil record of North American vertebrates, is published by García-Girón et al. (2022), who interpret their findings as indicative of trophic restructuring in the latest Cretaceous dinosaur faunas, with decline of megaherbivores being counterbalanced by stronger influence of medium-sized species on Maastrichtian food webs, but otherwise indicating that dinosaur niches were stable and static, which might have placed dinosaurs at a disadvantage in the event of an abrupt shutdown of the trophic network, while smaller vertebrates, including mammals, consistently increased their impact on food webs, beginning in the latest Cretaceous and continuing in the Paleocene.[354]
  • Khand et al. (2022) report the discovery of new fossiliferous localities from the Paleogene Naran Bulak Formation (Mongolia), preserving ostracod fossils and a mammal fauna that does not fit easily with established biostratigraphic patterns, with fossils of Archaeolambda and Palaeostylops (suggesting a Paleocene age) co-occurring with fossils of Gomphos elkema (suggesting an Eocene age).[355]
  • Revision of the vertebrate fossil material from the Miocene deposits of the Zaysan Basin in Central Asia is published by Kovalchuk et al. (2022), who argue that the studied fossil indicate an Early Miocene age of the Zaysan Formation, and report amiid remains representing the most recent record of the family (and of Halecomorphi in general) outside North America reported to date.[356]
  • McCurry et al. (2022) report the discovery of a new Miocene Lagerstätte named McGraths Flat (New South Wales, Australia), preserving a rich diversity of microfossils, plants, insects, spiders, and vertebrate remains, and preserving evidence of several species interactions, including predation, parasitism and pollination.[357]
  • Revision of the late Miocene vertebrate fauna of Builstyn Khudag (Mongolia) is published by Daxner-Höck et al. (2022).[358]
  • A study on the relationship between landscape and climatic changes and the evolution of the late Miocene faunas of terrestrial vertebrates and marine mammals of southeastern Europe is published by Zelenkov et al. (2022).[359]
  • Kostopoulos et al. (2022) report a new Lower Pleistocene (probably late Villafranchian) vertebrate site, Krimni-3, from Mygdonia Basin (Greece), preserving fossil material of several taxa of mammals, as well as a femur of Pachystruthio dmanisensis, representing the southernmost known occurrence of this species, as well as the first record of a giant ostrich in Greece and southeastern Europe in general.[360]
  • Kjær et al. (2022) report the discovery of ancient environmental DNA from Kap København Formation in North Greenland, interpreted as indicative of the presence of an open boreal forest with diverse plant and animal species (including mastodons, reindeer, hares, rodents, geese, horseshoe crabs and green algae) approximately two million years ago, representing an ecosystem that has no present-day analogue.[361]
  • Fernández-Monescillo et al. (2022) document fossil material of the notoungulate species Mesotherium cristatum from the middle Pleistocene deposits in the west Pampean Region of the Córdoba Province (Argentina), representing a new Last Appearance Datum for this species, and interpret this finding as indicating M. cristatum should no longer be considered as the guide taxon of the Ensenadan, and that the temporal boundaries of the biostratigraphic units established for the Pampean Region can only be supported by fossil evidence and not by the temporal boundaries of the chronostratigraphic units as has been used so far.[362]
  • A study on the stratigraphy and age for the Trinil site (Java, Indonesia) and its fossils is published by Hilgen et al. (2022), who interpret their findings as challenging the assumption that the Trinil H. K. Fauna – which includes Homo erectus – is a homogeneous biostratigraphic unit.[363]
  • Evidence from the sedimentary ancient DNA from the Batagay megaslump (Sakha, Russia) indicative of ecosystem-wide changes between Pleistocene glacial and interglacial intervals in East Siberia is presented by Courtin et al. (2022).[364]
  • A study on the impact of the extinct Neotropical megafauna on the variability in plant functional traits and biome geography in Central and South America is published by Dantas & Pausas (2022).[365]
  • A study on the relative abundances of fossil squamates and anurans from McEachern's Deathtrap Cave (Australia), aiming to determine whether compositional changes of this fauna during the last ~14,000 years were related to late Pleistocene–Holocene climatic fluctuations, is published by Ramm et al. (2022).[366]
  • A study aiming to reconstruct Holocene feeding guilds in extinct megaherbivores of Madagascar on the basis of carbon and nitrogen isotope data is published by Hansford & Turvey (2022).[367]
  • A study on the daily dentine apposition rates in extant and fossil amniotes, aiming to test the hypothesized daily limits of odontoblast activity, examine phylogenetic and allometric patterns of dentine growth evolution and reconstruct ancestral states of daily dentine apposition for major amniote clades, is published by Finch & D'Emic (2022).[368]
  • A study on the evolutionary history of the major patterns of primary ossification of the vertebral column in living and fossil amniotes, incorporating data from exceptionally well-preserved fossils of Mesosaurus tenuidens, is published by Verrière, Fröbisch & Fröbisch (2022), who interpret their findings as indicative of stability of vertebral development patterns in amniotes since their common ancestor.[369]

Other research

[edit]
  • A study aiming to infer atmospheric oxygen concentrations over the past 1.5 billion years is published by Krause et al. (2022), who interpret their findings as indicating that there was no simple unidirectional rise in atmospheric oxygen levels during the Neoproterozoic and the first animals evolved against a backdrop of extreme O2 variability, with atmospheric O2 levels oscillating between ~1 and ~50% of the present atmospheric level during the Neoproterozoic.[370]
  • A study on the diagnostic characteristics of the Chengjiang Biota deposit and on its sedimentary environment is published by Saleh et al. (2022).[371]
  • Zhao et al. (2022) use a continuous astronomical signal detected as geochemical variations in the late Cambrian Alum Shale Formation (Sweden) to establish a 16-million-years-long astronomical time scale, providing detailed temporal constraints on the paleoenvironmental and biological changes during the late Cambrian.[372]
  • Evidence of rapid marine oxygen fluctuations in the Late Ordovician oceans, with strong temporal link to mass extinction pulses at the end of the Ordovician, is presented by Kozik et al. (2022).[373]
  • Jing et al. (2022) present evidence of the occurrence of a true polar wander event 450–440 million years ago, and interpret this event as explaining the timing and migration of glacial centers across Gondwana, as well as the protracted end-Ordovician mass extinction.[374]
  • Evidence indicating that the evolution of vascular plants and the expansion of terrestrial vegetation initiated at the end of the Llandovery Epoch enhanced the complexity of weathering and sedimentary systems and altered the composition of continental crust is presented by Spencer et al. (2022).[375]
  • A study on the lithology and stratigraphy of the Famennian-aged Lebedjan Formation (Lipetsk Oblast, Russia), on the composition of the Lebedjan biota and on its paleoenvironment, is published by Bicknell & Naugolnykh (2022).[376]
  • A study on the development of the mid-late Cisuralian environments and ecosystems in central Pangaea, based on data from the late Cisuralian fossil assemblage of the Southern Alps and its comparison with other Cisuralian assemblages, is published by Marchetti et al. (2022).[377]
  • A study on the age of the vertebrate-bearing Permian deposits of the Chickasha Formation (Oklahoma, United States) and San Angelo Formation (Texas, United States) is published by Laurin & Hook (2022).[378]
  • The first shallow-marine methane seeps reported from the Australian Upper Paleozoic, as well as a new seep biota, are described from the Sakmarian lower Holmwood Shale in the Irwin Basin by Haig et al. (2022).[379]
  • Revision of the biostratigraphy of the Permian to Triassic Beaufort Group (Karoo Supergroup; South Africa) is published by Viglietti et al. (2022).[380]
  • A study on the timeline and character of environmental changes in the Bowen Basin (Queensland, Australia) leading up to the Permian–Triassic extinction event is published by Fielding et al. (2022).[381]
  • A study investigating fossilised shells of gastropods and bivalves from the Permian–Triassic succession exposed at Lusitaniadalen (Svalbard, Norway) for dissolution and repair marks, and aiming to determine whether a worldwide ocean acidification event occurred during the Permian–Triassic transition, is published by Foster et al. (2022).[382]
  • A study on changes of lithium and strontium isotope composition of seawater in the Permian to Early Triassic is published by Cao et al. (2022), who report evidence of a sharp decrease of the lithium isotope composition of seawater in the Late Permian and of persistence of low seawater lithium isotope values throughout the Early Triassic, interpreted by the authors as likely caused by increased reverse weathering rates, potentially explaining the failure of chemical weathering to draw down atmospheric CO2 levels during the Early Triassic.[383]
  • A continuous record of atmospheric CO2 during the Permian-Triassic transition from the Shangsi section (China) is presente by Shen et al. (2022), who also study changes of marine phytoplankton community structure across this interval, and interpret their findings as indicating that while the first extinction pulse of the Permian–Triassic extinction event in the latest Permian appears to have been associated with intense initial weathering that briefly suppressed the atmospheric CO2, it was followed by a rapid rise to a prolonged high atmospheric CO2, and the second extinction pulse in the Early Triassic was sustained by food web collapse driven by the expansion of bacterial production in response to oligotrophic conditions.[384]
  • Evidence from the Bristol Channel Basin (United Kingdom), indicating that intensive euxinia and acidification driven by Central Atlantic magmatic province activity formed a two-pronged kill mechanism at the end-Triassic mass extinction, is presented by Fox et al. (2022).[385]
  • Onoue et al. (2022) present a continental weathering record in the northwestern Tethys during the end-Triassic mass extinction event, inferred from strontium, carbon and oxygen isotope data from carbonate–clastic deposits in the Kardolína section (Slovakia), and interpret their findings as indicating that the marine environment in the Late Triassic European basins may have developed an oxygen minimum zone due to the increase in continental weathering during the latest Rhaetian, which might have had an important role in the marine end-Triassic extinction.[386]
  • Review of the late Early Jurassic Karoo biota from southern Africa and its geological framework is published by Bordy et al. (2022).[387]
  • A study on the age of the Early Cretaceous fossil assemblage from the Moqi fossil bed (China) is published by Yu et al. (2022).[388]
  • Rodríguez-López et al. (2022) report evidence from the Lower Cretaceous Luohe Formation (Ordos Basin, China) interpreted as indicative of the occurrence of permafrost in a plateau desert during the Cretaceous supergreenhouse, analogous to modern permafrost in the Western Himalayas.[389]
  • Beveridge et al. (2022) present new radioisotopic ages for the Campanian Wahweap Formation (Utah, United States), a lithostratigraphic revision and a review of the spatio-temporal distribution of vertebrate fossils from this formation, including revised ages for early tyrannosaurid, hadrosaurid and centrosaurine dinosaurs.[390]
  • A set of geochronologic data from the Campanian geological formations of North America's Western Interior Basin is presented by Ramezani et al. (2022), who consider their findings to be indicative of significant age overlap between the main fossil-bearing intervals of the Kaiparowits, Judith River, Two Medicine and Dinosaur Park formations, and interpret their findings as refuting inferences that the proposed latitudinal provinciality of the Campanian dinosaur taxa is only an artefact of age misinterpretation.[391]
  • A study on the age of the Cape Lamb Member of the Snow Hill Island Formation and of the overlying Sandwich Bluff Member of the Lopez de Bertodano Formation (Vega Island, Antarctica) is published by Roberts et al. (2022), who interpret their findings as indicating that Mesozoic marine vertebrates and non-avian dinosaurs persisted in Antarctica up to the terminal Cretaceous.[392]
  • Nicholson et al. (2022) present evidence of a previously unidentified probable impact crater (Nadir crater) on the southwest Guinea Terrace (offshore West Africa, exclusive economic zone of Guinea), interpreted as formed at or near the Cretaceous-Paleogene boundary and approximately the same age as the Chicxulub impact crater, and possibly formed by an impactor which broke off from the larger Chicxulub asteroid or was a part of a longer-lived impact cluster.[393]
  • A study on the bone apposition in three paddlefish dentaries and three sturgeon pectoral fin spines from the Tanis site (North Dakota, United States), aiming to pinpoint the season in which bone apposition terminated, is published by During et al. (2022), who interpret their findings as indicating that the impact that caused the Cretaceous–Paleogene extinction event took place during boreal spring.[394]
  • Review of the environmental consequences of the Chicxulub impact at the Cretaceous–Paleogene boundary is published by Morgan et al. (2022).[395]
  • Auderset et al. (2022) present evidence from foraminifera-bound nitrogen isotopes interpreted as indicating that during the Early Eocene Climatic Optimum and Middle Miocene Climatic Optimum the ocean's oxygen-deficient zones contracted rather than expanded.[396]
  • Brachert et al. (2022) present oxygen and carbon isotope time series from reef corals from the Middle Eocene Climatic Optimum (~40 million years ago) from the sands of Auvers (France), who interpret their findings as providing evidence of zooxanthellate symbiosis in tropical reef corals of the Paleogene, as well as providing evidence of subdued sea surface temperature seasonality of 7° to 8 °C during the Middle Eocene Climatic Optimum.[397]
  • Evidence of preservation of porphyrins in a gar belonging to the genus Atractosteus from the Messel pit (Germany), possibly representing diagenetically altered heme originating from the fossil, is presented by Siljeström, Neubeck & Steele (2022).[398]
  • A study on the early Oligocene-middle Miocene wildfire history of the northern Tibetan Plateau and on the relationship between wildfire frequencies and temperature changes, based on data from sedimentary records of the microcharcoals from the Qaidam Basin, is published by Miao et al. (2022).[399]
  • New information of the age, stratigraphy, biota and palaeoenvironment of the Miocene Els Casots site (Vallès-Penedès Basin; Catalonia, Spain) is presented by Casanovas-Vilar et al. (2022).[400]
  • A study aiming to reconstruct the middle Miocene habitats on the northern North American Great Plains, as indicated by stable carbon isotope data from a wide variety of fossil ungulates from four local faunas in Nebraska of late Barstovian age, is published by Nguy & Secord (2022).[401]
  • Miao et al. (2022) present evidence from pollen records from the northern Tibet plateau, interpreted as indicating that the plateau obtained its current elevation approximately 10 million years ago.[402]
  • A study on the environmental variability in Africa during the Pliocene and Pleistocene, and on the impact of this environmental variability on the evolution of African mammals, is published by Cohen et al. (2022).[403]
  • A study on the habitat types at the Woranso-Mille site (Ethiopia) during the Pliocene, and on factors which allowed the coexistence of more than one species of Australopithecus at the site, is published by Denise Su & Yohannes Haile-Selassie (2022).[404]
  • A study on the environmental context of hominin evolution in the Plio-Pleistocene of Africa, as indicated by oxygen and carbon enamel isotope data from carnivorans from the Omo Group of the Turkana Basin (Kenya), is published by Hopley et al. (2022).[405]
  • Zachariasse & Lourens (2022) interpret the sediments from Crete (Greece) preserving the Trachilos footprints as late Pliocene in age, thus dating to the time when Crete was separated from mainland Greece and Turkey by stretches of deep water which were at least 100 km wide, and interpret this finding as indicating that the putative footprints were highly unlikely to be produced by hominins, and casting doubts on whether they were footprints at all.[406]
  • A study on the age of the Xiashagou Fauna from the Nihewan Basin in northern China is published by Tu et al. (2022), who interpret the age of this fauna as consistent with the ages of the Senèze and Olivola Faunas in Europe, and possibly indicative of the existence of an ecological corridor for faunal dispersals across northern Eurasia during the early Pleistocene.[407]
  • Evidence of the association of burnt tusk and burnt lithics within a clearly defined archaeological horizon at the Lower Paleolithic site of Evron Quarry (Israel), dated between 1.0 and 0.8 Mya and lacking visual signatures for fire, is presented by Stepka et al. (2022).[408]
  • A study on the relative importance of six drivers of vegetation change (moisture availability, fire activity, mammalian herbivore density, temperature, temperature seasonality, CO2) in western Africa over the past ~500,000 years, comparing past environmental change data from Lake Bosumtwi (Ghana) with global data, is published by Gosling et al. (2022), who interpret their findings as indicating that shifts in atmospheric CO2 concentrations did not drive changes in woody cover in the tropics at the millennial scale.[409]
  • A study aiming to reconstruct the history of sea level at the Bering Strait since 46,000 years ago is published by Farmer et al. (2022), who find that the Bering Strait was open from at least 46,000 until 35,700 years ago, dating the last formation of the land bridge to within 10,000 years of the Last Glacial Maximum.[410]
  • Woolly mammoth, steppe bison, caballine horse and willow ptarmigan mitochondrial genomes are reconstructed from samples of permafrost silts from central Yukon (Canada) spanning the last 30,000 years by Murchie et al. (2022).[411]
  • A study on the timing of the opening of the ice-free corridor along the eastern front of the Rocky Mountains in the late Pleistocene, aiming to determine whether this corridor was available for the first peopling of the Americas after the Last Glacial Maximum, is published by Clark et al. (2022).[412]
  • Wiemann & Briggs (2022) demonstrated the presence of different biological signals in Raman and Fourier-transform infrared spectroscopy data of a diversity of carbonaceous animal fossils through independent laboratory confirmation (2022).[413]
  • A study on the impact of food hardness and size on the morphology of the mandible of extant pigs, and on its implications for the use of mandibular morphology as a proxy in paleodietary reconstructions, is published by Neaux et al. (2022).[414]
  • Amano et al. (2022) present a method to mathematically isolate and selectively eliminate the taphonomic deformation of a fossil skull for restoration of its original appearance, and apply this method to reconstruction of a skull of Mesopithecus from the late Miocene of Greece.[415]
  • Demuth et al. (2022) present a new method for volumetric three-dimensional reconstructions of musculature in extant and extinct taxa, and apply this method to reconstruction of the hindlimb musculature of Euparkeria capensis.[416]
  • Lallensack & Falkingham (2022) present a new method that allows for estimating limb phase based on variation patterns in long trackways, and use this method to estimate limb phases of giant wide-gauged sauropod dinosaurs that produced three long trackways from the Albian De Queen Formation (Arkansas, United States).[417]
  • Gates et al. (2022) present new method that allows for differentiation of various geographic distributional hypotheses using information from the fossil record about entire communities, apply this method to datasets of pollen and ceratopsid dinosaurs from the Late Cretaceous Western Interior Basin of North America, and interpret their findings as indicative of the presence of two plant communities with a transition zone of unknown width between them, while finding no evidence of a biogeographical pattern in the distribution of ceratopsids.[418]
  • Survey of examples of scientific practices stemming from colonialism, focusing on the studies of fossils from Brazil (Araripe Basin) and Mexico (Sabinas, La Popa and Parras basins) published during 1990–2021, is published by Cisneros et al. (2022), who propose recommendations to scientists, journals, museums, research institutions and government and funding agencies to overcome these practices.[419]
  • A study on the history and legality of Myanmar amber use in the literature, providing evidence of links between research interest in Myanmar amber and major political, legal and economic changes, and indicating that the vast majority of publications on this amber do not include researchers from Myanmar as co-authors, is published by Dunne et al. (2022).[420]
  • Stewens, Raja & Dunne (2022) review the history of fossil removal under colonial rule, and evaluate potential avenues for their return under public international law.[421]

Paleoclimate

[edit]
  • Evidence indicating that the global warming which led to the end-Permian mass extinction was initiated by emissions of large quantities of high temperature methane generated from oils from a large igneous province is presented by Chen et al. (2022).[422]
  • Evidence oxygen isotope ratios from Changhsingian ostracods of north-western Iran, interpreted as indicative of gradual rise of ambient seawater temperature beginning at least 300,000 years prior to the main extinction event of the end-Permian mass extinction, is presented by Gliwa et al. (2022).[423]
  • Joachimski et al. (2022) reconstruct late Permian to Middle Triassic atmospheric CO2 record, and interpret their findings as indicative of an approximate fold increase in pCO2 from the latest Permian to Early Triassic.[424]
  • A study on the climate response to orbital variations in a Late Triassic midlatitude temperate setting in Jameson Land (Greenland) and the tropical low paleolatitude setting of the Newark Basin is published by Mau, Kent & Clemmensen (2022).[425]
  • Olsen et al. (2022) present evidence from the Late Triassic and Early Jurassic strata of the Junggar Basin (northwest China) indicating that, despite extraordinary high partial pressure of CO2, freezing winter temperatures characterized high Pangaean latitudes during the early Mesozoic.[426]
  • Jones, Petersen & Curley (2022) report carbonate clumped isotope paleotemperatures of the mid-Cretaceous thermal maximum measured from Cenomanian oyster fossils of the Western Interior Seaway, and interpret their findings as indicative of extreme mid-latitude warmth in North America.[427]
  • A study on the latitudinal temperature gradient over the last 95 million years, as indicated by data from planktonic foraminifera δ18O, is published by Gaskell et al. (2022).[428]
  • A study on the sulfur isotope anomalies in the Cretaceous-Paleogene boundary impact debris and overlying sediments is published by Junium et al. (2022), who interpret their findings as evidence of injection of massive amounts of sulfur into the stratosphere in the aftermath of the Chicxulub impact, and evidence of the role of the sulfur-bearing gases in driving a postimpact winter.[429]
  • A study on changes of deep ocean temperature across the past 65 million years, inferred from clumped isotope thermometry, is published by Meckler et al. (2022), whose temperature estimates from the deep Atlantic Ocean are overall much warmer compared with oxygen isotope–based reconstructions.[430]
  • A study on climate changes in central China from the late Palaeocene to early Eocene, inferred from palynological assemblages in the Tantou Basin (Henan, China), is published by Su et al. (2022), who interpret their findings as indicative of a sudden climate change in the early Eocene which might signal the emergence of the East Asian Monsoon.[431]
  • Agterhuis et al. (2022) report deep-sea temperature estimates across the Eocene Thermal Maximum 2 and the hyperthermal event that occurred approximately 2 million years after the Paleocene–Eocene Thermal Maximum (approximately 54 million years ago).[432]
  • A study on the climatic impact of oceanic gateway changes at the Eocene–Oligocene Transition is published by Straume et al. (2022).[433]
  • A study on the ocean crustal production (a proxy for tectonic degassing of carbon) since the Miocene is published by Herbert et al. (2022), who argue that changes in tectonic degassing of carbon can account for the majority of long-term ice sheet and global temperature evolution throughout the past 20 million years.[434]
  • A study on the impact of climate variability on the evolution of early African Homo, Eurasian Homo erectus, Homo heidelbergensis, Neanderthals and modern humans is published by Timmermann et al. (2022).[435]
  • Foerster et al. (2022) present a 620,000-year environmental record from Chew Bahir (Ethiopia), providing evidence of three distinct phases of climate variability in eastern Africa which coincided with shifts in hominin evolution and dispersal.[436]
  • Evidence of five phases of lake development at Tayma (Saudi Arabia) is presented by Neugebauer et al. (2022), who interpret their findings as indicative of unexpectedly short duration (dating from 8800 to 7900 years before present) of the Holocene Humid Period in Northern Arabia.[437]

References

[edit]
  1. ^ Gini-Newman, Garfield; Graham, Elizabeth (2001). Echoes from the past: world history to the 16th century. Toronto: McGraw-Hill Ryerson Ltd. ISBN 9780070887398. OCLC 46769716.
  2. ^ Bera, M.; Khan, M. A.; Hazra, T.; Acharya, K.; Goswami, B.; Bera, S. (2022). "A novel fossil-species of Meliolinites Selkirk (fossil Meliolaceae) and its life cycle stages associated with an angiosperm fossil leaf from the Siwalik (Mio-Pliocene) of Bhutan sub-Himalaya". Fungal Biology. 126 (9): 576–586. Bibcode:2022FunB..126..576B. doi:10.1016/j.funbio.2022.07.003. PMID 36008050. S2CID 250628729.
  3. ^ a b Bera, M.; Basak, S.; Khan, M. A.; Paruya, D. K.; Goswami, B.; Acharya, K.; Bera, S. (2022). "Occurrence of foliicolous fungus Zygosporium Mont. (Zygosporiaceae) from the Mio-Pliocene of eastern Himalaya". Review of Palaeobotany and Palynology. 309. 104803. doi:10.1016/j.revpalbo.2022.104803. S2CID 254309131.
  4. ^ Worobiec, G.; Erdei, B. (2022). "The first fossil record of the anamorphic genus Zygosporium Mont. from the Oligocene of Csolnok (N Hungary)". Mycological Progress. 22 (1). 2. doi:10.1007/s11557-022-01851-8. S2CID 254518463.
  5. ^ Vajda, V.; Cavalcante, L.; Palmgren, K.; Krüger, A.; Ivarsson, M. (2022). "Prototaxites reinterpreted as mega-rhizomorphs, facilitating nutrient transport in early terrestrial ecosystems". Canadian Journal of Microbiology. 69 (1): 17–31. doi:10.1139/cjm-2021-0358. PMID 36511419. S2CID 254670640.
  6. ^ Yang, Q.; Wang, Y.; Lücking, R.; Lumbsch, H. T.; Du, Z.; Chen, Y.; Bai, M.; Ren, D.; Wei, J.; Li, H.; Wang, Y.; Wei, X. (2022). "The Jurassic epiphytic macrolichen Daohugouthallus reveals the oldest lichen-plant interaction in a Mesozoic forest ecosystem". iScience. 26 (1). 105770. doi:10.1016/j.isci.2022.105770. PMC 9800524. PMID 36590161. S2CID 254488856.
  7. ^ Shen, J.; Liu, L.; Wu, Y. (2022). "New material of coralomorph problematical calcareous fossils Amsassia, and novel proof for its chlorophytes attribution". Acta Micropalaeontologica Sinica. 39 (4): 292–306. doi:10.16087/j.cnki.1000-0674.20221219.001.
  8. ^ Tang, Q.-Q.; Zheng, Y.-J.; Qin, S.; Wang, Y.-C.; Yang, X.-G.; Wang, X.; Sun, J.; Uesugi, K.; Komiya, T.; Han, J. (2022). "New materials of multicellular algae from the earliest Cambrian Kuanchuanpu biota in South China". Acta Palaeontologica Polonica. 67 (2): 317–327. doi:10.4202/app.00946.2021. S2CID 249739186.
  9. ^ a b Singh, V. K.; Sharma, M.; Steiner, M.; Shu, D. (2022). "New Material of Carbonaceous Compressions from the ~1.5 Ga Singhora Group, Chhattisgarh Supergroup, India, and their Interpretation as Benthic Algae". Frontiers in Earth Science. 10: Article 825430. Bibcode:2022FrEaS..10.5430S. doi:10.3389/feart.2022.825430.
  10. ^ Li, R.; Cui, L.; Fu, D.; Zhang, X. (2022). "A new red alga preserved with possible reproductive bodies from the 518-million-year-old Qingjiang biota". Journal of Systematics and Evolution. 61 (6): 1091–1101. doi:10.1111/jse.12942. S2CID 254771743.
  11. ^ Lee, D.-J.; Elias, R. J.; Pratt, B. R. (2022). "Reptamsassia n. gen. (Amsassiaceae n. fam.; calcareous algae) from the Lower Ordovician (Floian) of western Newfoundland, and the earliest symbiotic intergrowth of modular species". Journal of Paleontology. 96 (3): 715–728. Bibcode:2022JPal...96..715L. doi:10.1017/jpa.2021.122. S2CID 246399388.
  12. ^ Sforna, M. C.; Loron, C. C.; Demoulin, C. F.; François, C.; Cornet, Y.; Lara, Y. J.; Grolimund, D.; Sanchez, D. F.; Medjoubi, K.; Somogyi, A.; Addad, A.; Fadel, A.; Compère, P.; Baudet, D.; Brocks, J. J.; Javaux, E. J. (2022). "Intracellular bound chlorophyll residues identify 1 Gyr-old fossils as eukaryotic algae". Nature Communications. 13 (1): Article number 146. Bibcode:2022NatCo..13..146S. doi:10.1038/s41467-021-27810-7. PMC 8748435. PMID 35013306.
  13. ^ Maloney, K. M.; Schiffbauer, J. D.; Halverson, G. P.; Xiao, S.; Laflamme, M. (2022). "Preservation of early Tonian macroalgal fossils from the Dolores Creek Formation, Yukon". Scientific Reports. 12 (1): Article number 6222. Bibcode:2022NatSR..12.6222M. doi:10.1038/s41598-022-10223-x. PMC 9007953. PMID 35418588.
  14. ^ Li, Y.-L.; Tang, F.; Wang, Ye; Li, J.; Zhao, M.-S.; Liao, J.-L.; Wang, Yue (2022). "Morphological reconstruction of the Ediacaran macroalga Gesinella from South China". Journal of Palaeogeography. 12: 82–95. doi:10.1016/j.jop.2022.12.001. S2CID 254560378.
  15. ^ Retallack, G. J. (2022). "Ordovician-Devonian lichen canopies before evolution of woody trees". Gondwana Research. 106: 211–223. Bibcode:2022GondR.106..211R. doi:10.1016/j.gr.2022.01.010. S2CID 246320087.
  16. ^ a b Wallace, C. C.; Portell, R. W. (2022). "Earliest western Atlantic staghorn corals (Acropora) from the lower Oligocene Suwannee Limestone of Florida, USA, and their significance for modern coral distribution". Journal of Paleontology. 96 (6): 1390–1399. Bibcode:2022JPal...96.1390W. doi:10.1017/jpa.2022.47. S2CID 254409248.
  17. ^ Yang, S.-R.; Yao, L.; Hou, Z.-S.; Ye, X.-Y.; Li, Y.; Huang, X.; Shen, S.-Z.; Wang, X.-D. (2022). "A Pennsylvanian rugose coral assemblage from eastern Junggar Basin, Northwest China". Palaeoworld. 33 (3): 650–663. doi:10.1016/j.palwor.2022.12.009. S2CID 255213249.
  18. ^ Dunn, F. S.; Kenchington, C. G.; Parry, L. A.; Clark, J. W.; Kendall, R. S.; Wilby, P. R. (2022). "A crown-group cnidarian from the Ediacaran of Charnwood Forest, UK". Nature Ecology & Evolution. 6 (8): 1095–1104. Bibcode:2022NatEE...6.1095D. doi:10.1038/s41559-022-01807-x. PMC 9349040. PMID 35879540.
  19. ^ Rodríguez, S.; Said, I.; Somerville, I. D.; Cózar, P.; Coronado, I. (2023). "Coral assemblages of the Serpukhovian–Bashkirian transition from Adarouch (Morocco)". PalZ. 97 (4): 847–860. Bibcode:2023PalZ...97..847R. doi:10.1007/s12542-021-00586-3. hdl:10261/305333. S2CID 246873023.
  20. ^ Van Iten, H.; Gutiérrez-Marco, J. C.; Cournoyer, M. E. (2022). "Unusual assemblage of conulariids (Cnidaria, Scyphozoa) from the Taddrist Formation (Middle Ordovician, Darriwilian) of southern Morocco". Journal of Paleontology. 96 (4): 803–813. Bibcode:2022JPal...96..803V. doi:10.1017/jpa.2022.6. S2CID 247611923.
  21. ^ a b c d e Niko, S. (2022). "Middle Devonian favositine corals from the Naidaijin Formation, Kumamoto Prefecture, Southwest Japan" (PDF). Bulletin of the National Museum of Nature and Science, Series C. 48: 15–31. doi:10.50826/bnmnsgeopaleo.48.0_15.
  22. ^ a b c Coen-Aubert, M. (2022). "The highly diversified rugose coral fauna from the Lower Givetian Meerbüsch quarry in the Eifel Hills (Germany)". Geologica Belgica. 25 (1–2): 53–81. doi:10.20341/gb.2022.003. S2CID 251748822.
  23. ^ Videira-Santos, R.; Tobin, T. S.; Scheffler, S. M. (2022). "New occurrences of caryophylliid and fungiacyathid scleractinian corals from the Santa Marta and Snow Hill Island formations (Upper Cretaceous, Antarctica)". Cretaceous Research. 140: Article 105338. Bibcode:2022CrRes.14005338V. doi:10.1016/j.cretres.2022.105338. S2CID 251576799.
  24. ^ Van Iten, H.; Mironenko, A.; Vinn, O. (2022). "A new conulariid from the Upper Mississippian (early Serpukhovian) of Central Russia (Moscow Basin): systematics, microstructure, and growth abnormalities". PalZ. 97 (2): 311–322. doi:10.1007/s12542-022-00636-4. S2CID 252966101.
  25. ^ Sarsembaev, Z. A.; Marusin, V. V. (2022). "Nonmineralized triradial conulariids from the lowermost Cambrian Stage 2 of the Olenek Uplift, Siberian Platform". Journal of Paleontology. 96 (4): 791–802. Bibcode:2022JPal...96..791S. doi:10.1017/jpa.2022.21. S2CID 248171036.
  26. ^ a b Denayer, J; Poty, E.; Tourneur, F.; Aretz, M. (2023). "Colonial Heterocorallia (Cnidaria, Anthozoa) and their epibionts from the lower Carboniferous of Montagne Noire and Pyrenees, southern France". PalZ. 97 (4): 821–846. Bibcode:2023PalZ...97..821D. doi:10.1007/s12542-021-00588-1. S2CID 245654060.
  27. ^ Yong, Y.; Peng, J.; Wang, X.; Yu, C.; Hao, W.; Sun, J.; Guo, J.; Han, J. (2022). "A new species of Octapyrgites (Cnidaria) from the Lower Cambrian Kuanchuanpu Formation, southern Shaanxi". Acta Micropalaeontologica Sinica. 39 (3): 223–234. doi:10.16087/j.cnki.1000-0674.20220930.001.
  28. ^ Leme, J. M.; Van Iten, H.; Simões, M. G. (2022). "A New Conulariid (Cnidaria, Scyphozoa) From the Terminal Ediacaran of Brazil". Frontiers in Earth Science. 10: Article 777746. Bibcode:2022FrEaS..10.7746L. doi:10.3389/feart.2022.777746.
  29. ^ Plusquellec, Y.; Eyzenga, J.; van Keulen, P. S. F. (2022). "A new discoid heliolitid (Proporidae) from the Upper Ordovician of the Baltic area: Morphology and modalities of increase". Carnets Geol. 22 (15): 685–698. doi:10.2110/carnets.2022.2215. S2CID 253518746.
  30. ^ a b c Löser, H. (2022). "A new coral family and three new genera from the Lower Cretaceous of Puebla and Sonora (Scleractinia; Mexico)". Revista Mexicana de Ciencias Geológicas. 39 (3): 220–229. doi:10.22201/cgeo.20072902e.2022.3.1698. S2CID 254387480.
  31. ^ Song, Z.; Guo, J.; Han, J.; Van Iten, H.; Qiang, Y.; Peng, J.; Sun, J.; Zhang, Z. (2022). "A New Species of Septuconularia (Hexangulaconulariidae, Cnidaria) from Cambrian Stage 2, South China". Acta Geologica Sinica (English Edition). 96 (3): 757–765. Bibcode:2022AcGlS..96..757S. doi:10.1111/1755-6724.14917. S2CID 247428409.
  32. ^ Niko, S.; Suzuki, S. (2022). "Caryophylloid scleractinian corals from the Miocene Katsuta Group in the Tsuyama area, Okayama Prefecture, Southwest Japan". Bulletin of the Akiyoshi-dai Museum of Natural History. 57: 1–6.
  33. ^ Garberoglio, R. M.; Löser, H.; Lazo, D. G. (2022). "Lower Cretaceous corals from the Agrio Formation, Neuquén Basin, west-central Argentina: Families Latomeandridae, Madreporidae, Thamnasteriidae, and Holocoenia Group". Cretaceous Research. 135: Article 105195. Bibcode:2022CrRes.13505195G. doi:10.1016/j.cretres.2022.105195. S2CID 247416059.
  34. ^ Ohar, V. (2022). "Tournaisian and early Viséan tabulate corals from the Donets Basin, Ukraine and some aspects of their taxonomy". PalZ. 96 (3): 471–493. Bibcode:2022PalZ...96..471O. doi:10.1007/s12542-021-00587-2. S2CID 246815834.
  35. ^ Miller, A. P.; Jacquet, S. M.; Anderson, E. P.; Schiffbauer, J. D. (2022). "Conulariids from the Silurian (late Telychian) Waukesha Lagerstätte, Wisconsin". Historical Biology: An International Journal of Paleobiology. 34 (12): 2374–2394. Bibcode:2022HBio...34.2374M. doi:10.1080/08912963.2021.2017917. S2CID 246317873.
  36. ^ Wang, X.; Vannier, J.; Yang, X.; Leclère, L.; Ou, Q.; Song, X.; Komiya, T.; Han, J. (2022). "Muscle systems and motility of early animals highlighted by cnidarians from the basal Cambrian". eLife. 11: e74716. doi:10.7554/eLife.74716. PMC 8837203. PMID 35098925. S2CID 246428624.
  37. ^ Zhang, G.; Parry, L. A.; Vinther, J.; Ma, X. (2022). "Exceptional soft tissue preservation reveals a cnidarian affinity for a Cambrian phosphatic tubicolous enigma". Proceedings of the Royal Society B: Biological Sciences. 289 (1986). 20221623. doi:10.1098/rspb.2022.1623. PMC 9627713. PMID 36321492. S2CID 253246974.
  38. ^ Bridge, T. C. L.; Baird, A. H.; Pandolfi, J. M.; McWilliam, M. J.; Zapalski, M. K. (2022). "Functional consequences of Palaeozoic reef collapse". Scientific Reports. 12 (1): Article number 1386. Bibcode:2022NatSR..12.1386B. doi:10.1038/s41598-022-05154-6. PMC 8792005. PMID 35082318.
  39. ^ MILLER, APRIL ARLENE; HUNTLEY, JOHN WARREN; ANDERSON, EVAN PELZNER; JACQUET, SARAH MONIQUE (2022-11-23). "Biotic Interactions Between Conulariids and Epibionts from the Silurian Waukesha Biota". PALAIOS. 37 (11): 691–699. Bibcode:2022Palai..37..691M. doi:10.2110/palo.2022.027. ISSN 1938-5323. S2CID 253864658.
  40. ^ a b c d e f g Ernst, A.; Carrera, M. G. (2022). "A cool-water bryozoan association from the La Pola Formation (Sandbian, Ordovician) of Argentine Precordillera". Geodiversitas. 44 (20): 563–601. doi:10.5252/geodiversitas2022v44a20. S2CID 249993165.
  41. ^ a b Sonar, M. A.; Pawar, R. V.; Wayal, D. V. (2022). "Newly discovered species of cheilostomatid Bryozoa from the Miocene of western Kachchh, Gujarat, India". European Journal of Taxonomy (821): 16–39. doi:10.5852/ejt.2022.821.1795.
  42. ^ López-Gappa, J.; Pérez, L. M. (2022). "A new species of Attinopora (Bryozoa, Cinctiporidae) from the early Miocene of Atlantic Patagonia". Alcheringa: An Australasian Journal of Palaeontology. 46 (3–4): 297–300. Bibcode:2022Alch...46..297L. doi:10.1080/03115518.2022.2126009. S2CID 253074783.
  43. ^ a b Pérez, L. M.; López-Gappa, J. (2022). "Bryozoans associated with gastropod shells in the early Miocene of Patagonia (Argentina)". Ameghiniana. 59 (2): 162–170. doi:10.5710/AMGH.27.01.2022.3485. S2CID 247000257.
  44. ^ a b Ernst, A. (2022). "Bryozoan fauna from the Kunda Stage (Darriwilian, Middle Ordovician) of Estonia and NW Russia". Bulletin of Geosciences. 97 (1): 33–68. doi:10.3140/bull.geosci.1843. S2CID 246304904.
  45. ^ a b Ernst, A.; Claussen, A. L.; Seuss, B.; Wyse Jackson, P. N. (2022). "Stenolaemate bryozoans from the Graham Formation, Pennsylvanian (Virgilian) at Lost Creek Lake, Texas, USA". Palaeontologia Electronica. 25 (2): Article number 25.2.a15. doi:10.26879/1174.
  46. ^ a b c d e Mesentseva, O. P. (2022). "Facies Confinement and Stratigraphic Significance of Emsian Bryozoans (Lower Devonian of the Salair Ridge and Gorny and Rudny Altai)". Paleontological Journal. 56 (7): 752–764. Bibcode:2022PalJ...56..752M. doi:10.1134/S0031030122070097. S2CID 254248948.
  47. ^ a b Koromyslova, A. V.; Pervushov, E. M. (2022). "Uppermost Turonian bryozoans from the Lower Volga River region: scanning electron microscopy and micro-computed tomography studies". Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen. 305 (3): 263–295. doi:10.1127/njgpa/2022/1090. S2CID 252740493.
  48. ^ Buttler, C. J.; Cherns, L.; McCobb, L. M. E. (2022). "Trepostome bryozoans encrusting Silurian gastropods: A taphonomic window and its implications for biodiversity". Acta Palaeontologica Polonica. 67 (3): 569–577. doi:10.4202/app.00964.2021. S2CID 250997592.
  49. ^ a b Arakawa, S. (2022). "Iodictyum akaishiensis sp. nov.: A New Miocene Phidoloporid (Bryozoa, Cheilostomata) from the Moniwa Formation, Sendai, Japan". Paleontological Research. 27 (1): 25–33. doi:10.2517/PR200041. S2CID 252684206.
  50. ^ Bizzarini, F. (2022). "Encrusting Bryozoa of Richthofen Reef (San Cassiano Formation, Lower Carnian, Dolomites)". Annali del Museo Civico di Rovereto. Sezione: Archeologia, Storia, Scienze Naturali. 38: 161–170. doi:10.53135/ANNMUSCIVROV20223813.
  51. ^ a b Taylor, P. D.; Villier, L. (2022). "Cretaceous microporid cheilostome bryozoans from the Campanian historical stratotype of southwest France". Geodiversitas. 44 (18): 515–525. doi:10.5252/geodiversitas2022v44a18. S2CID 248892877.
  52. ^ a b c Ramsfjell, M. H.; Taylor, P. D.; Di Martino, E. (2022). "New early Miocene species of the cheilostome bryozoan Microporella from the South Island of New Zealand". Alcheringa: An Australasian Journal of Palaeontology. 46 (2): 208–217. Bibcode:2022Alch...46..208R. doi:10.1080/03115518.2022.2084564. hdl:10852/101279. S2CID 250398692.
  53. ^ Ernst, A.; Krainer, K.; Lucas, S. G. (2022). "Bryozoan fauna from the Pennsylvanian of the Sandia Mountains, New Mexico, USA". Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen. 306 (2): 97–160. doi:10.1127/njgpa/2022/1100. S2CID 253867404.
  54. ^ a b Taylor, P. D. (2022). "First taxonomic descriptions of operculate cyclostome bryozoans (Eleidae) from the Cretaceous of India and North America". Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen. 304 (3): 227–237. doi:10.1127/njgpa/2022/1066. S2CID 250002958.
  55. ^ Tolokonnikova, Z. A.; Fedorov, P. V. (2022). "Late Devonian-early Carboniferous bryozoans from Zhankurgan (Greater Karatau, Kazakhstan)—taxonomy and palaeobiogeographical implications". Zootaxa. 5196 (2): 252–264. doi:10.11646/zootaxa.5196.2.6. PMID 37044388. S2CID 253009699.
  56. ^ a b Sonar, M. A.; Pawar, R. V.; Wayal, D. V. (2022). "Fossil Thalamoporellidae (Bryozoa) from Paleogene–Neogene sediments of western Kachchh, Gujarat, India". Zootaxa. 5104 (2): 251–274. doi:10.11646/zootaxa.5104.2.5. PMID 35391038. S2CID 247116985.
  57. ^ Pruss, S. B.; Leeser, L.; Smith, E. F.; Zhuravlev, A. Yu.; Taylor, P. D. (2022). "The oldest mineralized bryozoan? A possible palaeostomate in the lower Cambrian of Nevada, USA". Science Advances. 8 (16): eabm8465. Bibcode:2022SciA....8M8465P. doi:10.1126/sciadv.abm8465. PMC 9020656. PMID 35442738.
  58. ^ Reid, C. M.; Wyse Jackson, P. N.; Key, M. M. (2022). "Latitudinal influences on bryozoan calcification through the Paleozoic". Paleobiology. 49 (2): 271–283. doi:10.1017/pab.2022.31. S2CID 252061531.
  59. ^ Ma, J.Y.; Taylor, P. D.; Buttler, C. J.; Xia, F.S. (2022). "Bryozoans from the Early Ordovician Fenhsiang Formation (Tremadocian) of South China and the early diversification of the phylum". The Science of Nature. 109 (2): Article number 21. Bibcode:2022SciNa.109...21M. doi:10.1007/s00114-022-01791-z. PMID 35333983. S2CID 247712842.
  60. ^ Moharrek, F.; Taylor, P. D.; Silvestro, D.; Jenkins, H. L.; Gordon, D. P.; Waeschenbach, A. (2022). "Diversification dynamics of cheilostome bryozoans based on a Bayesian analysis of the fossil record". Palaeontology. 65 (1): e12586. Bibcode:2022Palgy..6512586M. doi:10.1111/pala.12586. S2CID 245791052.
  61. ^ Orr, R. J. S.; Di Martino, E.; Ramsfjell, M. H.; Gordon, D. P.; Berning, B.; Chowdhury, I.; Craig, S.; Cumming, R. L.; Figuerola, B.; Florence, W.; Harmelin, J.-G.; Hirose, M.; Huang, D.; Jain, S. S.; Jenkins, H. L.; Kotenko, O. N.; Kuklinski, P.; Lee, H. E.; Madurell, T.; McCann, L.; Mello, H. L.; Obst, M.; Ostrovsky, A. N.; Paulay, G.; Porter, J. S.; Shunatova, N. N.; Smith, A. M.; Souto-Derungs, J.; Vieira, L. M.; Voje, K. L.; Waeschenbach, A.; Zágoršek, K.; Warnock, R. C. M.; Liow, L. H. (2022). "Paleozoic origins of cheilostome bryozoans and their parental care inferred by a new genome-skimmed phylogeny". Science Advances. 8 (13): eabm7452. Bibcode:2022SciA....8M7452O. doi:10.1126/sciadv.abm7452. PMC 8967238. PMID 35353568.
  62. ^ a b c Baranov, V. V.; Blodgett, R. B. (2022). "New taxa of the superfamily Ambocoelioidea George (order Spiriferida) from the Eifelian of west-central Alaska". Paleontological Journal. 56 (6): 638–645. Bibcode:2022PalJ...56..638B. doi:10.1134/S0031030122060041. S2CID 254248706.
  63. ^ a b c Torres-Martínez, M. A.; Sour-Tovar, F. (2022). "New rhynchonellid and spire-bearing brachiopods from the Carboniferous of Mexico. Paleogeographical significance of the Oaxacan brachiopod fauna through the Serpukhovian–Moscovian". Journal of Paleontology. 97: 90–111. doi:10.1017/jpa.2022.70. S2CID 251531581.
  64. ^ a b c d e f g h i j k l m n Popov, L. E.; Cocks, L. R. M. (2022). "A mid-Ordovician brachiopod evolutionary hotspot in southern Kazakhstan". Fossils and Strata. Fossils and Strata Series. 66: 1–160. doi:10.1002/9781119782377. ISBN 978-1-119-78236-0. S2CID 248646093.
  65. ^ a b c d e Viaretti, M.; Heward, A. P.; Gementi, A.; Angiolini, L. (2022). "Upper Cisuralian-lower Guadalupian brachiopods from the Qarari Unit, Batain plain, northeast Oman: systematics, palaeoecology and correlation". Rivista Italiana di Paleontologia e Stratigrafia. 128 (3): 643–694. doi:10.54103/2039-4942/17732. hdl:2434/943191. S2CID 253191361.
  66. ^ Baranov, V. V.; Blodgett, R. B. (2022). "Andronovia-new genus of pentameride brachiopod from the Early Devonian (Emsian) of Northeast Asia". New Mexico Museum of Natural History and Science Bulletin. 90: 47–50.
  67. ^ a b Tazawa, J.; Shintani, T. (2022). "Early Permian (Cisuralian) brachiopods from Nagaiwa‒Sakamotozawa, South Kitakami Belt, Japan" (PDF). Memoir of the Fukui Prefectural Dinosaur Museum. 21: 1–58.
  68. ^ a b c d e f g h Waterhouse, J. B. (2022). "Brachiopods and molluscs from the Echinalosia (Unicusia) minima Zone, north Bowen Basin, Queensland". Description of some Middle Permian Brachiopoda and Mollusca from east Australia, chiefly the Bowen Basin of Queensland (PDF). Earthwise. Vol. 20. pp. 103–242.
  69. ^ a b c d e García-Alcalde, J. L. (2022). "Espiriféridos del Givetiense–Frasniense de la costa asturiana (España)". Spanish Journal of Palaeontology. 37 (2): 191–248. doi:10.7203/sjp.25315. S2CID 253468541.
  70. ^ Serobyan, V.; Danelian, T.; Crônier, C.; Grigoryan, A.; Mottequin, B. (2022). "Aramazdospirifer orbelianus (Abich, 1858) n. comb., a new cyrtospiriferid brachiopod genus and a biostratigraphically important species from the lower Famennian (Upper Devonian) of Armenia". Comptes Rendus Palevol. 21 (6): 145–156. doi:10.5852/cr-palevol2022v21a6. S2CID 246885014.
  71. ^ a b c d Wu, H.T.; Zhang, Y.; Stubbs, T. L.; Chen, A.; Zhai, P.; Sun, Y.L. (2022). "Haydenella kiangsiensis Wuchiapingian (Lopingian, late Permian) brachiopod fauna from Guangdong Province, southeastern China: systematics and contribution to the Lopingian recovery". Journal of Paleontology: 1–28. doi:10.1017/jpa.2022.78. S2CID 252700449.
  72. ^ Vörös, A. (2022). "Monospecific mass occurrence of a new species of the Early Jurassic genus Arzonellina (Brachiopoda) at Fenyveskút (Bakony Mountains, Hungary)". Földtani Közlöny. 152 (1): 17–30. doi:10.23928/foldt.kozl.2022.152.1.17. S2CID 248356547.
  73. ^ a b Feldman, H. R.; Blodgett, R. B.; Wilson, M. A. (2022). "Rhynchonellid brachiopods from the Jurassic (Callovian) of southern Israel". New Mexico Museum of Natural History and Science Bulletin. 90: 167–175.
  74. ^ Holmer, L. E.; Clausen, S.; Popov, L. E.; Ghobadi Pour, M.; Liang, Y.; Zhang, Z.; Palafox Reyes, J. J.; Sosa-Leon, J. P.; Buitrón-Sánchez, B. E. (2022). "Cambrian (Stage 4 to Wuliuan) brachiopods from Sonora, Mexico". Journal of Paleontology. 96 (6): 1264–1284. Bibcode:2022JPal...96.1264H. doi:10.1017/jpa.2022.35. S2CID 249296989.
  75. ^ a b c d e f g h Ceccolini, F.; Cianferoni, F. (2022). "New replacement names for several fossil brachiopods". Acta Palaeontologica Romaniae. 19 (1): 87–91. doi:10.35463/j.apr.2023.01.08. S2CID 253616811.
  76. ^ a b c Cooper, M. R. (2022). "Miocene brachiopods from Zululand, South Africa". Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen. 306 (3): 195–207. doi:10.1127/njgpa/2022/1104. S2CID 254819689.
  77. ^ Baeza-Carratalá, J. F.; García Joral, F. (2022). "The last representatives of the Superfamily Wellerelloidea (Brachiopoda, Rhynchonellida) in the westernmost Tethys (Iberian paleomargins) prior to their demise in the early Toarcian Mass Extinction Event". Journal of Paleontology. 96 (5): 991–1023. Bibcode:2022JPal...96..991B. doi:10.1017/jpa.2022.24. hdl:10045/123461. S2CID 248703358.
  78. ^ a b Blodgett, R. B.; Baranov, V. V.; Santucci, V. L. (2022). "Two new late Emsian (latest Early Devonian) pentameridine brachiopods from the Shellabarger Limestone (new formation), Shellabarger Pass, Denali National Park & Preserve, south-central Alaska". New Mexico Museum of Natural History and Science Bulletin. 90: 73–83.
  79. ^ a b c d e f Guo, Z.; Chen, Z.-Q.; Huang, Y.; Chen, H.; Qiu, Y.; Guo, X. (2022). "The Anisian (Middle Triassic) brachiopods from the southern Qilian Mountains, north-western China". Papers in Palaeontology. 8 (5): e1468. Bibcode:2022PPal....8E1468G. doi:10.1002/spp2.1468. S2CID 253002692.
  80. ^ a b c d e f g h i j k l m Wenndorf, K.-W. (2022). "Nucinulidae (Brachiopoda, Rhynchonellida) aus dem Unter- und Mitteldevon des Rheinischen Schiefergebirges und benachbarter Regionen". Mainzer Naturwissenschaftliches Archiv. Beiheft 36: 1–189.
  81. ^ Baarli, B. G. (2022). "The new brachiopod genus Eiratrypa and the genus Clintonella from the Lower Silurian (Llandovery) of Baltica". Norwegian Journal of Geology. doi:10.17850/njg102-1-3. S2CID 247424318.
  82. ^ Shcherbanenko, T. A.; Sennikov, N. V. (2022). "New brachiopod species of the order Pentamerida from the Ordovician of the Altaian Teletskoe Lakeside". Paleontological Journal. 56 (6): 630–637. Bibcode:2022PalJ...56..630S. doi:10.1134/S0031030122060107. S2CID 254248582.
  83. ^ a b Dulai, A. (2022). "Two new Eucalathis (Brachiopoda, Chlidonophoridae) species from the Pliocene of Italy and history of the genus in the Mediterranean". Historical Biology: An International Journal of Paleobiology. 36: 1–10. doi:10.1080/08912963.2022.2155150. S2CID 254620034.
  84. ^ Mojon, P.-O.; De Kaenel, E. (2022). "New paleontological and biostratigraphical data (calcareous nannofossils, ostracods, brachiopods), correlations and lithostratigraphic units in the Urgonian facies (latest Hauterivian-Barremian) of the Swiss and French Jura Mountains: the Falaises Member and the Saars Formation (former "Gorges de l'Orbe Formation")". Swiss Journal of Geosciences. 115 (1): Article 17. Bibcode:2022SwJG..115...17M. doi:10.1186/s00015-022-00416-x. S2CID 248574040.
  85. ^ Zimmt, J. B.; Jin, J. (2022). "A new species of Hirnantia (Orthida, Brachiopoda) and its implications for the Hirnantian age of the Ellis Bay Formation, Anticosti Island, eastern Canada". Journal of Paleontology. 97: 47–62. doi:10.1017/jpa.2022.83. S2CID 252862943.
  86. ^ Waterhouse, J. B. (2022). "Some brachiopods and Mollusca from the Catherine Sandstone of the south-west Bowen Basin, Queensland". Description of some Middle Permian Brachiopoda and Mollusca from east Australia, chiefly the Bowen Basin of Queensland (PDF). Earthwise. Vol. 20. pp. 13–35.
  87. ^ a b Waterhouse, J. B. (2022). "Brachiopods and molluscs from the Mantuan Formation, southwest Bowen Basin, Queensland". Description of some Middle Permian Brachiopoda and Mollusca from east Australia, chiefly the Bowen Basin of Queensland (PDF). Earthwise. Vol. 20. pp. 41–76.
  88. ^ Waterhouse, J. B. (2022). "A new strophalosioid genus from the Barfield Formation, south-east Bowen Basin, Queensland". Description of some Middle Permian Brachiopoda and Mollusca from east Australia, chiefly the Bowen Basin of Queensland (PDF). Earthwise. Vol. 20. pp. 37–39.
  89. ^ Waterhouse, J. B. (2022). "A new strophalosioid species from the Kulnurra marine tongue of the New South Wales Permian". Description of some Middle Permian Brachiopoda and Mollusca from east Australia, chiefly the Bowen Basin of Queensland (PDF). Earthwise. Vol. 20. pp. 283–286.
  90. ^ a b Serobyan, V.; Danelian, T.; Crônier, C.; Grigoryan, A.; Mottequin, B. (2022). "New and revised cyrtospiriferid (Spiriferida) brachiopods from the lower Famennian (Upper Devonian) of Armenia". Journal of Paleontology. 96 (4): 839–858. Bibcode:2022JPal...96..839S. doi:10.1017/jpa.2022.9. S2CID 247888809.
  91. ^ a b c Wang, F.Y.; Chen, J.; Dai, X.; Song, H.J. (2022). "A new Early Triassic brachiopod fauna from southern Tibet, China: Implications on brachiopod recovery and the late Smithian extinction in southern Tethys". Journal of Paleontology. 96 (Supplement S88): 1–32. Bibcode:2022JPal...96S...1W. doi:10.1017/jpa.2021.119. S2CID 249960007.
  92. ^ a b Jin, J.; Blodgett, R. B.; Harper, D. A. T.; Rasmussen, C. M. Ø. (2022). "Warm-water Tcherskidium fauna (Brachiopoda) in the Late Ordovician Northern Hemisphere of Laurentia and peri-Laurentia". Journal of Paleontology. 96 (6): 1461–1478. Bibcode:2022JPal...96.1461J. doi:10.1017/jpa.2022.58. S2CID 250940066.
  93. ^ a b Halamski, A. T.; Baliński, A.; Koppka, J. (2022). "Middle Devonian brachiopods from northern Maïder (eastern Anti-Atlas, Morocco)". Annales Societatis Geologorum Poloniae. 92 (1): 1–86. doi:10.14241/asgp.2022.03. S2CID 247555203.
  94. ^ Waterhouse, J. B. (2022). "Macro-fossils of the Ingelarella costata Zone in the upper Blenheim Formation and correlates of the Bowen Basin of Queensland". Description of some Middle Permian Brachiopoda and Mollusca from east Australia, chiefly the Bowen Basin of Queensland (PDF). Earthwise. Vol. 20. pp. 251–281.
  95. ^ Feldman, H. R.; Radulović, B. V.; Ahmad, F. (2022). "Callovian (Middle Jurassic) Sphriganaria (Brachiopoda) from the Jordan Valley (Middle East)". Historical Biology: An International Journal of Paleobiology. 35 (10): 1831–1844. doi:10.1080/08912963.2022.2122823. S2CID 252424740.
  96. ^ Makoshin, V. I. (2022). "A new species of Waagenoconcha Chao (Brachiopoda, Productida) from the Asselian–Sakmarian of the lower reaches of the Lena River, Northeast Russia". Paleontological Journal. 56 (4): 383–388. Bibcode:2022PalJ...56..383M. doi:10.1134/S0031030122040050. S2CID 251519200.
  97. ^ Wang, H.-Z.; Zhang, Z.-F.; Holmer, L. E.; Zhang, Z.-L. (2022). "Redescription and systematic position of Diandongia pista from the Chengjiang Lagerstätte". Palaeoworld. 32 (3): 373–384. doi:10.1016/j.palwor.2022.10.001. S2CID 252945654.
  98. ^ Baarli, B. G.; Huang, B.; Maroja, L. S. (2022). "Phylogeny of the Ordovician and Silurian members of the order Atrypida". Journal of Systematic Palaeontology. 20 (1). 2145920. Bibcode:2022JSPal..2045920G. doi:10.1080/14772019.2022.2145920. S2CID 254908739.
  99. ^ Oh, Y.; Lee, D.-C.; Lee, S.; Lee, S.-B.; Hong, P. S.; Hong, J. (2022). "Palaeobiogeography of the family Nisusiidae (Cambrian rhynchonelliform brachiopods) using the 'area-transition count' method and systematic revision of Korean species". Papers in Palaeontology. 8 (1): e1420. Bibcode:2022PPal....8E1420O. doi:10.1002/spp2.1420. S2CID 246306508.
  100. ^ Mateos-Carralafuente, J. R.; Coronado, I.; Cózar, P.; Rodríguez, S. (2022). "Gigantoproductid shell spiral and microstructure of tertiary layer: evaluation as taxonomical characters". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 114 (1–2): 1–17. doi:10.1017/S1755691022000196. hdl:10261/305335. S2CID 253067500.
  101. ^ Sulser, Heinz; Menkveld-Gfeller, Ursula; Bolliger, Thomas; Kürsteiner, Peter; Tschanz, Karl (2 March 2022). "First record of the brachiopod Erymnaria in the Chruteren Member (Euthal Formation) from a new Palaeogene site in the Brülisau Schuppenzone of northeastern Switzerland (Canton St. Gallen) with remarks on shell asymmetry". Swiss Journal of Geosciences. 115 (6). Bibcode:2022SwJG..115....6S. doi:10.1186/s00015-022-00406-z. S2CID 247194022.
  102. ^ Forner, E.; Saura, M.; Bayot, J.; Gombau, E. (2022). "Acriaster aresensis sp. nov. (Echinoidea: Cassiduloida) del Barremià d'Ares del Maestrat". Nemus: Revista de l'Ateneu de Natura. 12: 208–220.
  103. ^ Abdelhamid, M. A. M.; Abdelghany, O.; Abu Saima, M. (2022). "Revision of the regular echinoid genus Glyphopneustes Pomel, 1869 and establishment of Aliopsis gen. nov. from the Maastrichtian of the United Arab Emirates/Oman border region". Cretaceous Research. 143. 105420. doi:10.1016/j.cretres.2022.105420. S2CID 253504208.
  104. ^ Zamora, S. (2022). "Systematics, Taphonomy, and Paleoecology of Millericrinids (Millericrinida, Articulata, Crinoidea) from the Late Jurassic of Spain". Contributions from the Museum of Paleontology, University of Michigan. 34 (7): 82–102. doi:10.7302/4251.
  105. ^ Thompson, J. R.; Ausich, W. I.; Cournoyer, M. E. (2022). "The morphologic and paleobiogeographic implications of a new early Silurian echinoid from Anticosti Island, Quebec, Canada" (PDF). Canadian Journal of Earth Sciences. 59 (12): 973–983. Bibcode:2022CaJES..59..973T. doi:10.1139/cjes-2022-0028. S2CID 254449960.
  106. ^ a b c d e Lefebvre, B.; Nohejlová, M.; Martin, E. L. O.; Kašička, L.; Zicha, O.; Gutiérrez-Marco, J. C. (2022). "New Middle and Late Ordovician cornute stylophorans (Echinodermata) from Morocco and other peri-Gondwanan areas". In A. W. Hunter; J. J. Álvaro; B. Lefebvre; P. van Roy; S. Zamora (eds.). The Great Ordovician Biodiversification Event: Insights from the Tafilalt Biota, Morocco (PDF). Geological Society, London, Special Publications. Vol. 485. The Geological Society of London. pp. 345–522. doi:10.1144/SP485-2021-99. S2CID 246330814.
  107. ^ Sałamatin, R.; Kaczmarek, A. (2022). "Astroblastocystis nom. nov. – a new replacement name for Blastocystis Jaekel, 1918 (Echinodermata, Parablastoidea)". Annals of Parasitology. 68 (1): 195–196. doi:10.17420/ap6801.425. PMID 35503892.
  108. ^ Gahn, F. J. (2022). "Atelestocrinus baumilleri, n. sp., a new Early Mississippian (Viséan) crinoid, and related pseudomonocyclic forms". Contributions from the Museum of Paleontology, University of Michigan. 34 (13): 193–208. doi:10.7302/4856.
  109. ^ Salamon, M. A.; Jain, S.; Brachaniec, T.; Duda, P.; Płachno, B. J.; Gorzelak, P. (2022). "Ausichicrinites zelenskyyi gen. et sp. nov., a first nearly complete feather star (Crinoidea) from the Upper Jurassic of Africa". Royal Society Open Science. 9 (7): Article ID 220345. Bibcode:2022RSOS....920345S. doi:10.1098/rsos.220345. PMC 9297031. PMID 35875469.
  110. ^ Forner, E. (2022). "Catopygus vilari sp. nov. (Echinoidea) de l'Aptià inferior de la conca del Maestrat". Nemus: Revista de l'Ateneu de Natura. 12: 194–207.
  111. ^ Carrasco, J. F.; Trif, N. (2022). "Clypeaster surarui (Echinoidea, Eocene) a new name for Clypeaster transsylvanicus (Șuraru, Gábos & Șuraru, 1967) preoccupied name". Acta Palaeontologica Romaniae. 19 (1): 41–43. doi:10.35463/j.apr.2023.01.04. S2CID 252239277.
  112. ^ Ausich, W. I.; Salamon, M. A.; Płachno, B. J.; Brachaniec, T.; Krawczyński, W.; Boczarowski, A.; Paszcza, K.; Łukowiak, M.; Gorzelak, P. (2022). "Unraveling the hidden paleobiodiversity of the Middle Devonian (Emsian) crinoids (Crinoidea, Echinodermata) from Poland". PeerJ. 10: e12842. doi:10.7717/peerj.12842. PMC 8840065. PMID 35186460.
  113. ^ a b c d McNamara, K. J.; Martin, S. (2022). "Middle Eocene echinoids from the western Eucla Basin, Western Australia". Records of the Western Australian Museum. 37: 31–56. doi:10.18195/issn.0312-3162.37.2022.031-056. S2CID 253440648.
  114. ^ Lefebvre, B.; Nohejlova, M.; Kašička, L.; Zicha, O. (2022). "New Peri-Gondwanan occurrences of the Ordovician genus Diamphidiocystis (Echinodermata, Stylophora) – Implications for mitrocystitid palaeobiogeography and diversity". In A. W. Hunter; J. J. Álvaro; B. Lefebvre; P. van Roy; S. Zamora (eds.). The Great Ordovician Biodiversification Event: Insights from the Tafilalt Biota, Morocco (PDF). Geological Society, London, Special Publications. Vol. 485. The Geological Society of London. pp. 311–344. doi:10.1144/SP485-2021-100. S2CID 246026621.
  115. ^ Webster, G. D.; Heward, A. P.; Ausich, W. I. (2022). "First crinoid crown from the Permian Khuff Formation (Wordian) of Oman". Proceedings of the Geologists' Association. 133 (2): 154–161. Bibcode:2022PrGA..133..154W. doi:10.1016/j.pgeola.2022.02.005. S2CID 247539305.
  116. ^ a b c d e f g h i j Gale, A. (2022). ""Slime stars" (Echinodermata, Asteroidea, Velatida) from the Upper Cretaceous of northern Europe". Cretaceous Research. 137: Article 105223. Bibcode:2022CrRes.13705223G. doi:10.1016/j.cretres.2022.105223. S2CID 248092753.
  117. ^ Villier, L.; Larrañaga, J.; Payros, A.; Moreno, T.; Hieu, N.; Zamora, S. (2022). "Systematics and phylogenetic interpretation of a new bathyal spatangoid echinoid from the Eocene of Spain: Habanaster itzae nov. sp". Geobios. 72–73: 54–67. Bibcode:2022Geobi..72...54V. doi:10.1016/j.geobios.2022.07.005. S2CID 250381212.
  118. ^ a b Thuy, B.; Eriksson, M. E.; Kutscher, M.; Lindgren, J.; Numberger-Thuy, L. D.; Wright, D. F. (2022). "Miniaturization during a Silurian environmental crisis generated the modern brittle star body plan". Communications Biology. 5 (1): Article number 14. doi:10.1038/s42003-021-02971-9. PMC 8748437. PMID 35013524.
  119. ^ Thompson, J. R.; Cotton, L. J.; Candela, Y.; Kutscher, M.; Reich, M.; Bottjer, D. J. (2022). "The Ordovician diversification of sea urchins: systematics of the Bothriocidaroida (Echinodermata: Echinoidea)". Journal of Systematic Palaeontology. 19 (20): 1395–1448. doi:10.1080/14772019.2022.2042408. S2CID 248192052.
  120. ^ Park, H.; Lee, S.-B.; Woo, J.; Lee, D.-C. (2022). "The first Middle Ordovician and Gondwanan record of the cincinnaticrinid crinoid Ohiocrinus byeongseoni n. sp. from South Korea: biostratigraphy, paleobiogeography, and taphonomy". Journal of Paleontology. 96 (4): 939–949. Bibcode:2022JPal...96..939P. doi:10.1017/jpa.2022.8. S2CID 247492659.
  121. ^ Loba, M.; Radwańska, U (2022). "Ophiuroids from the Upper Jurassic of Kuyavia and the Kraków-Częstochowa Upland, Poland". Acta Geologica Polonica. 72 (4): 391–412. doi:10.24425/agp.2022.140432. S2CID 260029719.
  122. ^ a b Thuy, B.; Nungesser, K.; Numberger-Thuy, L. D. (2022). "New Brittle Stars (Echinodermata, Ophiuroidea) from the Oligocene of the Mainz Basin, Germany". Taxonomy. 2 (2): 196–207. doi:10.3390/taxonomy2020015.
  123. ^ Ishida, Y.; Thuy, B.; Nam, G.-S.; Martynov, A.; Fujita, T.; Kim, J.-H. (2022). "A New Species of Ophiura (Echinodermata, Ophiuroidea) from Miocene Deep-Sea Deposits in the Pohang Basin, Korea". Paleontological Research. 26 (1): 18–30. doi:10.2517/PR200002. S2CID 245478821.
  124. ^ Paul, C. R. C.; Gutiérrez-Marcos, J. C. (2022). "Pentaradiate diploporites (Echinodermata) from the Spanish Middle Ordovician and their taxonomic significance". Spanish Journal of Palaeontology. 37 (2): 153–176. doi:10.7203/sjp.25498. S2CID 253998423.
  125. ^ Stecher, R. (2022). "First record of the echinoid genus Orthopsis Cotteau, 1864 from the Kössen Formation (Rhaetian, uppermost Triassic) of Vorarlberg (Austria), with description of a new species" (PDF). Annalen des Naturhistorischen Museums in Wien, Serie A. 122: 165–185. JSTOR 27101237.
  126. ^ a b Guensburg, T. E.; Sprinkle, J. (2022). "Morphologic Expressions and Paleogeographic Implications of Earliest Known (Floian, Early Ordovician) Hybocrinids". Contributions from the Museum of Paleontology, University of Michigan. 34 (3): 17–33. doi:10.7302/3813.
  127. ^ Mah, C. L. (2022). "A new genus and species of Goniasteridae, Peedeeaster sandersoni, and the first occurrence of Sclerasterias (Asteriidae) from the Cretaceous Peedee Formation of North Carolina". Zootaxa. 5138 (5): 533–548. doi:10.11646/zootaxa.5138.5.2. PMID 36095820. S2CID 248951846.
  128. ^ a b c d Gale, A. S. (2022). "A new "slime star" (Echinodermata, Asteroidea, Velatida) from the Upper Cretaceous Chalk of the United Kingdom". Proceedings of the Geologists' Association. 134: 107–114. doi:10.1016/j.pgeola.2022.12.001. S2CID 254921388.
  129. ^ Zhao, J.; Rahman, I. A.; Zamora, S.; Chen, A.; Cong, P. (2022). "The first edrioasteroid echinoderm from the lower Cambrian Chengjiang biota of Yunnan Province, China". Papers in Palaeontology. 8 (4): e1465. Bibcode:2022PPal....8E1465Z. doi:10.1002/spp2.1465. S2CID 251891439.
  130. ^ a b Ishida, Y.; Trinh, H. T.; Thuy, B.; Numberger-Thuy, L. D.; Komatsu, T.; Doan, H. D.; Nguyen, M. T.; Shigeta, Y.; Fujita, T. (2022). "A New Genus and Species of Brittle Star (Ophiuroidea: Ophioleucida) from the Upper Triassic (Carnian) of Northern Vietnam". Paleontological Research. 27 (2): 147–159. doi:10.2517/PR210014. S2CID 253354589.
  131. ^ Zamora, S.; Rahman, I. A.; Sumrall, C. D.; Gibson, A. P.; Thompson, J. R. (2022). "Cambrian edrioasteroid reveals new mechanism for secondary reduction of the skeleton in echinoderms". Proceedings of the Royal Society B: Biological Sciences. 289 (1970): Article ID 20212733. doi:10.1098/rspb.2021.2733. PMC 8889179. PMID 35232240. S2CID 247170097.
  132. ^ Zamora, Samuel, Yorkicystis, the 500 million-year-old relative of starfish that lost its skeleton, The Conversation, May 24, 2022 with images including a projection for the type species, Yorkicystis haefneri, named after its finder, Chris Haefner of York, Pennsylvania, USA, for genus that existed during the "Cambrian Explosion" that flourished 539 million to 485 million years ago – with additional references that could enable creation of a separate article on the genus – note: this source article has a Creative Commons license and may be republished freely
  133. ^ Ausich, W. I.; Zehler, N. E. (2022). "Recovery of Laurentian cyclocystoids following Late Ordovician extinctions (Brassfield Formation, Llandovery; southwestern Ohio)". Journal of Paleontology. 97 (2): 380–385. doi:10.1017/jpa.2022.95. S2CID 253664587.
  134. ^ Novack-Gottshall, P. M.; Sultan, A.; Smith, N. S.; Purcell, J.; Hanson, K. E.; Lively, R.; Ranjha, I.; Collins, C.; Parker, R.; Sumrall, C. D.; Deline, B. (2022). "Morphological volatility precedes ecological innovation in early echinoderms". Nature Ecology & Evolution. 6 (3): 263–272. Bibcode:2022NatEE...6..263N. doi:10.1038/s41559-021-01656-0. PMID 35145267. S2CID 246750373.
  135. ^ Álvarez-Armada, N.; Cameron, C. B.; Bauer, J. E.; Rahman, I. A. (2022). "Heterochrony and parallel evolution of echinoderm, hemichordate and cephalochordate internal bars". Proceedings of the Royal Society B: Biological Sciences. 289 (1974): Article ID 20220258. doi:10.1098/rspb.2022.0258. PMC 9091856. PMID 35538784.
  136. ^ Sheffield, S. L.; Lam, A. R.; Phillips, S. F.; Deline, B. (2022). "Morphological Dynamics and Response Following the Dispersal of Ordovician–Silurian Diploporan Echinoderms to Laurentia". Contributions from the Museum of Paleontology, University of Michigan. 34 (9): 123–140. doi:10.7302/4375.
  137. ^ Ausich, W. I. (2022). "The Calceocrinid Puzzle". Contributions from the Museum of Paleontology, University of Michigan. 34 (8): 103–122. doi:10.7302/4252.
  138. ^ Mongiardino Koch, N.; Thompson, J. R.; Hiley, A. S.; McCowin, M. F.; Armstrong, A. F.; Coppard, S. E.; Aguilera, F.; Bronstein, O.; Kroh, A.; Mooi, R.; Rouse, G. W. (2022). "Phylogenomic analyses of echinoid diversification prompt a re-evaluation of their fossil record". eLife. 11: e72460. doi:10.7554/eLife.72460. PMC 8940180. PMID 35315317.
  139. ^ Blake, D. B.; Hotchkiss, F. H. C. (2022). "Origin of the subphylum Asterozoa and redescription of a Moroccan Ordovician somasteroid". Geobios. 72–73: 22–36. Bibcode:2022Geobi..72...22B. doi:10.1016/j.geobios.2022.07.002. S2CID 250372266.
  140. ^ Maletz, J. (2022). "Roland Skoglund's late Floian graptolites from Dalarna, central Sweden". Historical Biology: An International Journal of Paleobiology. 35 (9): 1583–1604. doi:10.1080/08912963.2022.2104642. S2CID 251558056.
  141. ^ Muir, L. A.; Zhang, Y.; Botting, J. P.; Ma, X. (2022). "Convergent evolution in planktic graptolites: independent origin of the dicranograptid morphology in the Hirnantian (latest Ordovician)". Alcheringa: An Australasian Journal of Palaeontology. 45 (4): 395–400. doi:10.1080/03115518.2021.2003430. S2CID 245865884.
  142. ^ Fatka, O.; Vodička, J. (2022). "Putative Ordovician green alga Krejciella reinterpreted as enteropneust hemichordate tube (Czech Republic)". Palaeontologia Electronica. 25 (2): Article number 25.2.a25. doi:10.26879/1185.
  143. ^ Paiste, T.; Männik, P.; Meidla, T. (2022). "Emended Sandbian (Ordovician) conodont biostratigraphy in Baltoscandia and a new species of Amorphognathus". Geological Magazine. 160 (3): 411–427. doi:10.1017/S0016756822001005. S2CID 253127205.
  144. ^ a b Izokh, N. G. (2022). "New Middle Devonian conodonts from the north east Salair (south of the West Siberia)". Paleontological Journal. 56 (1): 85–90. doi:10.1134/S0031030122010075. S2CID 248132807.
  145. ^ Carlorosi, J. M. T.; Mestre, A. I.; Heredia, S. E. (2022). "Condorodus n. gen., a new Ordovician conodont genus from Argentina: origin, evolution and dispersal through the western margin of Gondwana". Comptes Rendus Palevol. 21 (34): 747–769. doi:10.5852/cr-palevol2022v21a34. S2CID 252740300.
  146. ^ a b c d e Leu, M.; Bucher, H.; Vennemann, T.; Bagherpour, B.; Ji, C.; Brosse, M.; Goudemand, N. (2022). "A Unitary Association-based conodont biozonation of the Smithian–Spathian boundary (Early Triassic) and associated biotic crisis from South China". Swiss Journal of Palaeontology. 141 (1). 19. Bibcode:2022SwJP..141...19L. doi:10.1186/s13358-022-00259-x. PMC 9681704. PMID 36439694.
  147. ^ Barrick, J. E.; Hogancamp, N. J.; Rosscoe, S. J. (2022). "Evolutionary patterns in Late Pennsylvanian conodonts". In S.G. Lucas; W.A. DiMichele; S. Opluštil; X. Wang (eds.). Ice Ages, Climate Dynamics and Biotic Events: the Late Pennsylvanian World. Geological Society, London, Special Publications. Vol. 535. The Geological Society of London. pp. 383–408. doi:10.1144/SP535-2022-139. S2CID 253194718.
  148. ^ Nazarova, V. M.; Kononova, L. I. (2022). "Icriodus olgaborisovnae sp. nov.—a new conodont species from the Mosolovian Regional Stage (Eifelian Stage, Middle Devonian) of the Voronezh Anteclise". Paleontological Journal. 56 (3): 284–295. Bibcode:2022PalJ...56..284N. doi:10.1134/S0031030122030091. S2CID 249627812.
  149. ^ Hu, K.Y.; Qi, Y.P.; Wang, X.D. (2022). "A new species Idiognathodus praeguizhouensis n. sp. (Conodonta, Pennsylvanian) from South China". Journal of Paleontology. 96 (6): 1479–1481. Bibcode:2022JPal...96.1479H. doi:10.1017/jpa.2022.53. S2CID 250326206.
  150. ^ Zhen, Y. Y.; Allen, H. J.; Martin, S. K. (2022). "Early Ordovician conodonts from Barnicarndy 1 stratigraphic well of the Southern Canning Basin, Western Australia". Alcheringa: An Australasian Journal of Palaeontology. 46 (1): 43–58. Bibcode:2022Alch...46...43Z. doi:10.1080/03115518.2021.2017481. S2CID 246303337.
  151. ^ Wu, S.; Golding, M. L.; Zhao, H.; Han, C.; Zhang, X.; Chen, Z.-Q.; Lyu, Z. (2023). "Lower to Middle Triassic conodont biostratigraphy and carbonate carbon isotope chemostratigraphy of the Zuodeng area, Guangxi, South China, and its relevance for stratigraphic correlation from the Induan to the Anisian". Palaeogeography, Palaeoclimatology, Palaeoecology. 636. 111965. doi:10.1016/j.palaeo.2023.111965.
  152. ^ Leu, M. (2024). "Establishment and Priority of Neospathodus bevelledi over Neospathodus yangtzeensis: Clarification and Recommendations for Future Nomenclature and Stratigraphic Naming". zenodo.org. doi:10.5281/zenodo.10794343. Retrieved 2024-07-31.
  153. ^ a b c d Saupe, F.; Becker, R. T. (2022). "Refined conodont stratigraphy at Martenberg (Rhenish Massif, Germany) as base for a formal middle/upper Frasnian substage boundary". Palaeobiodiversity and Palaeoenvironments. 102 (3): 711–761. Bibcode:2022PdPe..102..711S. doi:10.1007/s12549-022-00537-z. S2CID 250534959.
  154. ^ Hartenfels, S.; Becker, R. T.; Herbig, H.-G.; Qie, W.; Kumpan, T.; De Vleeschouwer, D.; Weyer, D.; Kalvoda, J. (2022). "The Devonian-Carboniferous transition at Borkewehr near Wocklum (northern Rhenish Massif, Germany) – a potential GSSP section". Palaeobiodiversity and Palaeoenvironments. 102 (3): 763–829. Bibcode:2022PdPe..102..763H. doi:10.1007/s12549-022-00531-5. S2CID 251162865.
  155. ^ Plotitsyn, A. N. (2022). "New group of Tournaisian advanced Siphonodella (Conodonts, Lower Carboniferous)". Rivista Italiana di Paleontologia e Stratigrafia. 128 (3): 607–623. doi:10.54103/2039-4942/17048. S2CID 251529412.
  156. ^ Shohel, M.; Ray, K. K.; Tivanski, A. V.; McAdams, N. E. B.; Bancroft, A. M.; Cramer, B. D.; Forbes, T. Z. (2022). "Nanomechanical variability in the early evolution of vertebrate dentition". Scientific Reports. 12 (1): Article number 10203. Bibcode:2022NatSR..1210203S. doi:10.1038/s41598-022-14157-2. PMC 9205932. PMID 35715512.
  157. ^ Zhen, Y.Y.; Bauer, J. A.; Bergström, S. M. (2022). "Revision of Histiodella labiosa Bauer, 2010, and its inferred phylogeny in the evolution of the Middle Ordovician conodont genus Histiodella Harris, 1962". Journal of Paleontology. 96 (5): 1149–1165. Bibcode:2022JPal...96.1149Z. doi:10.1017/jpa.2022.26. S2CID 248607642.
  158. ^ Terrill, D. F.; Jarochowska, E.; Henderson, C. M.; Shirley, B.; Bremer, O. (2022). "Sr/Ca and Ba/Ca ratios support trophic partitioning within a Silurian conodont community from Gotland, Sweden". Paleobiology. 48 (4): 601–621. Bibcode:2022Pbio...48..601T. doi:10.1017/pab.2022.9. S2CID 248062641.
  159. ^ Ferretti, A.; Corriga, M. G.; Slavík, L.; Corradini, C. (2022). "Running across the Silurian/Devonian Boundary along Northern Gondwana: A Conodont Perspective". Geosciences. 12 (1): Article 43. Bibcode:2022Geosc..12...43F. doi:10.3390/geosciences12010043. hdl:11368/3007811.
  160. ^ Girard, C.; Charruault, A.-L.; Gluck, T.; Corradini, C.; Renaud, S. (2022). "Deciphering the morphological variation and its ontogenetic dynamics in the Late Devonian conodont Icriodus alternatus". Fossil Record. 25 (1): 25–41. Bibcode:2022FossR..25...25G. doi:10.3897/fr.25.80211. hdl:11368/3019298. S2CID 246587891.
  161. ^ Zhuravlev, A. V.; Plotitsyn, A. N. (2022). "The middle–late Tournaisian crisis in conodont diversity: a comparison between Northeast Laurussia and Northeast Siberia". Palaeoworld. 31 (4): 633–645. doi:10.1016/j.palwor.2022.01.001. S2CID 246060690.
  162. ^ von Bitter, P. H.; Norby, R. D.; Stamm, R. G. (2022). "The Carboniferous conodont Lochriea commutata (Branson and Mehl, 1941), the type species of Lochriea Scott, 1942: nomenclatural history, apparatus composition and effects on Lochriea species". Journal of Paleontology. 96 (Supplement S87): 1–38. Bibcode:2022JPal...96S...1V. doi:10.1017/jpa.2021.2. S2CID 246245148.
  163. ^ Souquet, L.; Guenser, P.; Girard, C.; Mazza, M.; Rigo, M.; Goudemand, N. (2022). "Temperature-driven heterochrony as a main evolutionary response to climate changes in conodonts". Proceedings of the Royal Society B: Biological Sciences. 289 (1985). 20220614. doi:10.1098/rspb.2022.0614. PMC 9579755. PMID 36259210. S2CID 252971870.
  164. ^ Carrano, M. T.; Oreska, M. P. J.; Murch, A.; Trujillo, K. C.; Chamberlain, K. R. (2022). "Vertebrate paleontology of the Cloverly Formation (Lower Cretaceous), III: a new species of Albanerpeton, with biogeographic and paleoecological implications". Journal of Vertebrate Paleontology. 41 (5): e2003372. doi:10.1080/02724634.2021.2003372. S2CID 247335328.
  165. ^ Muzzopappa, P.; Vidoi Iori, F.; Pereira Muniz, F.; Martinelli, A. G. (2022). "A new species of Baurubatrachus (Anura, Neobatrachia) from the Late Cretaceous Adamantina Formation of Brazil furnishes evidence on the diversity of this bizarre genus". Ameghiniana. 59 (5): 297–316. doi:10.5710/AMGH.29.07.2022.3505. S2CID 251269616.
  166. ^ Gee, B. M.; Kufner, A. M. (2022). "Revision of the Late Triassic metoposaurid "Metoposaurus" bakeri (Amphibia: Temnospondyli) from Texas, USA and a phylogenetic analysis of the Metoposauridae". PeerJ. 10: e14065. doi:10.7717/peerj.14065.
  167. ^ Nicoli, L.; Muzzopappa, P.; Espinoza, N.; Melchor, R. (2022). "A new fossil species of Calyptocephalella (Anura: Australobatrachia) from the Miocene of northern Patagonia: Novel evidence of the broad past diversity of the genus". Journal of South American Earth Sciences. 119: Article 104008. Bibcode:2022JSAES.11904008N. doi:10.1016/j.jsames.2022.104008. S2CID 251991631.
  168. ^ Werneburg, R.; Witzmann, F.; Schneider, J. W.; Rößler, R. (2022). "A new basal zatracheid temnospondyl from the early Permian Chemnitz Fossil Lagerstätte, central-east Germany". PalZ. 97: 105–128. doi:10.1007/s12542-022-00624-8. S2CID 249069723.
  169. ^ Lemierre, A.; Blackburn, D. C. (2022). "A new genus and species of frog from the Kem Kem (Morocco), the second neobatrachian from Cretaceous Africa". PeerJ. 10: e13669. doi:10.7717/peerj.13699. PMC 9291016. PMID 35860040.
  170. ^ Jones, M. E. H.; Benson, R. B. J.; Skutschas, P.; Hill, L.; Panciroli, E.; Schmitt, A. D.; Walsh, S. A.; Evans, S. E. (2022). "Middle Jurassic fossils document an early stage in salamander evolution". Proceedings of the National Academy of Sciences of the United States of America. 119 (30): e2114100119. Bibcode:2022PNAS..11914100J. doi:10.1073/pnas.2114100119. PMC 9335269. PMID 35858401.
  171. ^ Mann, A.; Pardo, J. D.; Maddin, H. C. (2022). "Snake-like limb loss in a Carboniferous amniote". Nature Ecology & Evolution. 6 (5): 614–621. Bibcode:2022NatEE...6..614M. doi:10.1038/s41559-022-01698-y. PMID 35347258. S2CID 247778148.
  172. ^ Ponssa, M. L.; Babot, M. J.; Ortiz, P. E.; Candela, A. M.; Pereyra, M. O. (2022). "A new late Pliocene toad of the genus Rhinella (Bufonidae) from northwestern Argentina". Journal of South American Earth Sciences. 115: Article 103749. Bibcode:2022JSAES.11503749P. doi:10.1016/j.jsames.2022.103749. S2CID 247261185.
  173. ^ Clack, J. A.; Smithson, T. R.; Ruta, M. (2022). "A Mississippian (early Carboniferous) tetrapod showing early diversification of the hindlimbs". Communications Biology. 5 (1): Article number 283. doi:10.1038/s42003-022-03199-x. PMC 9010477. PMID 35422092.
  174. ^ Whitney, M. R.; Otoo, B. K. A.; Angielczyk, K. D.; Pierce, S. E. (2022). "Fossil bone histology reveals ancient origins for rapid juvenile growth in tetrapods". Communications Biology. 5 (1). 1280. doi:10.1038/s42003-022-04079-0. PMC 9705711. PMID 36443424.
  175. ^ Arbez, T.; Atkins, J. B.; Maddin, H. C. (2022). "Cranial anatomy and systematics of Dendrerpeton cf. helogenes (Tetrapoda, Temnospondyli) from the Pennsylvanian of Joggins, revisited through micro-CT scanning". Papers in Palaeontology. 8 (2): e1421. Bibcode:2022PPal....8E1421A. doi:10.1002/spp2.1421. S2CID 247420642.
  176. ^ Herbst, E. C.; Manafzadeh, A. R.; Hutchinson, J. R. (2022). "Multi-joint analysis of pose viability supports the possibility of salamander-like hindlimb configurations in the Permian tetrapod Eryops megacephalus". Integrative and Comparative Biology. 62 (2): 139–151. doi:10.1093/icb/icac083. PMC 9405718. PMID 35687000.
  177. ^ Hart, L. J.; Campione, N. E.; McCurry, M. R. (2022). "On the estimation of body mass in temnospondyls: a case study using the large-bodied Eryops and Paracyclotosaurus". Palaeontology. 65 (6). e12629. Bibcode:2022Palgy..6512629H. doi:10.1111/pala.12629. S2CID 253790096.
  178. ^ Gee, B. M.; Sidor, C. A. (2022). "Cold capitosaurs and polar plagiosaurs: new temnospondyl records from the upper Fremouw Formation (Middle Triassic) of Antarctica". Journal of Vertebrate Paleontology. 41 (4): e1998086. doi:10.1080/02724634.2021.1998086. S2CID 246832719.
  179. ^ Witzmann, F.; Schoch, R. R. (2022). "The larval brachyopid Platycepsion wilkinsoni from the Triassic of New South Wales provides insight into the stereospondyl life cycle". Journal of Paleontology. 96 (6): 1447–1460. Bibcode:2022JPal...96.1447W. doi:10.1017/jpa.2022.57. S2CID 250662726.
  180. ^ Schoch, R. R.; Mujal, E. (2022). "Ontogeny and adult osteology of the Middle Triassic temnospondyl Trematolestes hagdorni". Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen. 306 (3): 265–286. doi:10.1127/njgpa/2022/1106. S2CID 254803375.
  181. ^ Kalita, S.; Teschner, E. M.; Sander, P. M.; Konietzko-Meier, D. (2022). "To be or not to be heavier: The role of dermal bones in the buoyancy of the Late Triassic temnospondyl amphibian Metoposaurus krasiejowensis". Journal of Anatomy. 241 (6): 1459–1476. doi:10.1111/joa.13755. PMC 9644956. PMID 36165276. S2CID 252540876.
  182. ^ Weryński, Ł.; Kędzierski, M. (2022). "Microstructural characteristics and seasonal growth patterns observed in Metoposaurus krasiejowensis teeth". Geological Quarterly. 66 (3). 26. doi:10.7306/gq.1658. S2CID 253951061.
  183. ^ Surmik, D.; Słowiak-Morkovina, J.; Szczygielski, T.; Kamaszewski, M.; Kalita, S.; Teschner, E. M.; Dróżdż, D.; Duda, P.; Rothschild, B. M.; Konietzko-Meier, D. (2022). "An insight into cancer palaeobiology: does the Mesozoic neoplasm support tissue organization field theory of tumorigenesis?". BMC Ecology and Evolution. 22 (1). 143. doi:10.1186/s12862-022-02098-3. PMC 9746082. PMID 36513967.
  184. ^ Schoch, R. R.; Sues, H.-D. (2022). "The dissorophoid temnospondyl Parioxys ferricolus from the early Permian (Cisuralian) of Texas". Journal of Paleontology. 96 (4): 950–960. Bibcode:2022JPal...96..950S. doi:10.1017/jpa.2022.10. S2CID 247920021.
  185. ^ Bowler, N.; Sumida, S. S.; Huttenlocker, A. K. (2022). "Histological evidence for dermal-endochondral co-ossification of the dorsal blades in the late Paleozoic amphibian Platyhystrix rugosus (Temnospondyli: Dissorophidae)". Journal of Vertebrate Paleontology. 42 (2). e2144338. Bibcode:2022JVPal..42E4338B. doi:10.1080/02724634.2022.2144338. S2CID 255023521.
  186. ^ Schoch, R. R. (2022). "Phylogeny of the amphibamiform temnospondyls: the relationship of taxa known by adults, larvae and neotenes". Journal of Systematic Palaeontology. 20 (1). 2113831. Bibcode:2022JSPal..20....1S. doi:10.1080/14772019.2022.2113831. S2CID 252750594.
  187. ^ Macaluso, L.; Mannion, P. D.; Evans, S. E.; Carnevale, G.; Monti, S.; Marchitelli, D.; Delfino, M. (2022). "Biogeographic history of Palearctic caudates revealed by a critical appraisal of their fossil record quality and spatio-temporal distribution". Royal Society Open Science. 9 (11). 220935. Bibcode:2022RSOS....920935M. doi:10.1098/rsos.220935. PMC 9709575. PMID 36465678.
  188. ^ Jia, J.; Li, G.; Gao, K.-Q. (2022). "Palatal morphology predicts the paleobiology of early salamanders". eLife. 11. e76864. doi:10.7554/eLife.76864. PMC 9170251. PMID 35575462.
  189. ^ Gardner, J. D. (2022). "A unique dentary suggests a third genus of batrachosauroidid salamander existed during the latest Cretaceous in the western USA". Acta Palaeontologica Polonica. 67 (1): 35–50. doi:10.4202/app.00926.2021. S2CID 247872161.
  190. ^ Skutschas, P. P.; Kolchanov, V. V.; Sennikov, A. G.; Syromyatnikova, E. V. (2022). "Discovery of a crown salamander in the Middle Jurassic (Bathonian) Moskvoretskaya formation of the Moscow Region, Russia". Historical Biology: An International Journal of Paleobiology. 35 (11): 2123–2126. doi:10.1080/08912963.2022.2133605. S2CID 253036062.
  191. ^ Barcelos, L. A.; Almeida-Silva, D.; Santos, C. M. D.; Verdade, V. K. (2022). "Phylogenetic analysis of Ceratophryidae (Anura: Hyloidea) including extant and extinct species". Journal of Systematic Palaeontology. 19 (20): 1449–1466. doi:10.1080/14772019.2022.2050824. S2CID 248653602.
  192. ^ Guevara, J. P.; Suazo Lara, F.; Alarcón-Muñoz, J.; Buldrini, K.; Soto-Acuña, S.; Rubilar-Rogers, D. (2022). "The first fossil frog (Anura: Bufonidae) from the Cura-Mallín Formation (Río Pedregoso Member, middle Miocene) of Lonquimay, Araucania Region, Central Chile". Journal of South American Earth Sciences. 115: Article 103753. doi:10.1016/j.jsames.2022.103753. S2CID 247207628.
  193. ^ Calábková, G.; Březina, J.; Madzia, D. (2022). "Evidence of large terrestrial seymouriamorphs in the lowermost Permian of the Czech Republic". Papers in Palaeontology. 8 (2): e1428. Bibcode:2022PPal....8E1428C. doi:10.1002/spp2.1428. S2CID 247822357.
  194. ^ Maho, T.; Reisz, R. R. (2022). "Dental anatomy and replacement patterns in the early Permian stem amniote, Seymouria". Journal of Anatomy. 241 (3): 628–634. doi:10.1111/joa.13715. PMC 9358742. PMID 35762030.
  195. ^ Jansen, M.; Marjanović, D. (2022). "The scratch-digging lifestyle of the Permian "microsaur" Batropetes Carroll & Gaskill, 1971 as a model for the exaptative origin of jumping locomotion in frogs". Comptes Rendus Palevol. 21 (23): 463–488. doi:10.5852/cr-palevol2022v21a23. S2CID 250376344.
  196. ^ Marugán-Lobón, J.; Gómez-Recio, M.; Nebreda, S. M. (2022). "The geometry of synapsid skull disparity". Historical Biology: An International Journal of Paleobiology. 34 (8): 1692–1700. Bibcode:2022HBio...34.1692M. doi:10.1080/08912963.2022.2071708. S2CID 248585919.
  197. ^ Liu, L.; Zhou, C.-F.; Wang, J.-S.; Xue, J.-Z. (2022). "A new tritylodontid from the Middle Jurassic Shaximiao Formation of western Hubei, China". Historical Biology: An International Journal of Paleobiology. 35 (8): 1391–1400. doi:10.1080/08912963.2022.2094262. S2CID 259502784.
  198. ^ Davis, Brian; Jager, Kai; Rougier, Guillermo; Trujillo, Kelli; Chamberlain, Kevin (2022). "A morganucodontan (Mammaliaformes) from the Upper Jurassic Morrison Formation, Utah, USA". Acta Palaeontologica Polonica. 67 (1): 77–93. doi:10.4202/app.00955.2021. ISSN 0567-7920. S2CID 247861504.
  199. ^ Lucas, Spencer G.; Rinehart, Larry F.; Celeskey, Matthew; Berman, David S.; Henrici, Amy C. (2022). "A Scansorial Varanopid Eupelycosaur from the Pennsylvanian of New Mexico". Annals of Carnegie Museum. 87 (3): 167–205. doi:10.2992/007.087.0301. S2CID 250015681.
  200. ^ Liu, J.; Abdala, F. (2022). "The emblematic South African therocephalian Euchambersia in China: a new link in the dispersal of late Permian vertebrates across Pangea". Biology Letters. 18 (7): Article ID 20220222. doi:10.1098/rsbl.2022.0222. PMC 9278400. PMID 35857894.
  201. ^ Rayner, R. R.; Butler, R. J.; Kammerer, C. F.; Choiniere, J. N. (2022). "Guttigomphus avilionis gen. et sp. nov., a trirachodontid cynodont from the upper Cynognathus Assemblage Zone, Burgersdorp Formation of South Africa". PeerJ. 10: e14355. doi:10.7717/peerj.14355. PMC 9762250. PMID 36545384.
  202. ^ Araújo, R.; Macungo, Z.; Fernandez, V.; Chindebvu, E. G.; Jacobs, L. L. (2022-09-19). "Kembawacela yajuwayeyi n. sp., a new cistecephalid species (Dicynodontia: Emydopoidea) from the Upper Permian of Malawi". Journal of African Earth Sciences. 196. 104726. Bibcode:2022JAfES.19604726A. doi:10.1016/j.jafrearsci.2022.104726. ISSN 1464-343X. S2CID 252393501.
  203. ^ a b Suchkova, Yu. A.; Golubev, V. K.; Shumov, I. S. (2022). "New Primitive Therocephalians from the Permian of Eastern Europe". Paleontological Journal. 56 (11): 1419–1427. Bibcode:2022PalJ...56.1419S. doi:10.1134/S0031030122110181. S2CID 256618344.
  204. ^ Werneburg, R.; Spindler, F.; Falconnet, J.; Steyer, J.-S.; Vianey-Liaud, M.; Schneider, J.-W. (2022). "A new caseid synapsid from the Permian (Guadalupian) of the Lodève basin (Occitanie, France)". Palæovertebrata. 45 (2): e2. doi:10.18563/pv.45.2.e2. S2CID 253542331.
  205. ^ Sidor, C. A.; Kulik, Z. T.; Huttenlocker, A. K. (2022). "A new bauriamorph therocephalian adds a novel component to the Lower Triassic tetrapod assemblage of the Fremouw Formation (Transantarctic Basin) of Antarctica". Journal of Vertebrate Paleontology. 41 (6): e2081510. doi:10.1080/02724634.2021.2081510. S2CID 250663346.
  206. ^ Kammerer, C. F.; Rubidge, B. S. (2022). "The earliest gorgonopsians from the Karoo Basin of South Africa". Journal of African Earth Sciences. 194: Article 104631. Bibcode:2022JAfES.19404631K. doi:10.1016/j.jafrearsci.2022.104631. S2CID 249977414.
  207. ^ Gaetano, L. C.; Abdala, F.; Seoane, F. D.; Tartaglione, A.; Schulz, M.; Otero, A.; Leardi, J. M.; Apaldetti, C.; Krapovickas, V.; Steimbach, E. (2022). "A new cynodont from the Upper Triassic Los Colorados Formation (Argentina, South America) reveals a novel paleobiogeographic context for mammalian ancestors". Scientific Reports. 12 (1): Article number 6451. Bibcode:2022NatSR..12.6451G. doi:10.1038/s41598-022-10486-4. PMC 9038739. PMID 35468982.
  208. ^ Benoit, J.; Dollman, K. N.; Smith, R. M. H.; Manger, P. R. (2022). "At the root of the mammalian mind: The sensory organs, brain and behavior of pre-mammalian synapsids". From Fossils to Mind. Progress in Brain Research. Vol. 275. pp. 25–72. doi:10.1016/bs.pbr.2022.10.001. ISBN 9780323991070. PMID 36841570.
  209. ^ Reisz, R. R.; Scott, D.; Modesto, S. P. (2022). "Cranial Anatomy of the Caseid Synapsid Cotylorhynchus romeri, a Large Terrestrial Herbivore From the Lower Permian of Oklahoma, U.S.A." Frontiers in Earth Science. 10: Article 847560. doi:10.3389/feart.2022.847560.
  210. ^ Maho, T.; Maho, S.; Scott, D.; Reisz, R. R. (2022). "Permian hypercarnivore suggests dental complexity among early amniotes". Nature Communications. 13 (1): Article number 4882. Bibcode:2022NatCo..13.4882M. doi:10.1038/s41467-022-32621-5. PMC 9391490. PMID 35986022.
  211. ^ Preuschoft, H.; Krahl, A.; Werneburg, I. (2022). "From sprawling to parasagittal locomotion in Therapsida: A preliminary study of historically collected museum specimens". Vertebrate Zoology. 72: 907–936. doi:10.3897/vz.72.e85989.
  212. ^ Kammerer, C. F.; Araújo, R.; Cumbane, K.; MaCungo, Z.; Smith, R. M. H.; Angielczyk, K. D. (2022). "New material of Dicynodon angielczyki (Synapsida: Anomodontia) from Mozambique and Zambia with biostratigraphic implications for African Permo-Triassic basins". Journal of Vertebrate Paleontology. 41 (6): e2041652. doi:10.1080/02724634.2021.2041652. S2CID 248277237.
  213. ^ Macungo, Z.; Benoit, J.; Fernandez, V.; Araújo, R. M. N. (2022). "X-ray microcomputed and synchrotron tomographic analysis of the basicranial axis of emydopoid dicynodonts: implications for fossoriality and phylogeny". Zoological Journal of the Linnean Society. 198: 1–46. doi:10.1093/zoolinnean/zlac033.
  214. ^ Kulik, Z. T.; Sidor, C. A.. (2022). "A test of Bergmann's rule in the Early Triassic: latitude, body size, and sampling in Lystrosaurus". Paleobiology. 49: 53–67. doi:10.1017/pab.2022.25. S2CID 252442770.
  215. ^ Liu, J. (2022). "On kannemeyeriiform dicynodonts from the Shaanbeikannemeyeria Assemblage Zone of the Ordos Basin, China". Vertebrata PalAsiatica. 60 (3): 212–248. doi:10.19615/j.cnki.2096-9899.220601.
  216. ^ Escobar, J. A.; Martinelli, A. G.; Ezcurra, M. D.; Fiorelli, L. E.; Von Baczko, M. B.; Novas, F. E.; Desojo, J. B. (2022). "Reassessment of the mandibular anatomy of non-stahleckeriine kannemeyeriiforms (Synapsida, Dicynodontia) from the Ladinian-early Carnian Chañares Formation (northwestern Argentina), and its taxonomic and phylogenetic significance". Ameghiniana. doi:10.5710/AMGH.24.10.2022.3532. S2CID 253126254.
  217. ^ Sidor, C. A. (2022). "New information on gorgonopsian pedal morphology based on articulated material from Zambia". Journal of African Earth Sciences. 191: Article 104533. Bibcode:2022JAfES.19104533S. doi:10.1016/j.jafrearsci.2022.104533. S2CID 247983136.
  218. ^ Liu, J.; Yang, W. (2022). "A gorgonopsian from the Wutonggou Formation (Changhsingian, Permian) of Turpan Basin, Xinjiang, China". Palaeoworld. 31 (3): 383–388. doi:10.1016/j.palwor.2022.04.004.
  219. ^ Bendel, E.-M.; Kammerer, C. F.; Luo, Z.-X.; Smith, R. M. H.; Fröbisch, J. (2022). "The earliest segmental sternum in a Permian synapsid and its implications for the evolution of mammalian locomotion and ventilation". Scientific Reports. 12 (1): Article number 13472. Bibcode:2022NatSR..1213472B. doi:10.1038/s41598-022-17492-6. PMC 9356055. PMID 35931742.
  220. ^ Norton, L. A.; Abdala, F.; Rubidge, B. S.; Botha, J. (2022). "Tooth replacement in the non-mammalian cynodont Cynosaurus suppostus (Therapsida) from the late Permian of South Africa". Journal of Vertebrate Paleontology. 41 (4): e2001650. doi:10.1080/02724634.2021.2001650. S2CID 245861861.
  221. ^ Garcia Marsà, J. A.; Agnolín, F. L.; Novas, F. E. (2022). "Comparative bone microstructure of two non-mammaliaform cynodonts from the Late Triassic (Carnian) Chañares formation of Northwestern Argentina". Historical Biology: An International Journal of Paleobiology. 36: 1–11. doi:10.1080/08912963.2022.2149332. S2CID 253864224.
  222. ^ Filippini, F. S.; Abdala, F.; Cassini, G. H. (2022). "Body mass estimation in Triassic cynodonts from Argentina based on limb variables". Acta Palaeontologica Polonica. 67 (2): 543–557. doi:10.4202/app.00919.2021. S2CID 248146371.
  223. ^ Melo, T. P.; Martinelli, A. G.; Soares, M. B. (2022). "New occurrences of massetognathine traversodontids and chiniquodontids (Synapsida, Cynodontia) from the early Late Triassic Santacruzodon Assemblage Zone (Santa Maria Supersequence, southern Brazil): Geographic and biostratigraphic implications". Journal of South American Earth Sciences. 115: Article 103757. Bibcode:2022JSAES.11503757M. doi:10.1016/j.jsames.2022.103757. S2CID 247248628.
  224. ^ Wynd, B.; Abdala, F.; Nesbitt, S. J. (2022). "Ontogenetic growth in the crania of Exaeretodon argentinus (Synapsida: Cynodontia) captures a dietary shift". PeerJ. 10: e14196. doi:10.7717/peerj.14196. PMC 9590418. PMID 36299507.
  225. ^ Benoit, J.; Nxumalo, M.; Norton, L. A.; Fernandez, V.; Gaetano, L. C.; Rubidge, B.; Abdala, F. (2022). "Synchrotron scanning sheds new light on Lumkuia fuzzi (Therapsida, Cynodontia) from the Middle Triassic of South Africa and its phylogenetic placement". Journal of African Earth Sciences. 196: Article 104689. Bibcode:2022JAfES.19604689B. doi:10.1016/j.jafrearsci.2022.104689. S2CID 251534874.
  226. ^ Liu, J.; Wang, L.; Beatty, B. L.; Zhang, G.; Wang, T.; Bi, S. (2022). "New material (Tritylodontidae, Mammaliamorpha) from the lower Jurassic of Lufeng and its implication on the taxonomy of Lufengia". Historical Biology: An International Journal of Paleobiology. 35 (9): 1605–1615. doi:10.1080/08912963.2022.2104643. S2CID 251168545.
  227. ^ Cabreira, S. F.; Schultz, C. L.; da Silva, L. R.; Lora, L. H. P.; Pakulski, C.; do Rêgo, R. C. B.; Soares, M. B.; Smith, M. M.; Richter, M. (2022). "Diphyodont tooth replacement of Brasilodon—A Late Triassic eucynodont that challenges the time of origin of mammals". Journal of Anatomy. 241 (6): 1424–1440. doi:10.1111/joa.13756. PMC 9644961. PMID 36065514. S2CID 252087003.
  228. ^ Jäger, K. R. K.; Gill, P. G.; Martin, T.; Corfe, I. J. (2022). "Molar morphology and occlusion of the Early Jurassic mammaliaform Erythrotherium parringtoni". Acta Palaeontologica Polonica. 67 (4): 975–982. doi:10.4202/app.00998.2022. S2CID 254311472.
  229. ^ Luo, Z.-X.; Bhullar, B.-A. S.; Crompton, A. W.; Neander, A. I.; Rowe, T. B. (2022). "Reexamination of the mandibular and dental morphology of the Early Jurassic mammaliaform Hadrocodium wui". Acta Palaeontologica Polonica. 67 (1): 95–113. doi:10.4202/app.00949.2021. S2CID 247905795.
  230. ^ Araújo, R.; David, R.; Benoit, J.; Lungmus, J. K.; Stoessel, A.; Barrett, P. M.; Maisano, J. A.; Ekdale, E.; Orliac, M.; Luo, Z.-X.; Martinelli, A. G.; Hoffman, E. A.; Sidor, C. A.; Martins, R. M. S.; Spoor, F.; Angielczyk, K. D. (2022). "Inner ear biomechanics reveals a Late Triassic origin for mammalian endothermy". Nature. 607 (7920): 726–731. Bibcode:2022Natur.607..726A. doi:10.1038/s41586-022-04963-z. PMID 35859179. S2CID 236245230.
  231. ^ Schlagintweit, F.; Sánchez-Beristain, F.; Daoud, H. S.; Rashidi, K. (2022). "Acanthochaetetes fischeri n. sp. (coralline demosponge) from the upper Paleocene (Thanetian) of Iraq (Kurdistan Region) and Iran (Sistan Suture Zone)". Acta Palaeontologica Romaniae. 18 (2): 53–62. doi:10.35463/j.apr.2022.02.02. S2CID 246318072.
  232. ^ a b García-Bellido, D. C.; Gutiérrez-Marco, J. C. (2022). "Polar gigantism and remarkable taxonomic longevity in new palaeoscolecid worms from the Late Ordovician Tafilalt Lagerstätte of Morocco". Historical Biology: An International Journal of Paleobiology. 35 (11): 2011–2021. doi:10.1080/08912963.2022.2131404. S2CID 253297071.
  233. ^ Botting, J. P.; Janussen, D.; Muir, L. A.; Dohrmann, M.; Ma, J.; Zhang, Y. (2022). "Extraordinarily early Venus' flower basket sponges (Hexactinellida, Euplectellidae) from the uppermost Ordovician Anji Biota, China". Palaeontology. 65 (2): e12592. Bibcode:2022Palgy..6512592B. doi:10.1111/pala.12592. S2CID 247641202.
  234. ^ Zatoń, M.; Słowiński, J.; Vinn, O.; Jakubowicz, M. (2022). "Middle Devonian microconchids and anticalyptraeids (Tentaculita) from the northern shelf of Gondwana (Morocco): palaeoecological and palaeobiogeographical implications". Historical Biology: An International Journal of Paleobiology. 35 (7): 1112–1123. doi:10.1080/08912963.2022.2077648. S2CID 259139852.
  235. ^ a b Kouchinsky, A.; Alexander, R.; Bengtson, S.; Bowyer, F.; Clausen, S.; Holmer, L. E.; Kolesnikov, K. A.; Korovnikov, I. V.; Pavlov, V.; Skovsted, C. B.; Ushatinskaya, G.; Wood, R.; Zhuravlev, A. Y. (2022). "Early–middle Cambrian stratigraphy and faunas from northern Siberia". Acta Palaeontologica Polonica. 67 (2): 341–464. doi:10.4202/app.00930.2021. hdl:20.500.11820/fa582600-0d30-4878-9632-3eab8a36b391. S2CID 249720063.
  236. ^ Shcherbakov, D. E.; Tzetlin, A. B.; Zhuravlev, A. Yu. (2022). "Boreognathus pogorevichi, a remarkable new polychaete annelid from the lower Permian of the Pechora Basin, Russia". Papers in Palaeontology. 8 (5): e1461. Bibcode:2022PPal....8E1461S. doi:10.1002/spp2.1461. S2CID 252133341.
  237. ^ a b c d e f Rodríguez-Martínez, M.; Buggisch, W.; Menéndez, S.; Moreno-Eiris, E.; Perejón, A. (2022). "Reconstruction of a Ross lost Cambrian Series 2 mixed siliciclastic–carbonate platform from carbonate clasts of the Shackleton Range, Antarctica". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 113 (3): 175–226. Bibcode:2022EESTR.113..175R. doi:10.1017/S1755691022000111. S2CID 251163924.
  238. ^ a b Słowiński, J.; Vinn, O.; Jäger, M.; Zatoń, M. (2022). "Middle and Late Jurassic tube-dwelling polychaetes from the Polish Basin: diversity, palaeoecology and comparisons with other assemblages". Acta Palaeontologica Polonica. 67 (4): 827–864. doi:10.4202/app.01006.2022. S2CID 254439833.
  239. ^ Wu, C.; Pang, K.; Chen, Z.; Wang, X.; Zhou, C.; Wan, B.; Yuan, X.; Xiao, S. (2022). "The rangeomorph fossil Charnia from the Ediacaran Shibantan biota in the Yangtze Gorges area, South China". Journal of Paleontology. 98 (2): 1–17. doi:10.1017/jpa.2022.97. S2CID 254387968.
  240. ^ Jeon, J.; Liang, K.; Kershaw, S.; Park, J.; Lee, M.; Zhang, Y. (2022). "Rise of clathrodictyid stromatoporoids during the Great Ordovician Biodiversification Event: insights from the Upper Ordovician Xiazhen Formation of South China". Journal of Paleontology. 96 (6): 1285–1317. Bibcode:2022JPal...96.1285J. doi:10.1017/jpa.2022.36. S2CID 250002512.
  241. ^ a b c Vinn, O.; Madison, A.; Wilson, M. A.; Toom, U. (2022). "Cornulitid tubeworms and other calcareous tubicolous organisms from the Hirmuse Formation (Katian, Upper Ordovician) of northern Estonia". Journal of Paleontology. 97: 38–46. doi:10.1017/jpa.2022.89. S2CID 254317729.
  242. ^ a b Vinn, O.; Wilson, M. A.; Madison, A.; Toom, U. (2022). "Small cornulitids from the Upper Ordovician (Katian) of Estonia". Palaeoworld. 33: 57–64. doi:10.1016/j.palwor.2022.12.005. S2CID 254672883.
  243. ^ a b c Peel, J. S.; Gubanov, A. P. (2022). "Hyoliths from the Bystraya Formation (Cambrian Series 2) of eastern Transbaikalia (Zabaykalsky Krai), Siberia". Alcheringa: An Australasian Journal of Palaeontology. 46 (2): 129–146. Bibcode:2022Alch...46..129P. doi:10.1080/03115518.2022.2096924. S2CID 251856370.
  244. ^ a b c d Ceccolini, F.; Cianferoni, F. (2022). "Four replacement names in fossil demosponges (Porifera: Demospongiae)". Revista Brasileira de Paleontologia. 25 (2): 165–167. doi:10.4072/rbp.2022.2.06. S2CID 250629860.
  245. ^ Novozhilova, N. V. (2022). "Early Cambrian palaeoscolecidan sclerites from the western limb of the Chekurovka anticline (Siberian Platform)". Paleontological Journal. 56 (2): 147–153. Bibcode:2022PalJ...56..147N. doi:10.1134/S0031030122020095. S2CID 248303171.
  246. ^ Peel, J. S. (2022). "A priapulid larva from the middle Cambrian (Wuliuan Stage) of North Greenland (Laurentia)". Bulletin of Geosciences. 97 (4): 445–452. doi:10.3140/bull.geosci.1865. S2CID 255360149.
  247. ^ Zatoń, M.; Vinn, O.; Toom, U.; Słowiński, J. (2022). "New encrusting tentaculitoids from the Silurian of Estonia and taxonomic status of Anticalyptraea Quenstedt, 1867". GFF. 144 (2): 111–117. Bibcode:2022GFF...144..111Z. doi:10.1080/11035897.2022.2042378. S2CID 248103801.
  248. ^ Kočí, T.; Goedert, J. L.; Jäger, M. (2022). "A new serpulid species (Polychaeta) from the late Eocene lower part of the Lincoln Creek Formation in western Washington State (USA)". Historical Biology: An International Journal of Paleobiology. 35 (10): 1845–1854. doi:10.1080/08912963.2022.2122824. S2CID 252350822.
  249. ^ Botting, J. P.; Ma, J.-Y. (2022). "A probable hyalonematid sponge (Hexactinellida: Amphidiscophora) from the Middle Ordovician of the Builth Inlier, Wales". Palaeoworld. 31 (4): 621–632. doi:10.1016/j.palwor.2022.01.011. S2CID 246594829.
  250. ^ a b Kočí, T.; Goedert, J. L.; Buckeridge, H. S. (2022). "Eocene tube-dwelling annelids (Polychaeta: Sedentaria) from the Black Hills, western Washington State: the first record of Neodexiospira from North America". PalZ. 96 (4): 631–653. Bibcode:2022PalZ...96..631K. doi:10.1007/s12542-022-00604-y. S2CID 247623413.
  251. ^ Lucy A. Muir; Joseph P. Botting; Steven N. A. Walker; James D. Schiffbauer; Breandán Anraoi MacGabhann (2018). "Onuphionella corusca sp. nov.: an early Cambrian-type agglutinated tube from Upper Ordovician strata of Morocco". In A. W. Hunter; J. J. Álvaro; B. Lefebvre; P. van Roy; S. Zamora (eds.). The Great Ordovician Biodiversification Event: Insights from the Tafilalt Biota, Morocco. Geological Society, London, Special Publications. Vol. 485. The Geological Society of London. pp. 297–309. doi:10.1144/SP485.7. S2CID 220277313.
  252. ^ Liu, J.; Dunlop, J. A.; Steiner, M.; Shu, D. (2022). "A Cambrian fossil from the Chengjiang fauna sharing characteristics with gilled lobopodians, opabiniids and radiodonts". Frontiers in Earth Science. 10: Article 861934. doi:10.3389/feart.2022.861934.
  253. ^ McCall, C. R. A. (2023). "A large pelagic lobopodian from the Cambrian Pioche Shale of Nevada". Journal of Paleontology. 97 (5): 1009–1024. Bibcode:2023JPal...97.1009M. doi:10.1017/jpa.2023.63. S2CID 266292707.
  254. ^ Yun, H.; Luo, C.; Chang, C.; Li, L.; Reitner, J.; Zhang, X. (2022). "Adaptive specialization of a unique sponge body from the Cambrian Qingjiang biota". Proceedings of the Royal Society B: Biological Sciences. 289 (1977): Article ID 20220804. doi:10.1098/rspb.2022.0804. PMC 9198775. PMID 35703053.
  255. ^ Kadolsky, D. (2022). "Enigmatic microfossils from Belgian Oligocene sediments are serpuloidean, not gastropod opercula". Cainozoic Research. 22 (1): 37–43.
  256. ^ Stock, C. W. (2022). "Rare stromatoporoids from the Lower Devonian (Emsian) of Nevada, and their biostratigraphic and paleobiogeographic significance". Journal of Paleontology. 96 (5): 979–990. Bibcode:2022JPal...96..979S. doi:10.1017/jpa.2022.18. S2CID 249140297.
  257. ^ Li, L.; Reitner, J.; Gong, F.; Yan, G.; Wu, R. (2023). "A new stiodermatid (Hexactinellida, Porifera) from the latest Ordovician of Anhui, South China and its significance for searching the missing link between the Cambrian and late Palaeozoic stiodermatid lineage". Historical Biology: An International Journal of Paleobiology. 35 (1): 116–126. Bibcode:2023HBio...35..116L. doi:10.1080/08912963.2021.2024180. S2CID 245820581.
  258. ^ Guo, J.; Parry, L. A.; Vinther, J.; Edgecombe, G. D.; Wei, F.; Zhao, J.; Zhao, Y.; Béthoux, O.; Lei, X.; Chen, A.; Hou, X.; Chen, T.; Cong, P. (2022). "A Cambrian tommotiid preserving soft tissues reveals the metameric ancestry of lophophorates". Current Biology. 32 (21): 4769–4778.e2. Bibcode:2022CBio...32E4769G. doi:10.1016/j.cub.2022.09.011. PMID 36170853. S2CID 252564106.
  259. ^ Bobrovskiy, I.; Nagovitsyn, A.; Hope, J. M.; Luzhnaya, E.; Brocks, J. J. (2022). "Guts, gut contents, and feeding strategies of Ediacaran animals". Current Biology. 32 (24): 5382–5389.e3. Bibcode:2022CBio...32E5382B. doi:10.1016/j.cub.2022.10.051. PMID 36417903. S2CID 253780558.
  260. ^ Hoyal Cuthill, J. F. (2022). "Ediacaran survivors in the Cambrian: suspicions, denials and a smoking gun" (PDF). Geological Magazine. 159 (7): 1210–1219. Bibcode:2022GeoM..159.1210H. doi:10.1017/S0016756821001333. S2CID 247829362.
  261. ^ Darroch, S. A. F.; Gibson, B. M.; Syversen, M.; Rahman, I. A.; Racicot, R. A.; Dunn, F. S.; Gutarra, S.; Schindler, E.; Wehrmann, A.; Laflamme, M. (2022). "The life and times of Pteridinium simplex". Paleobiology. 48 (4): 527–556. Bibcode:2022Pbio...48..527D. doi:10.1017/pab.2022.2. S2CID 248879848.
  262. ^ Taylor, R. S.; Nicholls, R.; Neville, J. M.; McIlroy, D. (2022). "Morphological variation in the rangeomorph organism Fractofusus misrai from the Ediacaran of Newfoundland, Canada". Geological Magazine. 160: 146–166. doi:10.1017/S0016756822000723. S2CID 251687679.
  263. ^ Aragonés Suarez, P.; Leys, S. P. (31 January 2022). "The sponge pump as a morphological character in the fossil record" (PDF). Paleobiology: 1–16. doi:10.1017/PAB.2021.43. ISSN 0094-8373. Wikidata Q111384420.
  264. ^ Zhuravlev, A. Yu.; Mitchell, E. G.; Bowyer, F.; Wood, R.; Penny, A. (2022). "Increases in reef size, habitat and metacommunity complexity associated with Cambrian radiation oxygenation pulses". Nature Communications. 13 (1). 7523. Bibcode:2022NatCo..13.7523Z. doi:10.1038/s41467-022-35283-5. PMC 9727068. PMID 36473861.
  265. ^ Lee, J.-H. (2022). "Limiting the known range of archaeocyath to the middle Cambrian: Antarcticocyathus webersi Debrenne et al. 1984 is a lithistid sponge". Historical Biology: An International Journal of Paleobiology. 36: 1–5. doi:10.1080/08912963.2022.2155818. S2CID 254628199.
  266. ^ Lee, J.-H.; Riding, R. (2022). "Recognizing sponge in Spongiostroma Gürich, 1906 from the Mississippian of Belgium". Journal of Paleontology. 97: 26–37. doi:10.1017/jpa.2022.73. S2CID 251705920.
  267. ^ Osés, G. L.; Wood, R.; Romero, G. R.; Evangelista Martins Prado, G. M.; Bidola, P.; Herzen, J.; Pfeiffer, F.; Stampar, S. N.; Alves Forancelli Pacheco, M. L. (2022). "Ediacaran Corumbella has a cataphract calcareous skeleton with controlled biomineralization". iScience. 25 (12). 105676. Bibcode:2022iSci...25j5676O. doi:10.1016/j.isci.2022.105676. PMC 9763863. PMID 36561886.
  268. ^ Pecoits, E.; Konhauser, K. O.; Aubet, N. R.; Heaman, L. M.; Veroslavsky, G.; Stern, R. A.; Gingras, M. K. (2012). "Bilaterian Burrows and Grazing Behavior at >585 Million Years Ago". Science. 336 (6089): 1693–1696. Bibcode:2012Sci...336.1693P. doi:10.1126/science.1216295. PMID 22745427. S2CID 27970523.
  269. ^ Verde, M.; Netto, R. G.; Azurica, D.; Lavina, E. L.; di Pasquo, M. (2022). "Revisiting the supposed oldest bilaterian trace fossils from Uruguay: Late Paleozoic, not Ediacaran". Palaeogeography, Palaeoclimatology, Palaeoecology. 602: Article 111158. Bibcode:2022PPP...60211158V. doi:10.1016/j.palaeo.2022.111158. S2CID 251171540.
  270. ^ Bekkouche, N.; Gąsiorowski, L. (2022). "Careful amendment of morphological data sets improves phylogenetic frameworks: re-evaluating placement of the fossil Amiskwia sagittiformis" (PDF). Journal of Systematic Palaeontology. 20 (1). 2109217. doi:10.1080/14772019.2022.2109217. S2CID 252747552.
  271. ^ Liu, F.; Skovsted, C. B.; Topper, T. P.; Zhang, Z. (2022). "Hyolithid-like hyoliths without helens from the early Cambrian of South China, and their implications for the evolution of hyoliths". BMC Ecology and Evolution. 22 (1): Article number 64. doi:10.1186/s12862-022-02022-9. PMC 9116025. PMID 35581561.
  272. ^ Liu, F.; Skovsted, C. B.; Topper, T. P.; Zhang, Z. (2022). "A fresh look at the Hyolithid Doliutheca from the Early Cambrian (Stage 4) Shipai Formation of the Three Gorges Area, Hubei, South China". Biology. 11 (6): Article 875. doi:10.3390/biology11060875. PMC 9219745. PMID 35741396.
  273. ^ Sun, H.; Zhao, F.; Zhu, M. (2022). "Anatomy, palaeoautecology and phylogenetic affinity of tubular Glossolites magnus from the early Cambrian Chengjiang biota, South China". Papers in Palaeontology. 8 (6): e1473. Bibcode:2022PPal....8E1473S. doi:10.1002/spp2.1473. S2CID 255125977.
  274. ^ Dong, X.P.; Duan, B.; Liu, J.; Donoghue, P. C. J. (2022). "Internal anatomy of a fossilized embryonic stage of the Cambrian-Ordovician scalidophoran Markuelia". Royal Society Open Science. 9 (10). 220115. Bibcode:2022RSOS....920115D. doi:10.1098/rsos.220115. PMC 9532980. PMID 36249341.
  275. ^ Liu, Y.; Carlisle, E.; Zhang, H.; Yang, B.; Steiner, M.; Shao, T.; Duan, B.; Marone, F.; Xiao, S.; Donoghue, P. C. J. (2022). "Saccorhytus is an early ecdysozoan and not the earliest deuterostome". Nature. 609 (7927): 541–546. Bibcode:2022Natur.609..541L. doi:10.1038/s41586-022-05107-z. hdl:1983/454e7bec-4cd4-4121-933e-abeab69e96c1. PMID 35978194. S2CID 251646316.
  276. ^ Strausfeld, N. J.; Hou, X.; Sayre, M. E.; Hirth, F. (2022). "The lower Cambrian lobopodian Cardiodictyon resolves the origin of euarthropod brains". Science. 378 (6622): 905–909. Bibcode:2022Sci...378..905S. doi:10.1126/science.abn6264. PMID 36423269. S2CID 253839538.
  277. ^ Budd, G. E.; Mayer, G.; Janssen, R.; Eriksson, B. J. (2023). "Comment on "The lower Cambrian lobopodian Cardiodictyon resolves the origin of euarthropod brains"". Science. 380 (6652). eadg1412. doi:10.1126/science.adg1412. PMID 37384683. S2CID 259287626.
  278. ^ Strausfeld, N. J.; Hou, X.; Sayre, M. E.; Hirth, F. (2023). "Response to Comment on "The lower Cambrian lobopodian Cardiodictyon resolves the origin of euarthropod brains"". Science. 380 (6652). eadg6051. doi:10.1126/science.adg6051. PMID 37384690. S2CID 259287625.
  279. ^ Tian, Q.; Zhao, F.; Zeng, H.; Zhu, M.; Jiang, B. (2022). "Ultrastructure reveals ancestral vertebrate pharyngeal skeleton in yunnanozoans". Science. 377 (6602): 218–222. Bibcode:2022Sci...377..218T. doi:10.1126/science.abm2708. PMID 35857544. S2CID 250380981.
  280. ^ He, K.; Liu, J.; Han, J.; Ou, Q.; Chen, A.; Zhang, Z.; Fu, D.; Hua, H.; Zhang, X.; Shu, D. (2023). "Comment on "Ultrastructure reveals ancestral vertebrate pharyngeal skeleton in yunnanozoans"". Science. 381 (6656). eade9707. doi:10.1126/science.ade9707. PMID 37499008. S2CID 260202685.
  281. ^ Zhang, X.-G.; Pratt, B. R. (2023). "Comment on "Ultrastructure reveals ancestral vertebrate pharyngeal skeleton in yunnanozoans"". Science. 381 (6656). eadf1472. doi:10.1126/science.adf1472. PMID 37498997. S2CID 260202683.
  282. ^ Tian, Q.; Zhao, F.; Zeng, H.; Zhu, M.; Jiang, B. (2023). "Response to Comments on "Ultrastructure reveals ancestral vertebrate pharyngeal skeleton in yunnanozoans"". Science. 381 (6656). eadf3363. doi:10.1126/science.adf3363. PMID 37499010. S2CID 260202688.
  283. ^ Mann, A.; Pardo, J. D.; Sues, H.-D. (2022). "Osteology and phylogenetic position of the diminutive 'microsaur' Odonterpeton triangulare from the Pennsylvanian of Linton, Ohio, and major features of recumbirostran phylogeny". Zoological Journal of the Linnean Society. 197 (3): 641–655. doi:10.1093/zoolinnean/zlac043.
  284. ^ Klembara, J.; Berman, D. S.; Henrici, A. C.; Martens, T.; Hain, M. (2022). "Reconstruction of the skull and description of new anatomical features of Diadectes absitus (Diadectidae, Diadectomorpha) from the early Permian of central Germany". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 113 (3): 267–278. Bibcode:2022EESTR.113..267K. doi:10.1017/S1755691022000160. S2CID 252836852.
  285. ^ Kolesnikov, A. (2022). "Beltanelliformis konovalovi sp. nov. From the Terminal Neoproterozoic of Central Urals: Taphonomic and Ecological Implications". Frontiers in Earth Science. 10: Article 875001. Bibcode:2022FrEaS..10.5001K. doi:10.3389/feart.2022.875001.
  286. ^ a b c d Nõlvak, J.; Liang, Y.; Hints, O. (2022). "Early and early Middle Ordovician chitinozoans from the Baldone drill core, central Latvia". Estonian Journal of Earth Sciences. 71 (1): 25–43. doi:10.3176/earth.2022.03.
  287. ^ Retallack, G. J. (2022). "Early Ediacaran lichen from Death Valley, California, USA". Journal of Palaeosciences. 71 (2): 187–218. doi:10.54991/jop.2022.1841. S2CID 255330797.
  288. ^ Krings, M. (2022). "Glaphyrobalantium hueberi gen. et sp. nov., a Cryptic Microbial Fossil, Presumably a Cyanobacterium or Microscopic Alga, from the Lower Devonian Rhynie Chert". International Journal of Plant Sciences. 183 (6): 432–440. doi:10.1086/720386. S2CID 248727677.
  289. ^ Hu, S.; Zhao, F.; Liu, A. G.; Zhu, M. (2022). "A new Cambrian frondose organism: "Ediacaran survivor"or convergent evolution?". Journal of the Geological Society. 180 (2): jgs2022–088. doi:10.1144/jgs2022-08 (inactive 1 November 2024).{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link)
  290. ^ a b c Liu, H.; Dong, L.; Qin, S.; Liu, W.; Li, C. (2022). "Restudy of string fossils from the Ediacaran-Cambrian Liuchapo Formation in Guizhou Province, South China". Precambrian Research. 376: Article 106693. Bibcode:2022PreR..37606693L. doi:10.1016/j.precamres.2022.106693. S2CID 248688088.
  291. ^ a b c d Yi, Y.; Chen, F.; Algeo, T. J.; Feng, Q. (2022). "Deep-water fossil assemblages from the Ediacaran-Cambrian transition of western Hunan, South China and their biostratigraphic and evolutionary implications". Palaeogeography, Palaeoclimatology, Palaeoecology. 591: Article 110878. Bibcode:2022PPP...59110878Y. doi:10.1016/j.palaeo.2022.110878. S2CID 246806627.
  292. ^ Keupp, H. (2022). "Megasphaerella doppelsteini n.g., n. sp., an enigmatic microfossil from the Lower Jurassic (Upper Pliensbachian) of Buttenheim (Franconia, S Germany)". Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen. 306 (1): 29–35. doi:10.1127/njgpa/2022/1095. S2CID 253307041.
  293. ^ Willman, S.; Peel, J. S. (2022). "Problematic tubular fossils from the Portfjeld Formation (Ediacaran) of North Greenland". Journal of Paleontology. 98 (2): 1–11. doi:10.1017/jpa.2022.43. S2CID 249330198.
  294. ^ a b Palacios, T.; Högström, A. E. S.; Jensen, S.; Ebbestad, J. O. R.; Agić, H.; Høyberget, M.; Meinhold, G.; Taylor, W. L. (2022). "Organic-walled microfossils from the Kistedalen Formation, Norway: acritarch chronostratigraphy of the Baltic Miaolingian and evolutionary trends of placoid acritarchs". Papers in Palaeontology. 8 (4): e1457. Bibcode:2022PPal....8E1457P. doi:10.1002/spp2.1457. hdl:10662/17276. S2CID 251880107.
  295. ^ Golubkova, E. Yu.; Kushim, E. A.; Kuzmenkova, O. F.; Laptsevich, A. G. (2022). "Early Cambrian biotas of the south of the Latvian Saddle of the Eastern European Platform, Belarus". Paleontological Journal. 56 (6): 693–701. Bibcode:2022PalJ...56..693G. doi:10.1134/S0031030122060053. S2CID 254248645.
  296. ^ Franz G., Lyckberg P., Khomenko V., Chournousenko V., Schulz H.-M., Mahlstedt N., Wirth R., Glodny J., Gernert U., Nissen J. (2022). "Fossilization of Precambrian microfossils in the Volyn pegmatite, Ukraine" (PDF). Biogeosciences. 19 (6): 1795–1811. Bibcode:2022BGeo...19.1795F. doi:10.5194/bg-19-1795-2022.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  297. ^ a b Schreder-Gomes, Sara I.; et al. (6 May 2022). "830-million-year-old microorganisms in primary fluid inclusions in halite". Geology. 50 (8): 918–922. Bibcode:2022Geo....50..918S. doi:10.1130/G49957.1. S2CID 248629125.
  298. ^ Kolesnikov, A.; Desiatkin, V. (2022). "Taxonomy and palaeoenvironmental distribution of palaeopascichnids". Geological Magazine. 159 (7): 1175–1191. Bibcode:2022GeoM..159.1175K. doi:10.1017/S0016756822000437. S2CID 249661878.
  299. ^ Zhang, Y.; Zhang, X. (2022). "Non-metazoan affinity of embryo-like Megasphaera fossils from the Ediacaran Zhenba microfossil assemblage". Precambrian Research. 374: Article 106645. Bibcode:2022PreR..37406645Z. doi:10.1016/j.precamres.2022.106645. S2CID 247959735.
  300. ^ Retallack, G. J. (2022). "Damaged Dickinsonia specimens provide clues to Ediacaran vendobiont biology". PLOS ONE. 17 (6): e0269638. Bibcode:2022PLoSO..1769638R. doi:10.1371/journal.pone.0269638. PMC 9202952. PMID 35709144.
  301. ^ Slater, S. M.; Bown, P.; Twitchett, R. J.; Danise, S.; Vajda, V. (2022). "Global record of "ghost" nannofossils reveals plankton resilience to high CO2 and warming". Science. 376 (6595): 853–856. Bibcode:2022Sci...376..853S. doi:10.1126/science.abm7330. PMID 35587965. S2CID 248917294.
  302. ^ Morard, R.; Hassenrück, C.; Greco, M.; Fernandez-Guerra, A.; Rigaud, S.; Douady, C. J.; Kucera, M. (2022). "Renewal of planktonic foraminifera diversity after the Cretaceous Paleogene mass extinction by benthic colonizers". Nature Communications. 13 (1). 7135. Bibcode:2022NatCo..13.7135M. doi:10.1038/s41467-022-34794-5. PMC 9681854. PMID 36414628.
  303. ^ Hupp, B. N.; Kelly, D. C.; Williams, J. W. (2022). "Isotopic filtering reveals high sensitivity of planktic calcifiers to Paleocene–Eocene thermal maximum warming and acidification". Proceedings of the National Academy of Sciences of the United States of America. 119 (9): e2115561119. Bibcode:2022PNAS..11915561H. doi:10.1073/pnas.2115561119. PMC 8892336. PMID 35193977.
  304. ^ Bergh, E. W.; Compton, J. S. (2022). "Taxonomy of Middle Miocene foraminifera from the northern Namibian continental shelf". Zootaxa. 5091 (1): 1–55. doi:10.11646/zootaxa.5091.1.1. PMID 35391261. S2CID 248024083.
  305. ^ Pérez-Pinedo, D.; McKean, C.; Taylor, R.; Nicholls, R.; McIlroy, D. (2022). "Charniodiscus and Arborea Are Separate Genera Within the Arboreomorpha: Using the Holotype of C. concentricus to Resolve a Taphonomic/Taxonomic Tangle". Frontiers in Earth Science. 9: Article 785929. Bibcode:2022FrEaS...9.1393P. doi:10.3389/feart.2021.785929.
  306. ^ Starr, Michelle (16 May 2022). "Potentially Alive 830-Million-Year-Old Organisms Found Trapped in Ancient Rock". ScienceAlert. Retrieved 17 May 2022.
  307. ^ Eckford-Soper, L. K.; Andersen, K. H.; Hansen, T. F.; Canfield, D. E. (2022). "A case for an active eukaryotic marine biosphere during the Proterozoic era". Proceedings of the National Academy of Sciences of the United States of America. 119 (41): e2122042119. Bibcode:2022PNAS..11922042E. doi:10.1073/pnas.2122042119. PMC 9564328. PMID 36191216. S2CID 252695080.
  308. ^ Yang, C.; Li, Y.; Selby, D.; Wan, B.; Guan, C.; Zhou, C.; Li, X.-H. (2022). "Implications for Ediacaran biological evolution from the ca. 602 Ma Lantian biota in China". Geology. 50 (5): 562–566. Bibcode:2022Geo....50..562Y. doi:10.1130/G49734.1. S2CID 246788576.
  309. ^ Eden, R.; Manica, A.; Mitchell, E. G. (2022). "Metacommunity analyses show an increase in ecological specialisation throughout the Ediacaran period". PLOS Biology. 20 (5): e3001289. doi:10.1371/journal.pbio.3001289. PMC 9113585. PMID 35580078.
  310. ^ Evans, S. D.; Tu, C.; Rizzo, A.; Surprenant, R. L.; Boan, P. C.; McCandless, H.; Marshall, N.; Xiao, S.; Droser, M. L. (2022). "Environmental drivers of the first major animal extinction across the Ediacaran White Sea-Nama transition". Proceedings of the National Academy of Sciences of the United States of America. 119 (46). e2207475119. Bibcode:2022PNAS..11907475E. doi:10.1073/pnas.2207475119. PMC 9674242. PMID 36343248.
  311. ^ Green, T.; Renne, P. R.; Keller, C. B. (2022). "Continental flood basalts drive Phanerozoic extinctions". Proceedings of the National Academy of Sciences of the United States of America. 119 (38). e2120441119. Bibcode:2022PNAS..11920441G. doi:10.1073/pnas.2120441119. PMC 9499591. PMID 36095185. S2CID 252209664.
  312. ^ Hsieh, S.; Plotnick, R. E.; Bush, A. M. (2022). "The Phanerozoic aftermath of the Cambrian information revolution: sensory and cognitive complexity in marine faunas". Paleobiology. 48 (3): 397–419. Bibcode:2022Pbio...48..397H. doi:10.1017/pab.2021.46. S2CID 246399509.
  313. ^ Nanglu, K.; Cole, S. R.; Wright, D. F.; Souto, C. (2022). "Worms and gills, plates and spines: the evolutionary origins and incredible disparity of deuterostomes revealed by fossils, genes, and development". Biological Reviews. 98 (1): 316–351. doi:10.1111/brv.12908. PMID 36257784. S2CID 252995259.
  314. ^ Na, L.; Kocsis, Á. T.; Li, Q.; Kiessling, W. (2022). "Coupling of geographic range and provincialism in Cambrian marine invertebrates". Paleobiology. 49 (2): 284–295. doi:10.1017/pab.2022.36. S2CID 254517514.
  315. ^ Chen, F.; Topper, T. P.; Skovsted, C. B.; Strotz, L. C.; Shen, J.; Zhang, Z. (2022). "Cambrian ecological complexities: perspectives from the earliest brachiopod – supported benthic communities in the early Cambrian Guanshan Lagerstätte". Gondwana Research. 107: 30–41. Bibcode:2022GondR.107...30C. doi:10.1016/j.gr.2022.02.008. S2CID 247204451.
  316. ^ Sun, Z.; Zhao, F.; Zeng, H.; Luo, C.; Van Iten, H.; Zhu, M. (2022). "The middle Cambrian Linyi Lagerstätte from the North China Craton: a new window on the Cambrian evolutionary fauna". National Science Review. 9 (7): nwac069. doi:10.1093/nsr/nwac069. PMC 9273334. PMID 35832778.
  317. ^ Saleh, F.; Guenser, P.; Gibert, C.; Balseiro, D.; Serra, F.; Waisfeld, B. G.; Antcliffe, J. B.; Daley, A. C.; Mángano, M. G.; Buatois, L. A.; Ma, X.; Vizcaïno, D.; Lefebvre, B. (2022). "Contrasting Early Ordovician assembly patterns highlight the complex initial stages of the Ordovician Radiation". Scientific Reports. 12 (1): Article number 3852. Bibcode:2022NatSR..12.3852S. doi:10.1038/s41598-022-07822-z. PMC 8907272. PMID 35264650.
  318. ^ Fang, X.; Mao, Y.; Liu, Q.; Yuan, W.; Chen, Z.; Wu, R.; Li, L.; Zhang, Y.; Ma, J.; Wang, W.; Zhan, R.; Peng, S.; Zhang, Y.; Huang, D. (2022). "The Liexi fauna: a new Lagerstätte from the Lower Ordovician of South China". Proceedings of the Royal Society B: Biological Sciences. 289 (1978): Article ID 20221027. doi:10.1098/rspb.2022.1027. PMC 9277276. PMID 35858062.
  319. ^ Saleh, F.; Vaucher, R.; Vidal, M.; El Hariri, K.; Laibl, L.; Daley, A. C.; Gutiérrez-Marco, J. C.; Candela, Y.; Harper, D. A. T.; Ortega-Hernández, J.; Ma, X.; Rida, A.; Vizcaïno, D.; Lefebvre, B. (2022). "New fossil assemblages from the Early Ordovician Fezouata Biota". Scientific Reports. 12 (1). 20773. Bibcode:2022NatSR..1220773S. doi:10.1038/s41598-022-25000-z. PMC 9747710. PMID 36513689.
  320. ^ Borisenko, T.; Vinn, O.; Grytsenko, V.; Francovschi, I.; Zaika, Y. (2022). "Symbiosis in corals and stromatoporoids from the Silurian of Baltica". Palaeontologia Electronica. 25 (2): Article number 25.2.a17. doi:10.26879/1206.
  321. ^ Zapalski, M. K.; Vinn, O.; Toom, U.; Ernst, A.; Wilson, M. A. (2022). "Bryozoan–cnidarian mutualism triggered a new strategy for greater resource exploitation as early as the Late Silurian". Scientific Reports. 12 (1). 15556. Bibcode:2022NatSR..1215556Z. doi:10.1038/s41598-022-19955-2. PMC 9481587. PMID 36114227.
  322. ^ Byrne, H. M.; Niedźwiedzki, G.; Blom, H.; Kear, B. P.; Ahlberg, P. E. (2022). "Coprolite diversity reveals a cryptic ecosystem in an early Tournaisian lake in East Greenland: Implications for ecosystem recovery after the end-Devonian extinction". Palaeogeography, Palaeoclimatology, Palaeoecology. 605: Article 111215. Bibcode:2022PPP...60511215B. doi:10.1016/j.palaeo.2022.111215. S2CID 252026713.
  323. ^ Zhang, S.-H.; Shen, S.-Z.; Erwin, D. H. (2022). "Latitudinal diversity gradient dynamics during Carboniferous to Triassic icehouse and greenhouse climates". Geology. 50 (10): 1166–1171. Bibcode:2022Geo....50.1166Z. doi:10.1130/G50110.1. S2CID 250650520.
  324. ^ Rawson, J. R. G.; Esteve-Altava, B.; Porro, L. B.; Dutel, H.; Rayfield, E. J. (2022). "Early tetrapod cranial evolution is characterized by increased complexity, constraint, and an offset from fin-limb evolution". Science Advances. 8 (36): eadc8875. Bibcode:2022SciA....8C8875R. doi:10.1126/sciadv.adc8875. PMC 9462696. PMID 36083907.
  325. ^ Brocklehurst, N.; Ford, D. P.; Benson, R. B. J. (2022). "Early origins of divergent patterns of morphological evolution on the mammal and reptile stem-lineages". Systematic Biology. 71 (5): 1195–1209. doi:10.1093/sysbio/syac020. PMC 9366456. PMID 35274702.
  326. ^ Matamales-Andreu, R.; Mujal, E.; Dinarès-Turell, J.; Kustatscher, E.; Roghi, G.; Oms, O.; Galobart, À.; Fortuny, J. (2022). "Early–middle Permian ecosystems of equatorial Pangaea: Integrated multi-stratigraphic and palaeontological review of the Permian of Mallorca (Balearic Islands, western Mediterranean)". Earth-Science Reviews. 228: Article 103948. Bibcode:2022ESRv..22803948M. doi:10.1016/j.earscirev.2022.103948. S2CID 246438404.
  327. ^ Moreau, J.-D.; Gand, G. (2022). "New data on the Permian ecosystem of the Rodez Basin: ichnofauna (traces of protostomians, tetrapods and fishes), jellyfishes and plants from Banassac-Canilhac (Lozère, southern France)". Geodiversitas. 44 (31): 975–987. doi:10.5252/geodiversitas2022v44a31. S2CID 253524111.
  328. ^ Prevec, R.; Nel, A.; Day, M. O.; Muir, R. A.; Matiwane, A.; Kirkaldy, A. P.; Moyo, S.; Staniczek, A.; Cariglino, B.; Maseko, Z.; Kom, N.; Rubidge, B. S.; Garrouste, R.; Holland, A.; Barber-James, H. M. (2022). "South African Lagerstätte reveals middle Permian Gondwanan lakeshore ecosystem in exquisite detail". Communications Biology. 5 (1). 1154. doi:10.1038/s42003-022-04132-y. PMC 9618562. PMID 36310243.
  329. ^ Lee, S.; Shi, G. R.; Nakrem, H. A.; Woo, J.; Tazawa, J.-I. (2022). "Mass extinction or extirpation: Permian biotic turnovers in the northwestern margin of Pangea". GSA Bulletin. 134 (9–10): 2399–2414. Bibcode:2022GSAB..134.2399L. doi:10.1130/B36227.1. hdl:10852/101313. S2CID 246585320.
  330. ^ Shishkin, M. A. (2022). "Disturbance of organizational equilibrium during the change of ancient tetrapod communities: its manifestations at the Middle-Late Permian transition". Paleontological Journal. 56 (3): 237–246. Bibcode:2022PalJ...56..237S. doi:10.1134/S0031030122030170. S2CID 249628091.
  331. ^ Marchetti, L.; Logghe, A.; Mujal, E.; Barrier, P.; Montenat, C.; Nel, A.; Pouillon, J.-M.; Garrouste, R.; Steyer, J. S. (2022). "Vertebrate tracks from the Permian of Gonfaron (Provence, Southern France) and their implications for the late Capitanian terrestrial extinction event". Palaeogeography, Palaeoclimatology, Palaeoecology. 599: Article 111043. Bibcode:2022PPP...59911043M. doi:10.1016/j.palaeo.2022.111043. S2CID 248597280.
  332. ^ Dal Corso, J.; Song, H.; Callegaro, S.; Chu, D.; Sun, Y.; Hilton, J.; Grasby, S. E.; Joachimski, M. M.; Wignall, P. B. (2022). "Environmental crises at the Permian–Triassic mass extinction". Nature Reviews Earth & Environment. 3 (3): 197–214. Bibcode:2022NRvEE...3..197D. doi:10.1038/s43017-021-00259-4. hdl:10852/100010. S2CID 247013868.
  333. ^ Foster, W. J.; Ayzel, G.; Münchmeyer, J.; Rettelbach, T.; Kitzmann, N. H.; Isson, T. T.; Mutti, M.; Aberhan, M. (2022). "Machine learning identifies ecological selectivity patterns across the end-Permian mass extinction". Paleobiology. 48 (3): 357–371. Bibcode:2022Pbio...48..357F. doi:10.1017/pab.2022.1. hdl:10289/14777. S2CID 247203709.
  334. ^ Feng, X.; Chen, Z.-Q.; Benton, M. J.; Su, C.; Bottjer, D. J.; Cribb, A. T.; Li, Z.; Zhao, L.; Zhu, G.; Huang, Y.; Guo, Z. (2022). "Resilience of infaunal ecosystems during the Early Triassic greenhouse Earth". Science Advances. 8 (26): eabo0597. Bibcode:2022SciA....8O.597F. doi:10.1126/sciadv.abo0597. PMC 9242451. PMID 35767613.
  335. ^ Smith, R. M. H.; Botha, J.; Viglietti, P. A. (2022). "Taphonomy of drought afflicted tetrapods in the Early Triassic Karoo Basin, South Africa". Palaeogeography, Palaeoclimatology, Palaeoecology. 604: Article 111207. Bibcode:2022PPP...60411207S. doi:10.1016/j.palaeo.2022.111207. S2CID 251781291.
  336. ^ Foster, W. J.; Godbold, A.; Brayard, A.; Frank, A. B.; Grasby, S. E.; Twitchett, R. J.; Oji, T. (2022). "Palaeoecology of the Hiraiso Formation (Miyagi Prefecture, Japan) and implications for the recovery following the end-Permian mass extinction". PeerJ. 10. e14357. doi:10.7717/peerj.14357. PMC 9774009. PMID 36569998.
  337. ^ Novikov, I. V.; Sennikov, A. G.; Uliakhin, A. V. (2022). "First find of reptiles in the nearshore Marine Lower Triassic of the Bolshoe Bogdo Mountain (Peri-Caspian Depression)". Paleontological Journal. 56 (5): 583–589. Bibcode:2022PalJ...56..583N. doi:10.1134/S0031030122050100. S2CID 252717743.
  338. ^ Sues, H.-D.; Olsen, P. E.; Fedak, T. J.; Schoch, R. R. (2022). "Diverse assemblage of Middle Triassic continental tetrapods from the Newark Supergroup of Nova Scotia (Canada)". Journal of Vertebrate Paleontology. 41 (4): e2023168. doi:10.1080/02724634.2021.2023168. S2CID 247181044.
  339. ^ Otero, R. A.; Rubilar-Rogers, D.; Soto-Acuña, S.; Vargas, M. A.; Mella Rojas, G.; Ugalde, R.; Rojas, O.; Rojas, J.; Novas, F. E. (2022). "New records of continental vertebrates from the Triassic of the Atacama Desert, northern Chile". Journal of South American Earth Sciences. 121. 104155. doi:10.1016/j.jsames.2022.104155. S2CID 254558840.
  340. ^ Shi, Y.-T.; Chen, J.-Y.; Liu, J. (2022). "A new Late Triassic tetrapod locality from North China". Vertebrata PalAsiatica. 61 (1): 17–25. doi:10.19615/j.cnki.2096-9899.220818.
  341. ^ Feng, Z.; Wan, S.; Sui, Q.; Labandeira, C.; Guo, Y.; Chen, J. (2022). "A Triassic tritrophic triad documents an early food-web cascade". Current Biology. 32 (23): 5165–5171.e2. Bibcode:2022CBio...32E5165F. doi:10.1016/j.cub.2022.10.031. PMID 36351435. S2CID 253395065.
  342. ^ Hartman, S. A.; Lovelace, D. M.; Linzmeier, B. J.; Mathewson, P. D.; Porter, W. P. (2022). "Mechanistic Thermal Modeling of Late Triassic Terrestrial Amniotes Predicts Biogeographic Distribution". Diversity. 14 (11). 973. doi:10.3390/d14110973.
  343. ^ Reolid, M.; Ruebsam, W.; Benton, M. J. (2022). "Impact of the Jenkyns Event (early Toarcian) on dinosaurs: Comparison with the Triassic/Jurassic transition". Earth-Science Reviews. 234. 104196. Bibcode:2022ESRv..23404196R. doi:10.1016/j.earscirev.2022.104196. S2CID 252608726.
  344. ^ Allain, R.; Vullo, R.; Rozada, L.; Anquetin, J.; Bourgeais, R.; Goedert, J.; Lasseron, M.; Martin, J. E.; Pérez-García, A.; Peyre De Fabrègues, C.; Royo-Torres, R.; Augier, D.; Bailly, G.; Cazes, L.; Despres, Y.; Gailliègue, A.; Gomez, B.; Goussard, F.; Lenglet, T.; Vacant, R.; Mazan; Tournepiche, J.-F. (2022). "Vertebrate paleobiodiversity of the Early Cretaceous (Berriasian) Angeac-Charente Lagerstätte (southwestern France): implications for continental faunal turnover at the J/K boundary". Geodiversitas. 44 (25): 683–752. doi:10.5252/geodiversitas2022v44a25. S2CID 251106920.
  345. ^ Liu, F.; Wu, R.; Han, F. (2022). "Vertebrate diversity of the Yanliao Biota and comparison with other biotas". Acta Palaeontologica Sinica. 61 (1): 88–106. doi:10.19800/j.cnki.aps.2020027.
  346. ^ Manitkoon, S.; Deesri, U.; Lauprasert, K.; Warapeang, P.; Nonsrirach, T.; Nilpanapan, A.; Wongko, K.; Chanthasit, P. (2022). "Fossil assemblage from the Khok Pha Suam locality of northeastern, Thailand: an overview of vertebrate diversity from the Early Cretaceous Khok Kruat Formation (Aptian-Albian)". Fossil Record. 25 (1): 83–98. Bibcode:2022FossR..25...83M. doi:10.3897/fr.25.83081.
  347. ^ Pochat-Cottilloux, Y.; Allain, R.; Lasseron, M. (2022). "Microvertebrate fauna from Gadoufaoua (Niger, Aptian, Early Cretaceous)". Comptes Rendus Palevol. 21 (41): 901–926. doi:10.5852/cr-palevol2022v21a41. S2CID 254331290.
  348. ^ Benyoucef, M.; Pérez-García, A.; Bendella, M.; Ortega, F.; Vullo, R.; Bouchemla, I.; Ferré, B. (2022). "The "mid"-Cretaceous (Lower Cenomanian) Continental Vertebrates of Gara Samani, Algeria. Sedimentological Framework and Palaeodiversity". Frontiers in Earth Science. 10: Article 927059. Bibcode:2022FrEaS..10.7059B. doi:10.3389/feart.2022.927059.
  349. ^ Bardet, N.; Guinot, G.; Yılmaz, İ. Ö.; Hoşgör, İ. (2022). "New marine vertebrates (elasmobranchs, actinopterygians, reptiles) from the Upper Cretaceous Arabic Platform of SE Turkey". Comptes Rendus Palevol. 21 (38): 837–845. doi:10.5852/cr-palevol2022v21a38. S2CID 253141293.
  350. ^ Philippe, M.; McLoughlin, S.; Strullu-Derrien, C.; Bamford, M.; Kiel, S.; Nel, A.; Thévenard, F. (2022). "Life in the woods: Taphonomic evolution of a diverse saproxylic community within fossil woods from Upper Cretaceous submarine mass flow deposits (Mzamba Formation, southeast Africa)". Gondwana Research. 109: 113–133. Bibcode:2022GondR.109..113P. doi:10.1016/j.gr.2022.04.008.
  351. ^ Fanti, F.; Bell, P. R.; Vavrek, M.; Larson, D.; Koppelhus, E.; Sissons, R. L.; Langone, A.; Campione, N. E.; Sullivan, C. (2022). "Filling the Bearpaw gap: Evidence for palaeoenvironment-driven taxon distribution in a diverse, non-marine ecosystem from the late Campanian of west-Central Alberta, Canada". Palaeogeography, Palaeoclimatology, Palaeoecology. 592: Article 110923. Bibcode:2022PPP...59210923F. doi:10.1016/j.palaeo.2022.110923. hdl:11585/879403. S2CID 247348345.
  352. ^ Brand, N. A.; Heckert, A. B.; Sanchez, I.; Foster, J. R.; Hunt-Foster, R. K.; Eberle, J. J. (2022). "New Late Cretaceous microvertebrate assemblage from the Campanian–Maastrichtian Williams Fork Formation, northwestern Colorado, USA, and its paleoenvironmental implications". Acta Palaeontologica Polonica. 67 (3): 579–600. doi:10.4202/app.00934.2021. S2CID 250999596.
  353. ^ Rodríguez-Tovar, F. J.; Kaskes, P.; Ormö, J.; Gulick, S. P. S.; Whalen, M. T.; Jones, H. L.; Lowery, C. M.; Bralower, T. J.; Smit, J.; King, D. T.; Goderis, S.; Claeys, P. (2022). "Life before impact in the Chicxulub area: unique marine ichnological signatures preserved in crater suevite". Scientific Reports. 12 (1): Article number 11376. Bibcode:2022NatSR..1211376R. doi:10.1038/s41598-022-15566-z. PMC 9256630. PMID 35790847.
  354. ^ García-Girón, J.; Chiarenza, A. A.; Alahuhta, J.; DeMar, D. G.; Heino, J.; Mannion, P. D.; Williamson, T. E.; Wilson Mantilla, G. P.; Brusatte, S. L. (2022). "Shifts in food webs and niche stability shaped survivorship and extinction at the end-Cretaceous". Science Advances. 8 (49): eadd5040. Bibcode:2022SciA....8D5040G. doi:10.1126/sciadv.add5040. PMC 9728968. PMID 36475805.
  355. ^ Khand, Y.; Hoffman, E. A.; O'Leary, M. A.; Novacek, M. J. (2022). "A new Early Paleogene fossil mammal locality in the central-eastern Nemegt Basin, Gobi Desert, Mongolia, and notes on mammalian biostratigraphy". Journal of Paleontology. 97: 243–266. doi:10.1017/jpa.2022.85. S2CID 254303042.
  356. ^ Kovalchuk, O.; Divay, J. D.; Barkaszi, Z.; Sinitsa, M. V.; Vasilyan, D.; Stefaniak, K. (2022). "New data on the Miocene vertebrate assemblage of the Zaysan Basin (Central Asia) with implications for biostratigraphy, paleoecology, and paleobiogeography". Journal of Vertebrate Paleontology. 42 (2). e2139183. Bibcode:2022JVPal..42E9183K. doi:10.1080/02724634.2022.2139183. S2CID 256797095.
  357. ^ McCurry, M. R.; Cantrill, D. J.; Smith, P. M.; Beattie, R.; Dettmann, M.; Baranov, V.; Magee, C.; Nguyen, J. M. T.; Forster, M. A.; Hinde, J.; Pogson, R.; Wang, H.; Marjo, C. E.; Vasconcelos, P.; Frese, M. (2022). "A Lagerstätte from Australia provides insight into the nature of Miocene mesic ecosystems". Science Advances. 8 (1): eabm1406. Bibcode:2022SciA....8.1406M. doi:10.1126/sciadv.abm1406. PMC 8741189. PMID 34995110.
  358. ^ Daxner-Höck, G.; Čerňanský, A.; Flynn, L. J.; Wessels, W. (2022). "Fossil vertebrates from the late Miocene of Builstyn Khudag (Valley of Lakes, Central Mongolia)" (PDF). Annalen des Naturhistorischen Museums in Wien, Serie A. 123: 81–135. JSTOR 27121975.
  359. ^ Zelenkov, N. V.; Syromyatnikova, E. V.; Tarasenko, K. K.; Titov, V. V.; Tesakov, A. S. (2022). "Southeastern Europe as the arena of vertebrate evolution in the late Miocene". Paleontological Journal. 56 (2): 213–226. Bibcode:2022PalJ...56..213Z. doi:10.1134/S0031030122020149. S2CID 248303321.
  360. ^ Kostopoulos, D. S.; Konidaris, G. E.; Amanatidou, M.; Chitoglou, K.; Fragkioudakis, E.; Gerakakis, N.; Giannakou, V.; Gkeme, A.; Kalaitzi, C.; Tsakalidis, C.; Tsatsalis, V. (2022). "The new fossil site Krimni-3 in Mygdonia Basin and the first evidence of a giant ostrich in the Early Pleistocene of Greece". PalZ. 97: 147–161. doi:10.1007/s12542-022-00632-8. S2CID 252750662.
  361. ^ Kjær, K. H.; Pedersen, M. W.; De Sanctis, B.; De Cahsan, B.; Korneliussen, T. S.; Michelsen, C. S.; Sand, K. K.; Jelavić, S.; Ruter, A. H.; Schmidt, A. M. A.; Kjeldsen, K. K.; Tesakov, A. S.; Snowball, I.; Gosse, J. C.; Alsos, I. G.; Wang, Y.; Dockter, C.; Rasmussen, M.; Jørgensen, M. E.; Skadhauge, B.; Prohaska, A.; Kristensen, J. Å.; Bjerager, M.; Allentoft, M. E.; Coissac, E.; PhyloNorway Consortium; Rouillard, A.; Simakova, A.; Fernandez-Guerra, A.; Bowler, C.; Macias-Fauria, M.; Vinner, L.; Welch, J. J.; Hidy, A. J.; Sikora, M.; Collins, M. J.; Durbin, R.; Larsen, N. K.; Willerslev, E. (2022). "A 2-million-year-old ecosystem in Greenland uncovered by environmental DNA". Nature. 612 (7939): 283–291. Bibcode:2022Natur.612..283K. doi:10.1038/s41586-022-05453-y. PMC 9729109. PMID 36477129.
  362. ^ Fernández-Monescillo, M.; Martínez, G.; García López, D.; Frechen, M.; Romero-Lebrón, E.; Krapovickas, J. M.; Haro, J. A.; Rodríguez, P. E.; Rouzaut, S.; Tauber, A. A. (2022). "The last record of the last typotherid (Notoungulata, Mesotheriidae, Mesotherium cristatum) for the middle Pleistocene of the western Pampean region, Córdoba Province, Argentina, and its biostratigraphic implications". Quaternary Science Reviews. 301. 107925. doi:10.1016/j.quascirev.2022.107925. S2CID 254913691.
  363. ^ Hilgen, S. L.; Pop, E.; Adhityatama, S.; Veldkamp, T. A.; Berghuis, H. W. K.; Sutisna, I.; Yurnaldi, D.; Dupont-Nivet, G.; Reimann, T.; Nowaczyk, N.; Kuiper, K. F.; Krijgsman, W.; Vonhof, H. B.; Ekowati, D. R.; Alink, G.; Hafsari, N. L. G. D. M.; Drespriputra, O.; Verpoorte, A.; Bos, R.; Simanjuntak, T.; Prasetyo, B.; Joordens, J. C. A. (2022). "Revised age and stratigraphy of the classic Homo erectus-bearing succession at Trinil (Java, Indonesia)" (PDF). Quaternary Science Reviews. 301. 107908. doi:10.1016/j.quascirev.2022.107908. S2CID 255040209.
  364. ^ Courtin, J.; Perfumo, A.; Andreev, A. A.; Opel, T.; Stoof-Leichsenring, K. R.; Edwards, M. E.; Murton, J. B.; Herzschuh, U. (2022). "Pleistocene glacial and interglacial ecosystems inferred from ancient DNA analyses of permafrost sediments from Batagay megaslump, East Siberia" (PDF). Environmental DNA. 4 (6): 1265–1283. doi:10.1002/edn3.336. S2CID 250397307.
  365. ^ Dantas, V. L.; Pausas, J. G. (2022). "The legacy of the extinct Neotropical megafauna on plants and biomes". Nature Communications. 13 (1): Article number 129. Bibcode:2022NatCo..13..129D. doi:10.1038/s41467-021-27749-9. PMC 8748933. PMID 35013233.
  366. ^ Ramm, T.; Thorn, K. M.; Hipsley, C. A.; Müller, J.; Hocknull, S.; Melville, J. (2022). "Herpetofaunal diversity changes with climate: evidence from the Quaternary of McEachern's Deathtrap Cave, southeastern Australia". Journal of Vertebrate Paleontology. 41 (5): e2009844. doi:10.1080/02724634.2021.2009844. S2CID 247277364.
  367. ^ Hansford, J. P.; Turvey, S. T. (2022). "Dietary isotopes of Madagascar's extinct megafauna reveal holocene browsing and grazing guilds". Biology Letters. 18 (4): Article ID 20220094. doi:10.1098/rsbl.2022.0094. PMC 9006009. PMID 35414222. S2CID 248119857.
  368. ^ Finch, S. P.; D'Emic, M. D. (2022). "Evolution of amniote dentine apposition rates". Biology Letters. 18 (4): Article ID 20220092. doi:10.1098/rsbl.2022.0092. PMC 9042580. PMID 35472282.
  369. ^ Verrière, A.; Fröbisch, N. B.; Fröbisch, J. (2022). "Regionalization, constraints, and the ancestral ossification patterns in the vertebral column of amniotes". Scientific Reports. 12 (1). 22257. Bibcode:2022NatSR..1222257V. doi:10.1038/s41598-022-24983-z. PMC 9789111. PMID 36564413.
  370. ^ Krause, A. J.; Mills, B. J. W.; Merdith, A. S.; Lenton, T. M.; Poulton, S. W. (2022). "Extreme variability in atmospheric oxygen levels in the late Precambrian". Science Advances. 8 (41): eabm8191. Bibcode:2022SciA....8M8191K. doi:10.1126/sciadv.abm8191. PMC 9565794. PMID 36240275.
  371. ^ Saleh, F.; Qi, C.; Buatois, L. A.; Mángano, M. G.; Paz, M.; Vaucher, R.; Zheng, Q.; Hou, X.-G.; Gabbott, S. E.; Ma, X. (2022). "The Chengjiang Biota inhabited a deltaic environment". Nature Communications. 13 (1): Article number 1569. Bibcode:2022NatCo..13.1569S. doi:10.1038/s41467-022-29246-z. PMC 8943010. PMID 35322027.
  372. ^ Zhao, Z.; Thibault, N. R.; Dahl, T. W.; Schovsbo, N. H.; Sørensen, A. L.; Rasmussen, C. M. Ø.; Nielsen, A. T. (2022). "Synchronizing rock clocks in the late Cambrian". Nature Communications. 13 (1): Article number 1990. Bibcode:2022NatCo..13.1990Z. doi:10.1038/s41467-022-29651-4. PMC 9007955. PMID 35418121.
  373. ^ Kozik, N. P.; Young, S. A.; Newby, S. M.; Liu, M.; Chen, D.; Hammarlund, E. U.; Bond, D. P. G.; Them, T. R.; Owens, J. D. (2022). "Rapid marine oxygen variability: Driver of the Late Ordovician mass extinction". Science Advances. 8 (46): eabn8345. Bibcode:2022SciA....8N8345K. doi:10.1126/sciadv.abn8345. PMC 9674285. PMID 36399571.
  374. ^ Jing, X.; Yang, Z.; Mitchell, R. N.; Tong, Y.; Zhu, M.; Wan, B. (2022). "Ordovician–Silurian true polar wander as a mechanism for severe glaciation and mass extinction". Nature Communications. 13 (1). 7941. Bibcode:2022NatCo..13.7941J. doi:10.1038/s41467-022-35609-3. PMC 9792554. PMID 36572674.
  375. ^ Spencer, C. J.; Davies, N. S.; Gernon, T. M.; Wang, X.; McMahon, W. J.; Morrell, T. R. I.; Hincks, T.; Pufahl, P. K.; Brasier, A.; Seraine, M.; Lu, G.-M. (2022). "Composition of continental crust altered by the emergence of land plants" (PDF). Nature Geoscience. 15 (9): 735–740. Bibcode:2022NatGe..15..735S. doi:10.1038/s41561-022-00995-2. S2CID 251912736.
  376. ^ Bicknell, R. D. C.; Naugolnykh, S. V. (2023). "Palaeoecological reconstruction of the Late Devonian Lebedjan biota". Historical Biology: An International Journal of Paleobiology. 35 (2): 218–226. Bibcode:2023HBio...35..218B. doi:10.1080/08912963.2022.2032025. S2CID 246820064.
  377. ^ Marchetti, L.; Forte, G.; Kustatscher, E.; DiMichele, W. A.; Lucas, S. G.; Roghi, G.; Juncal, M. A.; Hartkopf-Fröder, C.; Krainer, K.; Morelli, C.; Ronchi, A. (2022). "The Artinskian Warming Event: an Euramerican change in climate and the terrestrial biota during the early Permian". Earth-Science Reviews. 226: Article 103922. Bibcode:2022ESRv..22603922M. doi:10.1016/j.earscirev.2022.103922. S2CID 245892961.
  378. ^ Laurin, M.; Hook, R. W. (2022). "The age of North America's youngest Paleozoic continental vertebrates: a review of data from the Middle Permian Pease River (Texas) and El Reno (Oklahoma) Groups". BSGF – Earth Sciences Bulletin. 193: Article number 10. doi:10.1051/bsgf/2022007.
  379. ^ Haig, D. W.; Dillinger, A.; Playford, G.; Riera, R.; Sadekov, A.; Skrzypek, G.; Håkansson, E.; Mory, A. J.; Peyrot, D.; Thomas, C. (2022). "Methane seeps following Early Permian (Sakmarian) deglaciation, interior East Gondwana, Western Australia: Multiphase carbonate cements, distinct carbon-isotope signatures, extraordinary biota". Palaeogeography, Palaeoclimatology, Palaeoecology. 591: Article 110862. Bibcode:2022PPP...59110862H. doi:10.1016/j.palaeo.2022.110862. S2CID 246645062.
  380. ^ Viglietti, P. A.; Rojas, A.; Rosvall, M.; Klimes, B.; Angielczyk, K. D. (2022). "Network-based biostratigraphy for the late Permian to mid-Triassic Beaufort Group (Karoo Supergroup) in South Africa enhances biozone applicability and stratigraphic correlation". Palaeontology. 65 (5). e12622. Bibcode:2022Palgy..6512622V. doi:10.1111/pala.12622. S2CID 252550389.
  381. ^ Fielding, C. R.; Frank, T. D.; Savatic, K.; Mays, C.; McLoughlin, S.; Vajda, V.; Nicoll, R. S. (2022). "Environmental change in the late Permian of Queensland, NE Australia: The warmup to the end-Permian Extinction". Palaeogeography, Palaeoclimatology, Palaeoecology. 594: Article 110936. Bibcode:2022PPP...59410936F. doi:10.1016/j.palaeo.2022.110936. S2CID 247514266.
  382. ^ Foster, W. J.; Hirtz, J. A.; Farrell, C.; Reistroffer, M.; Twitchett, R. J.; Martindale, R. C. (2022). "Bioindicators of severe ocean acidification are absent from the end-Permian mass extinction". Scientific Reports. 12 (1): Article number 1202. Bibcode:2022NatSR..12.1202F. doi:10.1038/s41598-022-04991-9. PMC 8786885. PMID 35075151.
  383. ^ Cao, C.; Bataille, C. P.; Song, H.; Saltzman, M. R.; Tierney Cramer, K.; Wu, H.; Korte, C.; Zhang, Z.; Liu, X.-M. (2022). "Persistent Late Permian to Early Triassic warmth linked to enhanced reverse weathering". Nature Geoscience. 15 (10): 832–838. Bibcode:2022NatGe..15..832C. doi:10.1038/s41561-022-01009-x. S2CID 252708876.
  384. ^ Shen, J.; Zhang, Y. G.; Yang, H.; Xie, S.; Pearson, A. (2022). "Early and late phases of the Permian–Triassic mass extinction marked by different atmospheric CO2 regimes". Nature Geoscience. 15 (10): 839–844. Bibcode:2022NatGe..15..839S. doi:10.1038/s41561-022-01034-w. S2CID 252697822.
  385. ^ Fox, C. P.; Whiteside, J. H.; Olsen, P. E.; Cui, X.; Summons, R. E.; Idiz, E.; Grice, K. (2022). "Two-pronged kill mechanism at the end-Triassic mass extinction" (PDF). Geology. 50 (4): 448–453. Bibcode:2022Geo....50..448F. doi:10.1130/G49560.1. S2CID 245782726.
  386. ^ Onoue, T.; Michalík, J.; Shirozu, H.; Yamashita, M.; Yamashita, K.; Kusaka, S.; Soda, K. (2022). "Extreme continental weathering in the northwestern Tethys during the end-Triassic mass extinction". Palaeogeography, Palaeoclimatology, Palaeoecology. 594: Article 110934. Bibcode:2022PPP...59410934O. doi:10.1016/j.palaeo.2022.110934. S2CID 247515330.
  387. ^ Bordy, E. M.; Lockley, M. G.; Rampersadh, A.; Mukaddam, R.; Head, H. V. (2022). "Life and land engulfed in the late Early Jurassic Karoo lavas of southern Gondwana". Geological Magazine. 160 (4): 645–666. doi:10.1017/S0016756822001169. S2CID 254957306.
  388. ^ Yu, Z.; Dong, L.; Huyskens, M. H.; Yin, Q.-Z.; Wang, Y.; Deng, C.; He, H. (2022). "The exceptionally preserved Early Cretaceous "Moqi Fauna" from eastern Inner Mongolia, China, and its age relationship with the Jehol Biota". Palaeogeography, Palaeoclimatology, Palaeoecology. 589: Article 110824. Bibcode:2022PPP...58910824Y. doi:10.1016/j.palaeo.2021.110824. S2CID 245714839.
  389. ^ Rodríguez-López, J. P.; Wu, C.; Vishnivetskaya, T. A.; Murton, J. B.; Tang, W.; Ma, C. (2022). "Permafrost in the Cretaceous supergreenhouse". Nature Communications. 13 (1). 7946. Bibcode:2022NatCo..13.7946R. doi:10.1038/s41467-022-35676-6. PMC 9792593. PMID 36572668.
  390. ^ Beveridge, T. L.; Roberts, E. M.; Ramezani, J.; Titus, A. L.; Eaton, J. G.; Irmis, R. B.; Sertich, J. J. W. (2022). "Refined geochronology and revised stratigraphic nomenclature of the Upper Cretaceous Wahweap Formation, Utah, U.S.A. and the age of early Campanian vertebrates from southern Laramidia". Palaeogeography, Palaeoclimatology, Palaeoecology. 591: Article 110876. Bibcode:2022PPP...59110876B. doi:10.1016/j.palaeo.2022.110876. S2CID 246766015.
  391. ^ Ramezani, J.; Beveridge, T. L.; Rogers, R. R.; Eberth, D. A.; Roberts, E. M. (2022). "Calibrating the zenith of dinosaur diversity in the Campanian of the Western Interior Basin by CA-ID-TIMS U–Pb geochronology". Scientific Reports. 12 (1). 16026. Bibcode:2022NatSR..1216026R. doi:10.1038/s41598-022-19896-w. PMC 9512893. PMID 36163377.
  392. ^ Roberts, E. M.; O'Connor, P. M.; Clarke, J. A.; Slotznick, S. P.; Placzek, C. J.; Tobin, T. S.; Hannaford, C.; Orr, T.; Jinnah, Z. A.; Claeson, K. M.; Salisbury, S.; Kirschvink, J. L.; Pirrie, D.; Lamanna, M. C. (2022). "New age constraints support a K/Pg boundary interval on Vega Island, Antarctica: Implications for latest Cretaceous vertebrates and paleoenvironments". GSA Bulletin. 135 (3–4): 867–885. doi:10.1130/B36422.1. S2CID 250577048.
  393. ^ Nicholson, U.; Bray, V. J.; Gulick, S. P. S.; Aduomahor, B. (2022). "The Nadir Crater offshore West Africa: A candidate Cretaceous-Paleogene impact structure". Science Advances. 8 (33): eabn3096. Bibcode:2022SciA....8N3096N. doi:10.1126/sciadv.abn3096. PMC 9385158. PMID 35977017.
  394. ^ During, M. A. D.; Smit, J.; Voeten, D. F. A. E.; Berruyer, C.; Tafforeau, P.; Sanchez, S.; Stein, K. H. W.; Verdegaal-Warmerdam, S. J. A.; van der Lubbe, J. H. J. L. (2022). "The Mesozoic terminated in boreal spring". Nature. 603 (7899): 91–94. Bibcode:2022Natur.603...91D. doi:10.1038/s41586-022-04446-1. PMC 8891016. PMID 35197634. S2CID 247082799.
  395. ^ Morgan, J. V.; Bralower, T. J.; Brugget, J.; Wünnemann, K. (2022). "The Chicxulub impact and its environmental consequences". Nature Reviews Earth & Environment. 3 (5): 338–354. Bibcode:2022NRvEE...3..338M. doi:10.1038/s43017-022-00283-y. S2CID 248088486.
  396. ^ Auderset, A.; Moretti, S.; Taphorn, B.; Ebner, P.-R.; Kast, E.; Wang, X. T.; Schiebel, R.; Sigman, D. M.; Haug, G. H.; Martínez-García, A. (2022). "Enhanced ocean oxygenation during Cenozoic warm periods". Nature. 609 (7925): 77–82. Bibcode:2022Natur.609...77A. doi:10.1038/s41586-022-05017-0. PMC 9433325. PMID 36045236.
  397. ^ Brachert, T. C.; Felis, T.; Gagnaison, C.; Hoehle, M.; Reuter, M.; Spreter, P. M. (2022). "Slow-growing reef corals as climate archives: A case study of the Middle Eocene Climatic Optimum 40 Ma ago". Science Advances. 8 (20): eabm3875. Bibcode:2022SciA....8M3875B. doi:10.1126/sciadv.abm3875. PMC 9122318. PMID 35594346.
  398. ^ Siljeström, S.; Neubeck, A.; Steele, A. (2022). "Detection of porphyrins in vertebrate fossils from the Messel and implications for organic preservation in the fossil record". PLOS ONE. 17 (6): e0269568. Bibcode:2022PLoSO..1769568S. doi:10.1371/journal.pone.0269568. PMC 9242450. PMID 35767560.
  399. ^ Miao, Y.; Chang, H.; Li, L.; Cheng, F.; Garzione, C.; Yang, Y. (2022). "Early Oligocene—Late Miocene Wildfire History in the Northern Tibetan Plateau and Links to Temperature-Driven Precipitation Changes". Frontiers in Earth Science. 10: Article 850809. doi:10.3389/feart.2022.850809.
  400. ^ Casanovas-Vilar, I.; Garcés, M.; Marcuello, Á.; Abella, J.; Madurell-Malapeira, J.; Jovells-Vaqué, S.; Cabrera, L.; Galindo, J.; Beamud, E.; Ledo, J. J.; Queralt, P.; Martí, A.; Sanjuan, J.; Martín-Closas, C.; Jiménez-Moreno, G.; Luján, À. H.; Villa, A.; DeMiguel, D.; Sánchez, I. M.; Robles, J. M.; Furió, M.; Van den Hoek Ostende, L. W.; Sánchez-Marco, A.; Sanisidro, Ó.; Valenciano, A.; García-Paredes, I.; Angelone, A.; Pons-Monjo, G.; Azanza, B.; Delfino, M.; Bolet, A.; Grau-Camats, M.; Vizcaíno-Varo, V.; Mormeneo, D.; Kimura, Y.; Moyà-Solà, S.; Alba, D. M. (2022). "Els Casots (Subirats, Catalonia), a key site for the Miocene vertebrate record of Southwestern Europe". Historical Biology: An International Journal of Paleobiology. 34 (8): 1494–1508. Bibcode:2022HBio...34.1494C. doi:10.1080/08912963.2022.2043296. hdl:10261/265685. S2CID 247468844.
  401. ^ Nguy, W. H.; Secord, R. (2022). "Middle Miocene paleoenvironmental reconstruction in the central Great Plains, USA, from stable carbon isotopes in ungulates". Palaeogeography, Palaeoclimatology, Palaeoecology. 594: Article 110929. Bibcode:2022PPP...59410929N. doi:10.1016/j.palaeo.2022.110929. S2CID 247389370.
  402. ^ Miao, Y.; Fang, X.; Sun, J.; Xiao, W.; Yang, Y.; Wang, X.; Farnsworth, A.; Huang, K.; Ren, Y.; Wu, F.; Qiao, Q.; Zhang, W.; Meng, Q.; Yan, X.; Zheng, Z.; Song, C.; Utescher, T. (2022). "A new biologic paleoaltimetry indicating Late Miocene rapid uplift of northern Tibet Plateau". Science. 378 (6624): 1074–1079. Bibcode:2022Sci...378.1074M. doi:10.1126/science.abo2475. PMID 36480632. S2CID 254481001.
  403. ^ Cohen, A. S.; Du, A.; Rowan, J.; Yost, C. L.; Billingsley, A. L.; Campisano, C. J.; Brown, E. T.; Deino, A. L.; Feibel, C. S.; Grant, K.; Kingston, J. D.; Lupien, R. L.; Muiruri, V.; Owen, R. B.; Reed, K. E.; Russell, J.; Stockhecke, M. (2022). "Plio-Pleistocene environmental variability in Africa and its implications for mammalian evolution". Proceedings of the National Academy of Sciences of the United States of America. 119 (16): e2107393119. Bibcode:2022PNAS..11907393C. doi:10.1073/pnas.2107393119. PMC 9169865. PMID 35412903. S2CID 248128445.
  404. ^ Su, D. F.; Haile-Selassie, Yohannes (2022). "Mosaic habitats at Woranso-Mille (Ethiopia) during the Pliocene and implications for Australopithecus paleoecology and taxonomic diversity". Journal of Human Evolution. 163: Article 103076. Bibcode:2022JHumE.16303076S. doi:10.1016/j.jhevol.2021.103076. PMID 34998271. S2CID 245788627.
  405. ^ Hopley, P. J.; Cerling, T. E.; Crété, L.; Werdelin, L.; Mwebi, O.; Manthi, F. K.; Leakey, L. N. (2022). "Stable isotope analysis of carnivores from the Turkana Basin, Kenya: Evidence for temporally-mixed fossil assemblages". Quaternary International. 650: 12–27. doi:10.1016/j.quaint.2022.04.004.
  406. ^ Zachariasse, W. J.; Lourens, L. J. (2022). "About the age and depositional depth of the sediments with reported bipedal footprints at Trachilos (NW Crete, Greece)". Scientific Reports. 12 (1). 18471. Bibcode:2022NatSR..1218471Z. doi:10.1038/s41598-022-23296-5. PMC 9630425. PMID 36323766.
  407. ^ Tu, H.; Luo, L.; Deng, C.; Ou, Z.; Lai, Z.; Shen, G.; Bae, C. J.; Granger, D. (2022). "Isochron 26Al/10Be burial dating of the Xiashagou Fauna in the Nihewan Basin, northern China: Implications for biogeography and early hominin dispersals". Quaternary Science Reviews. 283: Article 107447. Bibcode:2022QSRv..28307447T. doi:10.1016/j.quascirev.2022.107447. S2CID 247826933.
  408. ^ Stepka, Z.; Azuri, I.; Horwitz, L. K.; Chazan, M.; Natalio, F. (2022). "Hidden signatures of early fire at Evron Quarry (1.0 to 0.8 Mya)". Proceedings of the National Academy of Sciences of the United States of America. 119 (25): e2123439119. Bibcode:2022PNAS..11923439S. doi:10.1073/pnas.2123439119. PMC 9231470. PMID 35696581.
  409. ^ Gosling, W. D.; Miller, C. S.; Shanahan, T. M.; Holden, P. B.; Overpeck, J. T.; van Langevelde, F. (2022). "A stronger role for long-term moisture change than for CO2 in determining tropical woody vegetation change" (PDF). Science. 376 (6593): 653–656. Bibcode:2022Sci...376..653G. doi:10.1126/science.abg4618. PMID 35511966. S2CID 248541663.
  410. ^ Farmer, J. R.; Pico, T.; Underwood, O. M.; Cleveland Stout, R.; Granger, J.; Cronin, T. M.; Fripiat, F.; Martínez-García, A.; Haug, G. H.; Sigman, D. M. (2022). "The Bering Strait was flooded 10,000 years before the Last Glacial Maximum". Proceedings of the National Academy of Sciences of the United States of America. 120 (1). e2206742119. doi:10.1073/pnas.2206742119. hdl:20.500.11850/589649. PMC 9910591. PMID 36574665. S2CID 255219767.
  411. ^ Murchie, T. J.; Karpinski, E.; Eaton, K.; Duggan, A. T.; Baleka, S.; Zazula, G.; MacPhee, R. D. E.; Froese, D.; Poinar, H. N. (2022). "Pleistocene mitogenomes reconstructed from the environmental DNA of permafrost sediments". Current Biology. 32 (4): 851–860.e7. Bibcode:2022CBio...32E.851M. doi:10.1016/j.cub.2021.12.023. PMID 35016010. S2CID 245838890.
  412. ^ Clark, J.; Carlson, A. E.; Reyes, A. V.; Carlson, E. C. B.; Guillaume, L.; Milne, G. A.; Tarasov, L.; Caffee, M.; Wilcken, K.; Rood, D. H. (2022). "The age of the opening of the Ice-Free Corridor and implications for the peopling of the Americas". Proceedings of the National Academy of Sciences of the United States of America. 119 (14): e2118558119. Bibcode:2022PNAS..11918558C. doi:10.1073/pnas.2118558119. PMC 9168949. PMID 35312340.
  413. ^ Wiemann, Jasmina; Briggs, Derek E. G. (2022). "Raman spectroscopy is a powerful tool in molecular paleobiology: An analytical response to Alleon et al. (doi.org/10.1002/bies.202000295)". BioEssays. 44 (2): Article 2100070. doi:10.1002/bies.202100070. ISSN 1521-1878. PMID 34993976. S2CID 245824320. Archived from the original on 2022-01-10. Retrieved 2022-01-10.
  414. ^ Neaux, D.; Louail, M.; Ferchaud, S.; Surault, J.; Merceron, G. (2022). "Experimental assessment of the relationship between diet and mandibular morphology using a pig model: new insights for paleodietary reconstructions". The Anatomical Record. 305 (11): 3150–3160. doi:10.1002/ar.24895. PMID 35142076. S2CID 246700374.
  415. ^ Amano, H.; Rae, T. C.; Tsoukala, E.; Nakatsukasa, M.; Ogihara, N. (2022). "Computerized restoration of a fossil cranium based on selective elimination of estimated taphonomic deformation". American Journal of Biological Anthropology. 178 (3): 448–460. doi:10.1002/ajpa.24493. S2CID 246618526.
  416. ^ Demuth, O. E.; Wiseman, A. L. A.; van Beesel, J.; Mallison, H.; Hutchinson, J. R. (2022). "Three-dimensional polygonal muscle modelling and line of action estimation in living and extinct taxa". Scientific Reports. 12 (1): Article number 3358. Bibcode:2022NatSR..12.3358D. doi:10.1038/s41598-022-07074-x. PMC 8888607. PMID 35233027.
  417. ^ Lallensack, J. N.; Falkingham, P. L. (2022). "A new method to calculate limb phase from trackways reveals gaits of sauropod dinosaurs". Current Biology. 32 (7): 1635–1640.e4. Bibcode:2022CBio...32E1635L. doi:10.1016/j.cub.2022.02.012. PMID 35240050. S2CID 247198973.
  418. ^ Gates, T. A.; Cai, H.; Hu, Y.; Han, X.; Griffith, E.; Burgener, L.; Hyland, E.; Zanno, L. E. (2022). "Estimating ancient biogeographic patterns with statistical model discrimination". The Anatomical Record. 306 (7): 1880–1895. doi:10.1002/ar.25067. PMID 36151605. S2CID 252496590.
  419. ^ Cisneros, J. C.; Raja, N. B.; Ghilardi, A. M.; Dunne, E. M.; Pinheiro, F. L.; Regalado Fernández, O. R; Sales, M. A. F.; Rodríguez-de la Rosa, R. A.; Miranda-Martínez, A. Y.; González-Mora, S.; Bantim, R. A. M.; de Lima, F. J.; Pardo, J. D. (2022). "Digging deeper into colonial palaeontological practices in modern day Mexico and Brazil". Royal Society Open Science. 9 (3): Article ID 210898. Bibcode:2022RSOS....910898C. doi:10.1098/rsos.210898. PMC 8889171. PMID 35291323.
  420. ^ Dunne, E. M.; Raja, N. B.; Stewens, P. P.; Zin-Maung-Maung-Thein; Khin Zaw (2022). "Ethics, law, and politics in palaeontological research: The case of Myanmar amber". Communications Biology. 5 (1). 1023. doi:10.1038/s42003-022-03847-2. PMC 9522859. PMID 36175597.
  421. ^ Stewens, P. P.; Raja, N. B.; Dunne, E. M. (2022). "The Return of Fossils Removed Under Colonial Rule". Santander Art and Culture Law Review. 2/2022 (8): 69–94. doi:10.4467/2450050XSNR.22.013.17026. S2CID 255695583.
  422. ^ Chen, C.; Qin, S.; Wang, Y.; Holland, G.; Wynn, P.; Zhong, W.; Zhou, Z. (2022). "High temperature methane emissions from Large Igneous Provinces as contributors to late Permian mass extinctions". Nature Communications. 13 (1). 6893. Bibcode:2022NatCo..13.6893C. doi:10.1038/s41467-022-34645-3. PMC 9653473. PMID 36371500.
  423. ^ Gliwa, J.; Wiedenbeck, M.; Schobben, M.; Ullmann, C. V.; Kiessling, W.; Ghaderi, A.; Struck, U.; Korn, D. (2022). "Gradual warming prior to the end-Permian mass extinction". Palaeontology. 65 (5): e12621. Bibcode:2022Palgy..6512621G. doi:10.1111/pala.12621. S2CID 252137622.
  424. ^ Joachimski, M. M.; Müller, J.; Gallagher, T. M.; Mathes, G.; Chu, D. L.; Mouraviev, F.; Silantiev, V.; Sun, Y. D.; Tong, J. N. (2022). "Five million years of high atmospheric CO2 in the aftermath of the Permian-Triassic mass extinction". Geology. 50 (6): 650–654. Bibcode:2022Geo....50..650J. doi:10.1130/G49714.1. S2CID 248116846.
  425. ^ Mau, M.; Kent, D. V.; Clemmensen, L. B. (2022). "Planetary chaos and inverted climate phasing in the Late Triassic of Greenland". Proceedings of the National Academy of Sciences of the United States of America. 119 (17): e2118696119. Bibcode:2022PNAS..11918696M. doi:10.1073/pnas.2118696119. PMC 9169927. PMID 35452307. S2CID 248346031.
  426. ^ Olsen, P.; Sha, J.; Fang, Y.; Chang, C.; Whiteside, J. H.; Kinney, S.; Sues, H.-D.; Kent, D.; Schaller, M.; Vajda, V. (2022). "Arctic ice and the ecological rise of the dinosaurs". Science Advances. 8 (26): eabo6342. Bibcode:2022SciA....8O6342O. doi:10.1126/sciadv.abo6342. PMC 10883366. PMID 35776799.
  427. ^ Jones, M. M.; Petersen, S. V.; Curley, A. N. (2022). "A tropically hot mid-Cretaceous North American Western Interior Seaway". Geology. 50 (8): 954–958. Bibcode:2022Geo....50..954J. doi:10.1130/G49998.1. S2CID 248676201.
  428. ^ Gaskell, D. E.; Huber, M.; O'Brien, C. L.; Inglis, G. N.; Acosta, R. P.; Poulsen, C. J.; Hull, P. M. (2022). "The latitudinal temperature gradient and its climate dependence as inferred from foraminiferal δ18O over the past 95 million years". Proceedings of the National Academy of Sciences of the United States of America. 119 (11): e2111332119. Bibcode:2022PNAS..11911332G. doi:10.1073/pnas.2111332119. PMC 8931236. PMID 35254906. S2CID 247293580.
  429. ^ Junium, C. K.; Zerkle, A. L.; Witts, J. D.; Ivany, L. C.; Yancey, T. E.; Liu, C.; Claire, M. W. (2022). "Massive perturbations to atmospheric sulfur in the aftermath of the Chicxulub impact". Proceedings of the National Academy of Sciences of the United States of America. 119 (14): e2119194119. Bibcode:2022PNAS..11919194J. doi:10.1073/pnas.2119194119. PMC 9168947. PMID 35312339.
  430. ^ Meckler, A. N.; Sexton, P. F.; Piasecki, A. M.; Leutert, T. J.; Marquardt, J.; Ziegler, M.; Agterhuis, T.; Lourens, L. J.; Rae, J. W. B.; Barnet, J.; Tripati, A.; Bernasconi, S. M. (2022). "Cenozoic evolution of deep ocean temperature from clumped isotope thermometry" (PDF). Science. 377 (6601): 86–90. Bibcode:2022Sci...377...86M. doi:10.1126/science.abk0604. PMID 35771913. S2CID 243914991.
  431. ^ Su, L.-F.; Zhang, Q.-Q.; Sun, Y.-K.; Zhang, S.-L.; Smith, T.; Li, C.-S. (2022). "New evidence of the emergence of the East Asian monsoon in the early Palaeogene". Scientific Reports. 12 (1). 20471. Bibcode:2022NatSR..1220471S. doi:10.1038/s41598-022-24298-z. PMC 9705385. PMID 36443349.
  432. ^ Agterhuis, T.; Ziegler, M.; de Winter, N. J.; Lourens, L. J. (2022). "Warm deep-sea temperatures across Eocene Thermal Maximum 2 from clumped isotope thermometry". Communications Earth & Environment. 3 (1): Article number 39. Bibcode:2022ComEE...3...39A. doi:10.1038/s43247-022-00350-8.
  433. ^ Straume, E. O.; Nummelin, A.; Gaina, C.; Nisancioglu, K. H. (2022). "Climate transition at the Eocene–Oligocene influenced by bathymetric changes to the Atlantic–Arctic oceanic gateways". Proceedings of the National Academy of Sciences of the United States of America. 119 (17): e2115346119. Bibcode:2022PNAS..11915346S. doi:10.1073/pnas.2115346119. PMC 9169914. PMID 35446685. S2CID 248323534.
  434. ^ Herbert, T. D.; Dalton, C. A.; Liu, Z.; Salazar, A.; Si, W.; Wilson, D. S. (2022). "Tectonic degassing drove global temperature trends since 20 Ma". Science. 377 (6601): 116–119. Bibcode:2022Sci...377..116H. doi:10.1126/science.abl4353. PMID 35771904. S2CID 250175135.
  435. ^ Timmermann, A.; Yun, K.-S.; Raia, P.; Ruan, J.; Mondanaro, A.; Zeller, E.; Zollikofer, C.; Ponce de León, M.; Lemmon, D.; Willeit, M.; Ganopolski, A. (2022). "Climate effects on archaic human habitats and species successions". Nature. 604 (7906): 495–501. Bibcode:2022Natur.604..495T. doi:10.1038/s41586-022-04600-9. PMC 9021022. PMID 35418680.
  436. ^ Foerster, V.; Asrat, A.; Bronk Ramsey, C.; Brown, E. T.; Chapot, M. S.; Deino, A.; Duesing, W.; Grove, M.; Hahn, A.; Junginger, A.; Kaboth-Bahr, S.; Lane, C. S.; Opitz, S.; Noren, A.; Roberts, H. M.; Stockhecke, M.; Tiedemann, R.; Vidal, C. M.; Vogelsang, R.; Cohen, A. S.; Lamb, H. F.; Schaebitz, F.; Trauth, M. H. (2022). "Pleistocene climate variability in eastern Africa influenced hominin evolution". Nature Geoscience. 15 (10): 805–811. Bibcode:2022NatGe..15..805F. doi:10.1038/s41561-022-01032-y. PMC 9560894. PMID 36254302. S2CID 252549905.
  437. ^ Neugebauer, I.; Dinies, M.; Plessen, B.; Dräger, N.; Brauer, A.; Brückner, H.; Frenzel, P.; Gleixner, G.; Hoelzmann, P.; Krahn, K. J.; Pint, A.; Schwab, V. F.; Schwarz, A.; Tjallingii, R.; Engel, M. (2022). "The unexpectedly short Holocene Humid Period in Northern Arabia". Communications Earth & Environment. 3 (1): Article number 47. Bibcode:2022ComEE...3...47N. doi:10.1038/s43247-022-00368-y.