Jump to content

2024 in paleobotany

From Wikipedia, the free encyclopedia

List of years in paleobotany
In paleontology
2021
2022
2023
2024
2025
2026
2027
In arthropod paleontology
2021
2022
2023
2024
2025
2026
2027
In paleoentomology
2021
2022
2023
2024
2025
2026
2027
In paleomalacology
2021
2022
2023
2024
2025
2026
2027
In reptile paleontology
2021
2022
2023
2024
2025
2026
2027
In archosaur paleontology
2021
2022
2023
2024
2025
2026
2027
In mammal paleontology
2021
2022
2023
2024
2025
2026
2027
In paleoichthyology
2021
2022
2023
2024
2025
2026
2027

This paleobotany list records new fossil plant taxa that were to be described during the year 2024, as well as notes other significant paleobotany discoveries and events which occurred during 2024.

Algae

[edit]

Charophytes

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Echinochara pontis[1]

Sp. nov

Pérez-Cano & Martín-Closas

Early Cretaceous (Berriasian)

Els Mangraners Formation

 Spain

A member of the family Clavatoraceae.

Chlorophytes

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Acicularia claudiopolitana[2]

Sp. nov

Valid

Bucur et al.

Triassic

 Romania

A species of Acicularia.

Bediaella[3]

Gen. et sp. nov

Ernst, Vachard & Rodríguez

Devonian (Pragian)

 Spain

A probable member of Dasycladales. The type species is B. hispanica.

Clypeina? pamelareidae[4]

Sp. nov

Valid

Bucur, Del Piero & Martini

Late Triassic (Norian)

 Canada
( Yukon)

A member of Dasycladales.

Harpericystis[5]

Gen. et sp. nov

Krings

Devonian

Rhynie chert

 United Kingdom

A probable member of Chlorophyta. The type species is H. verecunda.

Jimaodanus[6]

Nom. nov

Pu

Silurian (Llandovery)

Waukesha Lagerstätte

 United States
( Wisconsin)

A dasycladalean alga; a replacement name for Heterocladus LoDuca, Kluessendorf & Mikulic (2003).

Julpiaella baltresi[2]

Sp. nov

Valid

Bucur et al.

Triassic

 Romania

A member of Dasycladales.

Pseudodiplopora ioanaletitiae[2]

Sp. nov

Valid

Bucur et al.

Triassic

 Romania

A member of Dasycladales.

Ochrophytes

[edit]
Name Novelty Status Authors Age Type locality Location Notes Images

Houjiashania[7]

Gen. et sp. nov

Valid

Liu et al.

Ediacaran

Dengying Formation

 China

A possible brown alga. The type species is H. yuxiensis. Announced in 2023; the final version of the article naming it was published in 2024.

Mallomonas enigmata[8]

Sp. nov

Siver

Eocene

 Canada
( Northwest Territories)

A species of Mallomonas.

Mallomonas gigantica[9]

Sp. nov

In press

Siver

Eocene

 Canada
( Northwest Territories)

A species of Mallomonas.

Rhodophyta

[edit]
Name Novelty Status Authors Age Type locality Location Notes Images

Amphiroa dabbabensis[10]

Sp. nov

Hamad

Pliocene

Shagra Formation

 Egypt

A species of Amphiroa.

Other algae

[edit]
Name Novelty Status Authors Age Type locality Location Notes Images

Characrhynium[11]

Gen. et sp. nov

Krings

Devonian

Windyfield chert

 United Kingdom

A probable unicellular alga. Genus includes new species C. amoenum.

Yunnanospirellus[12]

Gen. et 2 sp. nov

Li et al.

Ediacaran and Cambrian

 China

A macroalga known from the Ediacaran Miaohe biota and from the Cambrian Chengjiang biota. The type species is Y. typica; genus also includes Y. elegans.

Phycological research

[edit]
  • Evidence from genomic data, interpreted as indicating that the brown algae originated during the Ordovician but their major diversification happened during the Mesozoic, is presented by Choi et al. (2024).[13]
  • Kiel et al. (2024) report the discovery of kelp holdfasts from the Oligocene strata in Washington State (United States), providing evidence of the presence of kelp in the northeastern Pacific Ocean since the earliest Oligocene.[14]
  • Putative dasycladalean alga Voronocladus dryganti from the Silurian of Ukraine is argued by LoDuca (2024) to be a member of Bryopsidales; the author also reinterprets purported graptolite-like epibionts of V. dryganti, originally described as the new taxon Podoliagraptus algaeoides, as actually representing the uppermost siphons of mature thalli of V. dryganti.[15]
  • A diverse charophyte flora, including fossil material of Echinochara cf. peckii representing the oldest record of the family Clavatoraceae reported to date, is described from the Middle Jurassic (Bathonian) marginal marine beds of southern France by Trabelsi, Sames & Martín-Closas (2024).[16]

Non-vascular plants

[edit]

Bryophyta

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Jamesrossia[17]

Gen. et sp. nov

Valid

Walker et al.

Late Cretaceous (Campanian)

Santa Marta Formation

Antarctica

A moss belonging to the family Rhabdoweisiaceae. The type species is J. plicata.

Servicktia tatyanae[18]

Sp. nov

Ignatov in Ignatov et al.

Permian (Lopingian)

 Russia
( Vologda Oblast)

A moss belonging to the group Protosphagnales.

Marchantiophyta

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Frullania delgadillii[19]

Sp. nov

Juárez-Martínez & Estrada-Ruiz in Juárez-Martínez, Córdova-Tabares & Estrada-Ruiz

Miocene

Mexican amber

 Mexico

A liverwort, a species of Frullania.

Jubula polessica[20]

Sp. nov

Valid

Mamontov, Atwood & Perkovsky in Mamontov et al.

Eocene

Rovno amber

 Ukraine

A liverwort, a species of Jubula.

Leptoscyphus davidii[21]

Sp. nov

Valid

Mamontov et al.

Eocene

Rovno amber

 Ukraine

A liverwort, a species of Leptoscyphus.

Nipponolejeunea rovnoi[22]

Sp. nov

Mamontov et al.

Eocene

Rovno amber

 Ukraine

A liverwort.

Nipponolejeunea solodovnikovii[22]

Sp. nov

Mamontov et al.

Eocene

Rovno amber

 Ukraine

A liverwort.

Radula tikhomirovae[23]

Sp. nov

Valid

Mamontov & Perkovsky in Mamontov et al.

Eocene

Rovno amber

 Ukraine

A liverwort, a species of Radula.

Non-vascular plant research

[edit]
  • Ignatov et al. (2024) describe new fossil material of the Permian moss Gomankovia from the Aristovo locality (Vologda Oblast, Russia), providing new information on its anatomy.[24]

Lycophytes

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Heliodendron[25]

Gen. et sp. nov

Junior homonym

Qin et al.

Devonian

Wutong Formation

 China

A member of Isoetales belonging to the group Dichostrobiles. The type species is H. longshanense. The generic name is preoccupied by Heliodendron Gill.K.Br. & Bayly (2022).

Lepidostrobus willardii[26]

Sp. nov

Valid

Pšenička, Bek & Nelson

Carboniferous (Pennsylvanian)

Tradewater Formation

 United States
( Illinois)

Selaginellites argentinensis[27]

Sp. nov

Valid

Cariglino, Zavattieri & Lara

Triassic

 Argentina

A member of the family Selaginellaceae.

Lycophyte research

[edit]
  • Revision of the original material of Bumbudendron is published by Coturel (2024).[28]
  • Evidence of silica biomineralization in Permian spikemosses from the Xuanwei Formation (Yunnan, China) is presented by Feng et al. (2024).[29]

Ferns and fern allies

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Arthropitys raimundii[30]

Sp. nov

Rößler et al.

Permian

Leukersdorf Formation

 Germany

A calamitalean.

Artisophyton chalmersii[31]

Comb. nov

Valid

(Goodlet)

Carboniferous (Serpukhovian)

Limestone Coal Formation

 United Kingdom

A member of the family Tedeleaceae; moved from "Megaphyton" chalmersii Goodlet (1957).

Bussacoconus[32]

Gen. et sp. nov

Correia & Sá

Carboniferous (Pennsylvanian)

Vale da Mó Formation

 Portugal

A member of Sphenophyllales. Genus includes new species B. zeliapereirae.

Cyathocarpus benefoliatii[33]

Sp. nov

Guo, Zhou & Feng in Guo et al.

Permian (Lopingian)

Xuanwei Formation

 China

A marattialean fern.

Cystodium parasorbifolium[34]

Sp. nov

Li & Moran in Guo et al.

Cretaceous

Burmese amber

 Myanmar

A member of the family Cystodiaceae.

Equicalastrobus glabratus[35]

Sp. nov

Valid

Procopio Rodríguez, Bodnar & Beltrán

Middle Triassic (Ladinian)

Cortaderita Formation

 Argentina

A member of the family Equisetaceae.

Henanotheca qingyunensis[36]

Sp. nov

Valid

Guo, Zhou & Feng in Guo et al.

Permian (Lopingian)

Xuanwei Formation

 China

A filicalean fern.

Hexaphyllostrobus[37]

Gen. et sp. nov

D'Antonio et al.

Carboniferous

Mazon Creek fossil beds

 United States ( Illinois)

A member of Sphenophyllales. Genus includes new species H. kostorhysii.

Jerana[38]

Gen. et sp. nov

Meyer-Berthaud et al.

Devonian (Givetian)

 Morocco

A member of Cladoxylopsida. Genus includes new species J. modica.

Neocalamites vanderburghii[39]

Sp. nov

Kuipers, van Konijnenburg-van Cittert & Wagner-Cremer

Middle Triassic (Anisian)

 Germany

A member of Equisetales.

Palaeosorum siwalikum[40]

Sp. nov

Valid

Kundu, Hazra & Khan in Kundu et al.

Miocene

 India

A member of the family Polypodiaceae. Announced in 2023; the final version of the article naming it was published in 2024.

Paracladoxylon[41]

Gen. et sp. nov

Chu & Tomescu in Chu, Durieux & Tomescu

Devonian (Emsian)

Battery Point Formation

 Canada
( Quebec)

A member of Cladoxylopsida. Genus includes new species P. kespekianum.

Pecluma hispaniolae[42]

Sp. nov

Regalado & Schmidt in Regalado et al.

Miocene

Dominican amber

 Dominican Republic

A species of Pecluma.

Scolecopteris oxydonta[43]

Sp. nov

Sun et al.

Permian

Taiyuan Formation

 China

A marattialean fern.

Tempskya hailunensis[44]

Sp. nov

Liu et al.

Cretaceous

Songliao Basin

 China

Pteridological research

[edit]
  • Yang et al. (2024) revise fossil material of Bowmanites described by Halle (1927)[45] from Permian Shihottse Formation (China).[46]
  • Wang et al. (2024) report the discovery of a fossil forest of Neocalamites plants from the Middle Triassic Yanchang Formation (China), and interpret this finding as evidence of wide-scale intensification of the water cycle during the Triassic prior to the Carnian pluvial episode.[47]
  • Wu et al. (2024) reconstruct fronds of Pecopteris lativenosa on the basis of fossils from the Permian Wuda Tuff flora (China).[48]
  • Jia et al. (2024) describe fossil material of Cladophlebis kwangyuanensis from the Xujiahe Formation (Chongqing, China), expanding known geographical range of the species, and interpret the studied specimens as living in warm, humid subtropical-tropical monsoon climate during the Late Triassic.[49]
  • Evidence from the study of an almost monospecific assemblage of fossils of Ruffordia goeppertii from the Albian strata from the Los Majuelos fossil site (Teruel, Spain), indicative of colonization of disturbed deltaic floodplains by the studied ferns, is presented by Sender et al. (2024).[50]
  • The classification of Microlepia burmasia from the Cretaceous amber from Myanmar as a dennstaedtiaceous fern belonging to the genus Microlepia is contested by Zhang (2024).[51]
  • A study on the phylogenetic relationships of extant and fossil members of Cyatheales, and on the biogeography of the group throughout its evolutionary history, is published by Ramírez-Barahona (2024).[52]
  • Machado et al. (2024) describe fossil material of Pteridium sp. cf. P. esculentum from the Miocene Ñirihuau Formation (Argentina) representing the oldest and southernmost record of Pteridium from South America reported to date.[53]

Bennettitales

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Weltrichia huitzilopochtlii[54]

Comb. nov

(Wieland)

Early Jurassic (Toarcian)

Rosario Formation

 Mexico

A member of Bennettitales. Moved from Williamsonia huitzilopochtli Wieland.

Williamsoniella rosarensis[55]

Sp. nov

Velasco de León et al.

Early-Middle Jurassic

Cualac Formation

 Mexico

A member of Bennettitales belonging to the family Williamsoniaceae.

Conifers

[edit]

Araucariaceae

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Araucaria timkarikensis[56]

Sp. nov

Slodownik

Eocene

 Australia

A species of Araucaria.

Cheirolepidiaceae

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Classostrobus doylei[57]

Sp. nov

Mendes et al.

Early Cretaceous

Figueira da Foz Formation

 Portugal

Cupressaceae

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Amurodendron[58]

Gen. et sp. nov

Valid

Sokolova et al.

Paleocene

 Russia
( Amur Oblast)

A conifer with affinities with the family Cupressaceae. The type species is A. pilosum. Published online in 2024, but the issue date is listed as December 2023.

Cunninghamia nakatonbetsuensis[59]

Sp. nov

Valid

Jiang & Yamada in Jiang et al.

Late Cretaceous (Maastrichtian)

Heitaro-zawa Formation

 Japan

A species of Cunninghamia.

Cupressoxylon dianneae[60]

Sp. nov

Valid

Vanner et al.

Cretaceous

Tupuangi Formation

 New Zealand

Pinaceae

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Keteleerioxylon shandongense[61]

Sp. nov

Hao, Jiang, Tian & Wang in Hao et al.

Early Cretaceous

Zhifengzhuang Formation

 China

Onostrobus[62]

Gen. et sp. nov

Valid

Rothwell & Stockey

Early Cretaceous (Aptian)

Budden Canyon Formation

 United States
( California)

The type species is O. elongatus.

Paranothotsuga[63]

Gen. et comb. nov

Valid

Kowalski in Kowalski et al.

Oligocene to Pliocene

Cottbus Formation

 Germany

The type species is "Pseudotsuga" jechorekiae Czaja (2000).

Pseudotsuga lesvosensis[64]

Sp. nov

Zhu, Li, Wang & Zouros in Zhu et al.

Miocene

Sigri Pyroclastic Formation

 Greece

A species of Pseudotsuga.

Tsuga weichangensis[65]

Sp. nov

In press

Li et al.

Miocene

 China

A species of Tsuga.
Announced in Feb 2023, formally published Jan 2024

Podocarpaceae

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Podocarpus paralungatikensis[56]

Sp. nov

Slodownik

Eocene

 Australia

A species of Podocarpus.

Protophyllocladoxylon jacobusii[60]

Sp. nov

Valid

Vanner et al.

Cretaceous

Tupuangi Formation

 New Zealand

Taxaceae

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Torreya jiuquanensis[66]

Sp. nov

Li & Du in Li et al.

Early Cretaceous (Aptian to Albian)

Jiuquan Basin

 China

A species of Torreya.

Voltziales

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Archaeovoltzia kuedensis[67]

Sp. nov

Valid

Naugolnykh

Permian

 Russia
( Perm Krai)

Other conifers

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Cratoxylon[68]

Gen. et sp. nov

Conceição et al.

Early Cretaceous

Crato Formation

 Brazil

A member of Pinidae of uncertain affinities. The type species is C. placidoi. The name is preoccupied by Cratoxylon Blume.

Ferganiella ivantsovii[69]

Sp. nov

Valid

Frolov & Mashchuk

Early Jurassic (Toarcian)

Prisayan Formation

 Russia

Leliacladus[70]

Gen. et comb. nov

Valid

Batista & Kunzmann in Batista et al.

Early Cretaceous (Aptian)

Crato Formation

 Brazil

A member of Cupressales of uncertain affinities. The type species is "Brachyphyllum" castilhoi Duarte (1985).

Ourostrobus einbergensis[71]

Sp. nov

Valid

Van Konijnenburg-van Cittert et al.

Late Triassic (Rhaetian)

 Germany

A conifer cone.

Shanxiopitys[72]

Gen. et sp. nov

Valid

Shi et al.

Permian (Lopingian)

Sunjiagou Formation

 China

A conifer wood. The type species is S. zhangziensis.

Sphaerostrobus einbergensis[71]

Sp. nov

Valid

Van Konijnenburg-van Cittert et al.

Late Triassic (Rhaetian)

 Germany

A conifer cone.

Conifer research

[edit]
  • Forte et al. (2024) study the morphology, cuticular patterns and isotope geochemistry of Permian (Lopingian) conifer fossils from the Bletterbach plant fossil assemblage (Italy), reporting evidence of a unique geochemical composition of fossils of Majonica alpina (possibly related to adaptation to specific environmental conditions), as well as evidence of isotopic differences between leaves and axes of the studied conifers.[73]
  • Decombeix, Hiller & Bomfleur (2024) describe a dwarf conifer tree from the Middle Triassic strata in Antarctica preserving evidence suppressed growth likely caused by stressful local site conditions in spite of overall favorable regional climate, representing the first finding of a tree with such suppressed growth in the fossil record reported to date.[74]
  • Xie, Gee & Griebeler (2024) use growth models based on the height–diameter relationships of extant araucarians to determine heights of araucariaceous logs from the Upper Jurassic Morrison Formation (Utah, United States).[75]
  • Xie et al. (2024) interpret Xenoxylon as a likely relative of extant members of Podocarpaceae.[76]
  • Evidence of preservation of fragments of embryo, megagametophyte and nucellus (with nuclei preserved in their cells) in seeds of Alapaja cf. uralensis from the Cretaceous Simonovo Formation (Krasnoyarsk Krai, Russia) is presented by Torshilova et al. (2024), who also report two cases of preservation of aldehyde groups of deoxyribose in the studied fossil material.[77]

Gnetophyta

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Laiyangia[78]

Gen. et sp. nov

Jin in Jin et al.

Early Cretaceous (Hauterivian–Barremian)

Laiyang Formation

 China

A member of the family Ephedraceae. The type species is L. compacta.

Flowering plants

[edit]

Chloranthoids

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Asterostemon[79]

Gen. et 2 sp. nov

Friis, Crane & Pedersen in Friis et al.

Early Cretaceous
(Aptian–Albian)

Figueira da Foz Formation

 Portugal

A chloranthoid flowering plant.
The type species is A. hedlundii;
genus also includes A. norrisii.

Swamyflora[79]

Gen. et sp. nov

Friis, Crane & Pedersen in Friis et al.

Early Cretaceous
(Albian)

Potomac Group

 United States
( Virginia)

A chloranthoid flowering plant.
The type species is S. alata.

Wasmyflora[79]

Gen. et sp. nov

Friis, Crane & Pedersen in Friis et al.

Early Cretaceous
(Barremian–Aptian)

Vale de Água clay pit complex

 Portugal

A chloranthoid flowering plant.
The type species is W. portugallica.

Magnoliids

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Cryptocarya latiradiata[80]

Sp. nov

Zhang, Su & Oskolski in Zhang et al.

Miocene

Dajie Formation

 China

A species of Cryptocarya.

Magnolia germanica[63]

Comb. nov

Valid

(Mai)

Oligocene to Miocene

 Germany

A species of Magnolia; moved from Manglietia germanica Mai (1971).

Pabiania enochii[81]

Sp. nov

Rubalcava-Knoth & Cevallos-Ferriz

Late Cretaceous

Olmos Formation

 Mexico

A member of Laurales.

Magnoliid research

[edit]
  • The first fossil record of a flower of a member of the genus Cryptocarya is reported from the Miocene Zhangpu amber (China) by Beurel et al. (2024).[82]

Monocots

[edit]

Arecales

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Cryosophiloxylon indicum[83]

Sp. nov

Valid

Kumar & Khan

Cretaceous-Paleocene (Maastrichtian-Danian)

Deccan Intertrappean Beds

 India

A member of the tribe Cryosophileae. Published online in 2023; the final version of the article naming it was published in 2024.

Palmoxylon calamoides[84]

Sp. nov

Kumar, Roy & Khan in Kumar et al.

Cretaceous-Paleocene (Maastrichtian-Danian)

Deccan Intertrappean Beds

 India

Fossil wood of a member of the family Arecaceae and the subfamily Calamoideae.

Palmoxylon coryphaoides[85]

Sp. nov

Valid

Ali, Roy & Khan in Ali et al.

Cretaceous-Paleocene (Maastrichtian-Danian)

Deccan Intertrappean Beds

 India

Fossil wood of a member of the family Arecaceae.

Phoenicites insula-lacuna[86]

Sp. nov

Greenwood & Conran

Cenozoic

 Australia

Sabalites siwalicus[87]

Sp. nov

Valid

Mahato & Khan

Miocene

Chunabati Formation

 India

Published online in 2024, but the issue date is listed as December 2023.

Spinopinnophyllum[88]

Gen. et sp. nov

Kumar, Su & Khan in Kumar et al.

Late Cretaceous (Maastrichtian)-Paleocene (Danian)

Deccan Intertrappean Beds

 India

A member of the family Arecaceae. The type species is S. acanthorachis.

Dioscoreales

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Dioscorea lindgrenii[89]

Sp. nov

Valid

Herrera & Manchester

Eocene

Green River Formation
Fossil Butte Member

 United States
( Wyoming)

A species of Dioscorea.

Dioscorea shermanii[89]

Sp. nov

Valid

Herrera & Manchester

Eocene

Green River Formation
Fossil Butte Member

 United States
( Wyoming)

A species of Dioscorea.

Poales

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Sparganium tuberculatum[63]

Sp. nov

Valid

Kowalski in Kowalski et al.

Miocene

Spremberg Formation

 Germany

A species of Sparganium.

Monocot research

[edit]
  • A study on the phytolith morphology of palms and on the utility of phytoliths for reconstructions of environment of fossils palms is published by Brightly et al. (2024), who find that phytoliths do not reliably differentiate most palm taxa, though they might be useful to determine the presence of more distinct (and possibly environmentally informative) members of the group in the fossil record.[90]
  • Fossil material of palms resembling members of the extant tribe Cocoseae is described from the Cretaceous-Paleogene transition of the Deccan Intertrappean Beds (Madhya Pradesh, India) by Kumar, Manchester & Khan (2024), who interpret cocosoid palms as dominant among the arecoid palms of the Deccan Intertrappean beds in Madhya Pradesh.[91]
  • A study on the affinities of elongated fossil fruits of members of the genus Carex, providing evidence of the continued presence of Carex sect. Cyperoideae in the Old World since the Miocene, is published by Martinetto et al. (2024).[92]

Basal eudicots

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Palaeosinomenium oisensis[93]

Sp. nov

Valid

Kara et al.

Paleocene

 France

A member of the family Menispermaceae. Published online in 2023; the final version of the article naming it was published in 2024.

Platanites fremontensis[94]

Comb. nov

(Berry)

Eocene

"Tipperary flora"

 United States
( Wyoming)

A member of Proteales belonging to the family Platanaceae; moved from Negundo fremontensis Berry (1930).

Platanites montanus[94]

Comb. nov

(Brown)

Late Cretaceous (Maastrichtian)

Hell Creek Formation

 United States
( Montana
 North Dakota)

A member of Proteales belonging to the family Platanaceae; moved from Sassafras montana Brown (1939).

Sabia megacarpa[95]

Sp. nov

Valid

Latchaw & Manchester

Miocene

Succor Creek Formation

 United States
( Idaho
 Oregon)

A member of Proteales belonging to the family Sabiaceae.

  • Patel et al. (2024) describe fossil reproductive organ of a member of the genus Nelumbo from the Palana Formation (India), and interpret this finding as indicative of the existence of a freshwater ecosystem in the Rajasthan Basin during the early Eocene.[96]
  • Danika et al. (2024) describe leaf fossils of Platanus academiae from the Miocene to Pleistocene strata in Greece, trace the presence of morphological traits characteristic of the Pacific North American–European clade of members of the genus Platanus (including Platanus orientalis, Platanus racemosa and Platanus wrightii) in the fossil record of North American and Eurasian Platanus, and argue that modern distribution of members of the Pacific North American–European clade is more likely the result of migration from through Beringia into Asia than the result of a migration through North Atlantic.[97]

Superasterids

[edit]

Aquifoliales

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Ilex wennebergii[98]

Sp. nov

Rasmussen & Johansen in Rasmussen et al.

Eocene

Baltic amber

 Denmark

A holly.

Boraginales

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Cordioxylon indicum[99]

Sp. nov

Valid

Bhatia, Srivastava & Mehrotra

Miocene

Tipam Sandstone

 India

Fossil wood of a member of the genus Cordia. Announced in 2023; the final version of the article naming it was published in 2024.

Caryophyllales

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Ancistrocladus eocenicus[100]

Sp. nov

Ali, Manchester & Khan in Ali et al.

Eocene

Palana Formation

 India

A species of Ancistrocladus.

Cornales

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Fenestracarpa[101]

Gen. et sp. nov

Nguyen & Atkinson

Late Cretaceous (Campanian)

Cedar District Formation

 United States
( Washington)

A member of Cornales not assignable to any extant family. Genus includes new species F. washingtonensis.

Ericales

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Pterosinojackia[63]

Gen. et sp. nov

Valid

Kowalski in Kowalski et al.

Oligocene to Miocene

 Germany

A member of the family Styracaceae. The type species is P. lusatica.

Sapotoxylon costarricensis[102]

Sp. nov

Cevallos-Ferriz et al.

Miocene

 Costa Rica

Wood of a member of the family Sapotaceae.

Symplocos ampullaris[103]

Sp. nov

Xu & Jin in Xu et al.

Oligocene and Miocene

 China

A species of Symplocos.

Symplocos unilocularis[103]

Sp. nov

Xu & Jin in Xu et al.

Oligocene

Yongning Formation

 China

A species of Symplocos.

Gentianales

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Apocynoxylon umut-tuncii[104]

Sp. nov

Akkemik & Mantzouka in Akkemik, Toprak & Mantzouka

Eocene

Çekerek Formation

 Turkey

Aspidospermoxylon guatambue[105]

Sp. nov

Valid

Ramos et al.

Pleistocene

El Palmar Formation

 Argentina

Fossil wood of a member of the family Apocynaceae.

Aspidospermoxylon paleoneuron[105]

Sp. nov

Valid

Ramos et al.

Pleistocene

El Palmar Formation

 Argentina

Fossil wood of a member of the family Apocynaceae.

Superastrids Incertae sedis

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Othniophyton[106]

Gen et comb nov

in press

Manchester, Judd, Correa-Narvaez

Eocene
Middle Eocene

Green River Formation
Parachute Creek Member

 USA
 Colorado

[107][108]

A superastrid plant of possible caryophyllalean affinity.
First described as Oreopanax elongatum (1969)

Superasterid research

[edit]

Superrosids

[edit]

Fabales

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Aphanocalyxylon[102]

Gen. et sp. nov

Cevallos-Ferriz et al.

Miocene

 Costa Rica

Wood of a member of Detarioideae. The type species is A. carballense.

Bauhinia tengchongensis[110]

Sp. nov

Cao, Wu & Ding in Cao et al.

Pliocene

Mangbang Formation

 China

Cynometroxylon aegyptiacum[111]

Sp. nov

El-Noamani & Ziada

Miocene

Gebel El-Khashab Formation

 Egypt

A member of Detarioideae.

Dalbergia ziwenii[112]

Sp. nov

Zhao, Huang & Su in Zhao et al.

Miocene

Lower Sanhaogou Formation

 China

A species of Dalbergia.

Dalbergioxylon judasea[102]

Sp. nov

Cevallos-Ferriz et al.

Miocene

 Costa Rica

Wood of a member of Papilionoideae.

Hymenaeaphyllum[113]

Gen. et sp. nov

Hernández-Damián, Rubalcava-Knoth & Cevallos-Ferriz

Miocene

La Quinta Formation
(Mexican amber)

 Mexico

A member of the subfamily Detarioideae belonging to the tribe Detarieae. The type species is H. mirandae.

Jantungspermum[114]

Gen. et sp. nov

Valid

Spagnuolo & Wilf in Spagnuolo et al.

Eocene

Tanjung Formation

 Indonesia

A legume. Genus includes new species J. gunnellii.

Mezoneuron zhekunii[115]

Sp. nov

Zhao, Jia & Su in Zhao et al.

Miocene

Sanhaogou Formation

 China

A species of Mezoneuron.

Fagales

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Engelhardioxylon lesbium[116]

Sp. nov

Valid

Iamandei & Iamandei in Iamandei et al.

Miocene

 Greece

Wood of a member of the family Juglandaceae.

Eucaryoxylon lesbium[116]

Sp. nov

Valid

Iamandei & Iamandei in Iamandei et al.

Miocene

 Greece

Wood of a member of the family Juglandaceae.

Juglans cordata[117]

Sp. nov

Valid

Manchester et al.

Eocene

Buchanan Lake Formation

 Canada
( Nunavut)

A species of Juglans.

Juglans eoarctica[117]

Sp. nov

Valid

Manchester et al.

Eocene

Buchanan Lake Formation

 Canada
( Nunavut)

A species of Juglans.

Juglans nathorstii[117]

Sp. nov

Valid

Manchester et al.

Eocene

Buchanan Lake Formation

 Canada
( Nunavut)

A species of Juglans.

Morella stoppii[63]

Comb. nov

Valid

(Kirchheimer)

Miocene

 Germany

A member of the family Myricaceae; moved from Myrica stoppii Kirchheimer (1942).

Pterocarya liae[118]

Sp. nov

Valid

Song & Wang in Song et al.

Eocene

Niubao Formation

 China

A species of Pterocarya.

Malpighiales

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Aspidopterys mangbangensis[119]

Sp. nov

Lou & Ding in Lou et al.

Pliocene

 China

A species of Aspidopterys.

Calophyllum ramthiensis[120]

Sp. nov

Mahato et al.

Neogene

 India

A species of Calophyllum.

Dicella indica[121]

Sp. nov

Valid

Hazra, Manchester & Khan

Pliocene

 India

A species of Dicella.

Passiflora axsmithii[122]

Sp. nov

Stults, Hermsen & Starnes

Oligocene

Catahoula Formation

 United States
( Mississippi)

A species of Passiflora.

Malvales

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Malvacioxylon[102]

Gen. et sp. nov

Cevallos-Ferriz et al.

Miocene

 Costa Rica

Wood of a member of the family Malvaceae. The type species is M. conacytea.

Uiher[123]

Gen. et sp. nov

Siegert, Gandolfo & Wilf

Eocene

Huitrera Formation

 Argentina

A member of Malvoideae. Genus includes new species U. karuen.

Myrtales

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Andesanthus risaraldense[124]

Sp. nov

Ayala-Usma & Lozano-Gutiérrez in Ayala-Usma et al.

Pleistocene

 Colombia

A species of Andesanthus.

Eucalitoxylon[102]

Gen. et sp. nov

Cevallos-Ferriz et al.

Oligocene-Miocene

Masachapa Formation

 Nicaragua

Wood of a member of the family Myrtaceae. The type species is E. nicaraguense.

Hindeucalyptus[125]

Gen. et sp. nov

Patel, Almeida, Ali & Khan in Patel et al.

Eocene

Palana Formation

 India

A member of the family Myrtaceae. The type species is H. eocenicus.

Miconia villasenorii[126]

Sp. nov

Centeno-González, Alvarado-Cárdenas & Estrada-Ruiz

Miocene

Mexican amber

 Mexico

A species of Miconia.

Qualeoxylon lafila[127]

Sp. nov

Woodcock

Eocene

 Peru

Fossil wood with affinities with the family Vochysiaceae.

Terminalioxylon gumminae[124]

Sp. nov

Ayala-Usma & Lozano-Gutiérrez in Ayala-Usma et al.

Pleistocene

 Colombia

Fossil wood of a member of the family Combretaceae.

Trapa radiatiformis[128]

Sp. nov

Xiao in Xiao et al.

Miocene

Shengxian Formation

 China

A water caltrop.

Rosales

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Ficoxylon anatolica[104]

Sp. nov

Akkemik & Mantzouka in Akkemik, Toprak & Mantzouka

Eocene

Çekerek Formation

 Turkey

Rosa mariae[129]

Sp. nov

Valid

Agbamuche, Hamersma & Manchester

Oligocene

 United States
( Oregon)

A rose.

Rosa packardae[129]

Sp. nov

Valid

Fields, Agbamuche & Hamersma in Agbamuche, Hamersma & Manchester

Miocene

Sucker Creek Formation

 United States
( Oregon)

A rose.

Ziziphoxylon sayaz[130]

Sp. nov

Valid

Akkemik in Akkemik & Toprak

Miocene (Burdigalian-Serravallian)

Mut Formation

 Turkey

Fossil wood of a member of the family Rhamnaceae.

Sapindales

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Anacardium quindiuense[124]

Sp. nov

Ayala-Usma, Lozano-Gutiérrez & Orejuela in Ayala-Usma et al.

Pleistocene

 Colombia

A species of Anacardium.

Dobineaites[131]

Gen. et comb. nov

Valid

Wilf et al.

Eocene

Laguna del Hunco Formation

 Argentina

A member of Anacardiaceae related to Dobinea; a new genus for "Celtis" ameghinoi.

Pericuxylon[132]

Gen. et sp. nov

Valid

Mejia-Roldán, Rodríguez-Reyes & Estrada-Ruiz in Mejia-Roldán et al.

Eocene

Tepetate Formation

 Mexico

Fossil wood of a member of the family Anacardiaceae. The type species is P. ductifera.

Saxifragales

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Liquidambar nanningensis[133]

Sp. nov

Xu, Zdravchev, Maslova & Jin in Xu et al.

Oligocene

Yongning Formation

 China

A species of Liquidambar.

Parrotia zhiyanii[134]

Sp. nov

Valid

Wu et al.

Miocene

Zhangpu amber

 China

A species of Parrotia. Published online in 2023; the final version of the article naming it was published in 2024.

Zlatkophyllum[135]

Gen. et comb. nov

Valid

Wu et al.

Eocene

 Germany

A member of the family Altingiaceae. Genus includes "Laurophyllum" fischkandelii Kunzmann & Walther (2002).

Vitales

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Ampelocissus wenae[136]

Sp. nov

Valid

Herrera et al.

Miocene

Cucaracha Formation

 Panama

A species of Ampelocissus.

Cissus correae[136]

Sp. nov

Valid

Herrera et al.

Miocene

Cucaracha Formation

 Panama

A species of Cissus.

Leea mcmillanae[136]

Sp. nov

Valid

Herrera et al.

Eocene

Tonosí Formation

 Panama

A species of Leea.

Lithouva susmanii[136]

Sp. nov

Valid

Herrera et al.

Paleocene

Bogotá Formation

 Colombia

A member of the family Vitaceae.

Nekemias mucronata[137]

Sp. nov

Tosal, Vicente & Denk

Eocene to Oligocene

Montmaneu Formation

 Spain

A species of Nekemias.

Superrosid research

[edit]
  • Lagrange, Martínez & Del Rio (2024) study the seed morphology of members of the tribe Paropsieae in the family Passifloraceae, and argue that, with exception of distinctive seeds of members of the genus Androsiphonia, fossil Paropsieae cannot be identified confidently based solely on seed characters.[138]

Other angiosperms

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Aextoxicoxylon jacksius[139]

Sp. nov

Tilley

Paleocene

Antarctica

Fossil wood of a flowering plant sharing traits with extant Aextoxicon punctatum.

Archaebuda cretaceae[140]

Sp. nov

Huang & Wang

Early Cretaceous (Barremian–Aptian)

Yixian Formation

 China

An early flowering plant.

Comoxia[141]

Gen. et sp. nov

Jud et al.

Late Cretaceous

Northumberland Formation

 Canada
( British Columbia)

A dicot liana of uncertain affinities. Genus includes new species C. multiporosa.

Felinanthus[142]

Gen. et comb. nov

Heřmanová et al.

Late Cretaceous

 Czech Republic
 Germany

A flowering plant with pollen of the Normapolles type. Genus includes "Walbeckia" aquisgranensis Knobloch & Mai (1986), "Microcarpolithes" guttaeformis Knobloch (1971), "Walbeckia" scutata Knobloch & Mai (1986) and "Walbeckia" fricii Knobloch & Mai (1986).

Nothophylica[143]

Gen. et comb. nov

Beurel et al.

Cretaceous

Burmese amber

 Myanmar

A flowering plant of uncertain affinities. Oskolski et al. (2024) interpreted it as a flowering plant with an affinity to Rhamnaceae, possibly to an extinct basal lineage;[144] on the other hand Beurel et al. (2024) interpreted it as a flowering plant with probable magnoliid affinities.[143] The type species is "Phylica" piloburmensis Shi et al. (2022).

General Angiosperm research

[edit]
  • The reinterpretation of Endobeuthos paleosum as a member of the family Proteaceae proposed by Chambers & Poinar (2023) [145] is rejected by Lamont & Ladd (2024).[146]
  • Hošek et al. (2024) report fossil evidence from the northernmost part of the Vienna Basin in southern Moravia (Czech Republic) indicative of survival of trees such as oak, linden and Fraxinus excelsior in the area during the Last Glacial Maximum, and interpret their survival as made possible by the existence of hot springs providing stable conditions for the long-term maintenance of refugia.[147]

Other plants

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Alasemenia[148]

Gen. et sp. nov

Wang et al.

Devonian (Famennian)

Wutong Formation

 China

A seed plant of uncertain affinities. The type species is A. tria.

Anisopteris shuteana[149]

Sp. nov

Valid

Hayes & Pearson

Carboniferous (Viséan)

Teilia Formation

 United Kingdom

A member of Lyginopteridales.

Callipteris seshufenensis[150]

Sp. nov

Valid

Chen in Chen, Zhang & Yang

Permian

 China

A callipterid seed fern.

Compsopteris longipinnata[67]

Sp. nov

Valid

Naugolnykh

Permian

 Russia
( Perm Krai)

A member of Peltaspermales.

Cordaites pastuchovicensis[151]

Sp. nov

Valid

Šimůnek

 Czech Republic

Cordaites roprachticensis[151]

Sp. nov

Valid

Šimůnek

 Czech Republic

Cordaites setlikii[151]

Sp. nov

Valid

Šimůnek

 Czech Republic

Cyrillopteris orbicularis[152]

Comb. nov

(Halle)

Permian

Upper Shihezi Formation

 China

A seed fern. Moved from Odontopteris orbicularis Halle (1927).

Dicroidium sinensis[153]

Sp. nov

Sun & Deng in Sun et al.

Middle Triassic

Tongchuan Formation

 China

A seed fern belonging to the family Umkomasiaceae.

Gnetopsis quadria[154]

Sp. nov

Wang et al.

Devonian (Famennian)

 China

Harrisiothecium roesleri[155]

Comb. nov

(Van Konijnenburg-van Cittert et al.)

Late Triassic

 Germany

Pollen organ of a plant of uncertain affinities. Moved from Hydropterangium roesleri Van Konijnenburg-van Cittert et al. (2017)

Harrisiothecium sanduense[155]

Sp. nov

Shi et al.

Late Triassic

Yangmeilong Formation

 China

Pollen organ of a plant of uncertain affinities, associated with pinnate leaves of Ptilozamites.

Ilfeldia tectlapis[156]

Sp. nov

Zhou et al.

Permian (Asselian)

Taiyuan Formation

 China

A taeniopterid plant.

Mixoxylon jeffersonii[157]

Sp. nov

Oh et al.

Early Jurassic (Toarcian)

Mawson Formation

 Antarctica

Indeterminate Spermatopyte Wood, maybe related with Bennettitales or Cycadales

Panxianopteris[158]

Gen. et sp. nov

Qin, He, Hilton & Wang in Qin et al.

Permian

Xuanwei Formation

 China

A taeniopterid. The type species is P. taeniopteroides.

Protocircoporoxylon guyangensis[159]

Sp. nov

Xu & Zhao in Zhao et al.

Early Cretaceous

Guyang Formation

 China

A gymnosperm wood.

Protocupressinoxylon baii[160]

Sp. nov

Jiang & Wan in Jiang et al.

Permian

Upper Shihhotse Formation

 China

Fossil trunk of a gymnosperm.

Pseudotorellia oskolica[161]

Sp. nov

Nosova in Nosova, Fedyaevskiy & Lyubarova

Middle Jurassic (Bathonian–Callovian)

 Russia
( Belgorod Oblast)

A gymnosperm belonging to the family Pseudotorelliaceae.

Sanfordiacaulis[162]

Gen. et sp. nov

Gastaldo et al.

Carboniferous (Tournaisian)

Albert Formation

 Canada
( New Brunswick)

A tree of uncertain affinities. The type species is S. densifolia.

Satpuraphyllum[163]

Gen. et sp. nov

Agnihotri, Srivastava & McLoughlin

Permian (Kungurian)

Barakar Formation

 India

A member of Peltaspermales. The type species is S. furcatum.

Shaolinia[164]

Gen. et sp. nov

Wang & Chen

Early Cretaceous

Yixian Formation

 China

A plant with conifer-like vegetative and reproductive morphologies, as well as a single seed partially wrapped by the subtending bract. The type species is S. intermedia.

Triloboxylon maroccanum[38]

Sp. nov

Meyer-Berthaud et al.

Devonian (Givetian)

 Morocco

An aneurophytalean progymnosperm.

Xenofructus[165]

Gen. nov

Fu et al.

Middle Jurassic

Dabu Formation

 China

A possible flowering plant. The type species is X. dabuensis, formerly named Williamsoniella dabuensis Zheng & Zhang (1990).

Other plant research

[edit]
  • Drovandi et al. (2024) report the first discovery of an assemblage of basal tracheophytes from the Silurian (Přídolí) Rinconada Formation (Argentina), and interpret this finding as evidence of southward expansion of Silurian floras related to climate change from the cold conditions of the Ludfordian to the subsequent greenhouse conditions.[166]
  • Purported bryophyte Tortilicaulis is reinterpreted as an early diverging tracheophyte by Morris et al. (2024).[167]
  • Gess & Berry (2024) describe fossil material of members of the genus Archaeopteris that were more than 20 m in height from the Waterloo Farm lagerstätte (South Africa), providing evidence of presence of true forests of Archaeopteris in high latitudes during the latest Devonian.[168]
  • Redescription and a study on the affinities of Stauroxylon beckii is published by Durieux et al. (2024).[169]
  • A study on the morphological diversity of cycad leaves throughout their evolutionary history, providing evidence of a dynamic history of diversification, is published by Coiro & Seyfullah (2024).[170]
  • Zhang et al. (2024) compile a dataset of macroscopic and cuticular traits of fossils of members of the group Czekanowskiales from China, and use it to classify the studied fossils on the basis of quantitative analytical evidence.[171]
  • Purported Triassic fossils of members of Glossopteridales from India are reinterpreted as Permian in age by Saxena, Cleal & Singh (2024).[172]
  • Crane et al. (2024) interpret Dordrechtites elongatus as a highly modified lateral branch of a seed cone, and report the presence of structural similarities between Dordrechtites and the cupules of members of Doyleales.[173]
  • A study on the morphology and affinities of Furcula granulifer is published by Coiro et al. (2024), who interpret the studied plant as a likely relative of pteridosperms such as Scytophyllum and Vittaephyllum, and interpret F. granulifer as a plant that evolved its hierarchical vein system of leaves convergently with the flowering plants.[174]
  • Possible caytonialean pteridosperm fossils are described from the Bajocian strata in the Karachay-Cherkessia (Russia) by Naugolnykh & Mitta (2024).[175]

Palynology

[edit]
Name Novelty Status Authors Age Unit Location Synonymized taxa Notes Images

Aratrisporites woodii[176]

Sp. nov

Cooling in McKellar & Cooling

Jurassic–Cretaceous transition

Orallo Formation

 Australia

Spores of a member of Isoetopsida.

Callialasporites propinquivellersis[176]

Sp. nov

McKellar & Cooling

Jurassic–Cretaceous transition

Evergreen Formation

 Australia

Camarozonosporites dorsus[176]

Sp. nov

Cooling & McKellar

Jurassic–Cretaceous transition

Orallo Formation

 Australia

Clavatosporis varians[177]

Sp. nov

De Benedetti et al.

Cretaceous-Paleogene transition

La Colonia Formation

 Argentina

A fern spore of uncertain affinities.

Contignisporites confractus[176]

Sp. nov

Cooling in McKellar & Cooling

Jurassic–Cretaceous transition

Orallo Formation

 Australia

Converrucosisporites parvitumulus[176]

Sp. nov

McKellar & Cooling

Jurassic–Cretaceous transition

Orallo Formation

 Australia

Converrucosisporites pricei[176]

Sp. nov

McKellar & Cooling

Jurassic–Cretaceous transition

Gubberamunda Sandstone

 Australia

Convolutispora prisca[176]

Sp. nov

McKellar & Cooling

Jurassic–Cretaceous transition

Walloon Coal Measures

 Australia

Spores of a fern.

Curvaturaspora[176]

Gen. et comb. nov

McKellar & Cooling

Jurassic

 Australia
 Germany

Spores with uncertain (possibly lycopodialean) affinity. The type species is "Lycopodiacidites" frankonense Achilles (1981).

Dejerseysporites[176]

Gen. et sp. et comb. nov

McKellar & Cooling

Jurassic and Early Cretaceous

Hutton Sandstone

 Australia
 Canada
 Germany

Spores of a member of the family Sphagnaceae. The type species is D. biannuliverrucatus; genus also includes "Stereisporites (Dicyclosporis)" verrucyclus Schulz in Döring et al (1966) and "Distalanulisporites" verrucosus Pocock (1970).

Densoisporites filatoffii[176]

Sp. nov

McKellar & Cooling

Jurassic–Cretaceous transition

Walloon Coal Measures

 Australia

Dictyotosporites esterleae[176]

Sp. nov

Cooling in Cooling & McKellar

Jurassic–Cretaceous transition

Orallo Formation

 Australia

Dictyotosporites obscurus[176]

Sp. nov

McKellar & Cooling

Jurassic–Cretaceous transition

Mooga Sandstone

 Australia

Dictyotosporites sandrana[176]

Sp. nov

McKellar in Cooling & McKellar

Jurassic–Cretaceous transition

Walloon Coal Measures

 Australia

Impardecispora neopunctata[176]

Sp. nov

McKellar & Cooling

Jurassic–Cretaceous transition

Westbourne Formation

 Australia

Interulobites scabratus[176]

Sp. nov

McKellar & Cooling

Jurassic–Cretaceous transition

Hutton Sandstone

 Australia

Probably spores of a bryophyte.

Januasporites spinosireticulatus[176]

Sp. nov

McKellar & Cooling

Jurassic–Cretaceous transition

Westbourne Formation

 Australia

Jiangsupollis intertrappea[178]

Sp. nov

Thakre et al.

Late Cretaceous (Maastrichtian)

 India

Maculatasporites eurombahensis[176]

Sp. nov

McKellar & Cooling

Jurassic–Cretaceous transition

Hutton Sandstone

 Australia

Possible algal spores.

Maculatasporites fionabethiana[176]

Sp. nov

McKellar in Cooling & McKellar

Jurassic–Cretaceous transition

Westbourne Formation

 Australia

Possible algal spores.

Microreticulatisporites patagonicus[177]

Sp. nov

De Benedetti et al.

Cretaceous-Paleogene transition

La Colonia Formation

 Argentina

A fern spore of uncertain affinities.

Neoraistrickia loconiensis[177]

Sp. nov

De Benedetti et al.

Cretaceous-Paleogene transition

La Colonia Formation

 Argentina

A lycophyte spore.

Neoraistrickia parvibacula[176]

Sp. nov

McKellar & Cooling

Jurassic–Cretaceous transition

Walloon Coal Measures

 Australia

Neoraistrickia rugobacula[176]

Sp. nov

McKellar & Cooling

Jurassic–Cretaceous transition

Walloon Coal Measures

 Australia

Nevesisporites annakhlonovae[176]

Nom. nov

McKellar & Cooling

Triassic

 Pakistan

Probably spores of a hornwort; a replacement name for Simeonospora khlonovae Balme (1970).

Osmundacidites injunensis[176]

Sp. nov

McKellar & Cooling

Jurassic–Cretaceous transition

Hutton Sandstone

 Australia

Peroaletes ieiunus[176]

Sp. nov

McKellar & Cooling

Jurassic–Cretaceous transition

Westbourne Formation

 Australia

Perotrilites cameronii[176]

Sp. nov

McKellar in Cooling & McKellar

Jurassic–Cretaceous transition

Hutton Sandstone

 Australia

Retitriletes johniorum[176]

Sp. nov

Cooling in Cooling & McKellar

Jurassic–Cretaceous transition

Orallo Formation

 Australia

Retitriletes neofacetus[176]

Sp. nov

McKellar & Cooling

Jurassic–Cretaceous transition

Hutton Sandstone

 Australia

Retitriletes proxiradiatus[176]

Sp. nov

McKellar & Cooling

Jurassic–Cretaceous transition

Hutton Sandstone

 Australia

Retitriletes siobhaniae[176]

Sp. nov

McKellar in Cooling & McKellar

Jurassic–Cretaceous transition

Gubberamunda Sandstone

 Australia

Retitriletes thomsonii[176]

Sp. nov

Cooling in Cooling & McKellar

Jurassic–Cretaceous transition

Westbourne Formation

 Australia

Sellaspora passa[176]

Sp. nov

McKellar & Cooling

Jurassic–Cretaceous transition

Westbourne Formation

 Australia

Spores of a fern.

Syncolpraedapollis[179]

Gen. et sp. nov

Mendes et al.

Eocene-Oligocene

Kwanza Basin

 Angola

Genus includes new species S. angolensis.

Thecaspora polygonalis[177]

Sp. nov

De Benedetti et al.

Cretaceous-Paleogene transition

La Colonia Formation

 Argentina

A salvinialean spore.

Tuberculatosporites westbournensis[176]

Sp. nov

McKellar & Cooling

Jurassic–Cretaceous transition

Westbourne Formation

 Australia

Spores of a member of the family Marattiaceae.

Palynological research

[edit]
  • Strother & Taylor (2024) review the early spore fossil record.[180]
  • Evidence of the presence of robust spore walls sharing similarities with those seen in embryophytes, but probably not produced in a sporangium, is reported in spores from the Cambrian strata in Tennessee by Taylor & Strother (2024).[181]
  • Mamontov, McLean & Gavrilova (2024) study the ultrastructure of Maiaspora concava and M. panopta, providing evidence of similarities with extant Gleicheniales, and interpret the origin of the Gleicheniales stem as related to closure of the Rheic Ocean in the Paleozoic.[182]
  • El Atfy et al. (2024) review the fossil record of the spore genus Vestispora from the Carboniferous of Gondwana, and describe new fossil material of members of five species belonging to this genus from the Moscovian-Gzhelian Dhiffah Formation (Egypt).[183]
  • A study on the palynoflora from the Permian Emakwezini Formation (South Africa) is published by Balarino et al. (2024), who interpret the studied fossils as providing evidence of the presence of complex forests during the Guadalupian, with plant diversity greater than indicated by the macrofloral record.[184]
  • A study on the earliest Triassic palynoflora from the Bulgo Sandstone (Australia), providing evidence of the presence of dense vegetation in riparian habitat less than 1 million years after the Permian–Triassic extinction event, is published by Vajda & Kear (2024).[185]
  • A study on the fossil record of Early Triassic palynomorphs from the Vikinghøgda Formation (Svalbard, Norway), providing evidence of a shift from lycophyte-dominated to a gymnosperm-dominated vegetation related to the onset of a cooling episode, is published by Leu et al. (2024).[186]
  • A study on the age of the Santa Clara Abajo and the Santa Clara Arriba formations and their palynomorph assemblages, previously inferred to be Carnian-Norian in age, is published by Benavente et al. (2024), who determine an upper Anisian age for both formations, and interpret their findings as indicating that the taxonomic composition of Triassic Gondwanan palynomorph assemblages correlates more strongly with latitude than with geologic age.[187]
  • The interpretation of Cycadopites and Ricciisporites proposed by Vajda et al. (2023), who considered them to represent, respectively, normal and aberrant pollen produced by the same plant with Lepidopteris ottonis foliage and Antevsia zeilleri pollen sacs,[188] is contested by Zavialova (2024);[189] Vajda et al. (2024) subsequently reaffirm that Antevsia zeilleri produced Cycadopites and Ricciisporites pollen.[190]
  • Evidence from pollen and spores from the Jiyuan Basin (China), interpreted as indicative of a relationship between two peaks of wildfires of different types and changes in plant communities during the Triassic-Jurassic transition, is presented by Zhang et al. (2024).[191]
  • Evidence of high abundances of malformed fern spores from the Lower Saxony Basin (Germany) during the Triassic–Jurassic transition, interpreted as indicative of persistence of volcanic-induced mercury pollution after the Triassic–Jurassic extinction event, is presented by Bos et al. (2024).[192]
  • Rodrigues et al. (2024) study the palynological assemblages from the Kwanza Basin (Angola) ranging from the late Albian to the Turonian, reporting the presence of pollen indicative of subtropical to tropical climate and dinocysts with higher latitude affinities, and interpret these findings as indicative of existence of an open connection between the Central Atlantic and South Atlantic oceans in the mid-Cretaceous.[193]
  • El Atfy et al. (2024) study the palynoflora dominated by Afropollis jardinus from the Cenomanian Bahariya Formation (Egypt), and interpret plants producing A. jardinus as likely parts of tropical, aquatic or mangrove-like vegetation.[194]
  • Evidence from the study of spores and pollen from the maritime Oyster Bay Formation (Vancouver Island, British Columbia, Canada), interpreted as indicative of the presence of refugia permitting greater stability of terrestrial plant communities during the Cretaceous-Paleogene transition than in continental regions, is presented by Patel et al. (2024) .[195]
  • Evidence from fossil pollen assigned to the form genus Classopollis, interpreted as indicative of existence of a refugium of members of the family Cheirolepidiaceae, is reported from the Paleocene Lower Wilcox Group (Texas, United States) by Smith et al. (2024).[196]
  • A study on changes of morphology of grass pollen from South America since the Early Miocene and on its probable drivers is published by Wei et al. (2024).[197]
  • Evidence from fossil pollen interpreted as indicative of existence of ecological corridors linking Andean, Atlantic and Amazonian regions of South America during the Last Glacial Maximum, resulting in establishment of complex connectivity patterns between plants from the studied parts of South America, is presented by Pinaya et al. (2024).[198]
  • Evidence from the study of pollen and microcharcoal data, indicative of decline in cold- and moist-affinity vegetation and spread of seasonal tropical vegetation in northern Amazonia during the slowdown of the Atlantic meridional overturning circulation 18,000 to 14,800 years ago, is presented by Akabane et al. (2024).[199]

General Research

[edit]
  • A study addressing and evaluating the uncertainty of plant fossil phylogenetics is published by Coiro (2024).[200]
  • Review of functional traits in the plant fossil record is published by McElwain et al. (2024).[201]
  • Evidence from the study of extant and fossil plants, interpreted as indicating that leaf mass per area distributions in fossil plants cannot accurately reconstruct the biome or climate of an individual site, is presented by Butrim, Lowe & Currano (2024).[202]
  • Evidence of the existence of two plant dispersal routes in the Devonian, connecting the South China and Euramerica–Siberia realms, is presented by Liu et al. (2024).[203]
  • Davies, McMahon & Berry (2024) describe plant fossils from the Devonian (Eifelian) Hangman Sandstone Formation (Somerset and Devon, United Kingdom), interpreted as remains of cladoxylopsid-dominated forest and possibly the oldest global evidence for the spacing of growing trees.[204]
  • Stacey et al. (2024) report possible evidence that Devonian and early Carboniferous oceanic oxygenation was related to the evolution of large vascular plants and the first forests.[205]
  • Evidence of changes of composition and diversity of the flora from the Carboniferous coal swamps of the Nord-Pas-de-Calais Coalfield (France) in response to climate and landscape changes is presented by Molina-Solís et al. (2024).[206]
  • Evidence of the presence of distinct patterns of damage inflicted by insects on seeds from the Permian (Asselian) Shanxi Formation (China), as well evidence of presence of anti-herbivory defences in the studied seeds in the form of hairs, spines, thick seed coats and apical horns, is presented by Santos, Wappler & (2024).[207]
  • A study on changes of floral communities in southwestern China during the Permian-Triassic transition is published by Hua et al. (2024), who provide evidence indicative of frequent wildfires that destroyed the stability of wetlands prior to the main extinction phase and inhibited recovery in the aftermath of the Permian–Triassic extinction event, and resulted in gradual replacement of fern-dominated floral communities by gymnosperm-dominated ones.[208]
  • Turner, McLoughlin & Mays (2024) review the known record of plant–arthropod interactions on Early and Middle Triassic fossil leaves from Gondwana, reevaluate known record of the studied interactions in the Australian Middle Triassic Benolong Flora, and argue that concerted investigations can greatly increase the number of plant–arthropod interactions in the studied fossil assemblages.[209]
  • Gurung et al. (2024) use a new vegetation and climate model to study links between plant geographical range, the long-term carbon cycle and climate, and find that reduced geographical range of plants in Pangaea resulted in increased atmospheric CO2 concentration during the Triassic and Jurassic periods, while the expande geographical range of plants after the breakup of Pangaea amplified global CO2 removal.[210]
  • Seyfullah et al. (2024) report the discovery of a conifer twig belonging to the genus Elatides from the Middle Jurassic Ishpushta Coal Formation (Afghanistan) preserved with resin traces that impregnated the surrounding coalified leaf material, representing the first case of such type of resin preservation impregnating plant tissues reported to date, and interpret this specimens as supporting cupressalean affinity for Elatides; the authors also describe a conifer fragment of Elatocladus sp. from Jurassic strata in Shaanxi (China) with similar resin traces.[211]
  • Kvaček et al. (2024) reconstruct Cenomanian plant communities from the Peruc–Korycany Formation (Czech Republic), providing evidence of diversification and dominance of flowering plant both in the Bohemian Cretaceous Basin and in Europe in general (particularly in alluvial plains).[212]
  • Quirk et al. (2024) study the distribution of extant and fossil ginger plants and dawn redwood, providing evidence of inconsistent climatic niches occupied by the former group through time and more consistent climatic niche of the latter one, and interpret dawn redwood as more appropriate for paleoclimatic reconstructions than ginger plants.[213]
  • Rossetto-Harris & Wilf (2024) revise the diversity of the assemblage of Eocene leaves from the Río Pichileufú locality (Argentina) and report the presence of 82 valid leaf morphotypes.[214]
  • Kim et al. (2024) revise the Miocene flora from the Hamjin Formation (North Korea) and interpret it as indicative of warm and temperate climate.[215]
  • Evidence of the presence of fragmented tropical humid forests among connected savanna in Amazonia during the Last Glacial Maximum is presented by Kelley et al. (2024), who interpret their findings as indicating that distinct forest fragments were connected by areas with taller, dense woodland/tropical savanna that could sustain both Amazonian and Cerrado species.[216]
  • Mariani et al. (2024) study changes of shrub cover in southeastern Australia since the Last Interglacial, and report evidence of reduction in shrub cover during the Holocene, related to Indigenous Australian population expansion and cultural fire use.[217]
  • Review of the fossil record of photosynthetic microbes and plants from Ukraine, and of the impact of the Russian invasion of Ukraine on the study of this fossil record, is published by Shevchuk et al. (2024).[218]

Deaths

[edit]
  • Estella Leopold, paleobotanist and conservation paleontologist passes on February 25, 2024, at 97. Leopold's work as a conservationist included taking legal action to help save the Florissant Fossil Beds in Colorado, and fighting pollution. She was the daughter of Aldo Leopold.[219]

References

[edit]
  1. ^ Pérez-Cano, J.; Martín-Closas, C. (2024). "Filling the gap in the evolution of the genus Echinochara Peck (Clavatoraceae, Charophyta)". Review of Palaeobotany and Palynology. 328. 105144. Bibcode:2024RPaPa.32805144P. doi:10.1016/j.revpalbo.2024.105144.
  2. ^ a b c Bucur, I. I.; Gradinaru, E.; Lazar, I.; Ples, G.; Mircescu, C. V. (2024). "Dasycladalean algae from Middle-Upper Triassic limestones of North Dobrogea (SE Romania)". Micropaleontology. 70 (5): 405–450. Bibcode:2024MiPal..70..405B. doi:10.47894/mpal.70.5.01.
  3. ^ Ernst, A.; Vachard, D.; Rodríguez, S. (2024). "Palaeoecology of calcified microfossils from the Lower Devonian (Pragian-Emsian) of Sierra Morena (SW Spain)". Facies. 70 (2). 6. Bibcode:2024Faci...70....6E. doi:10.1007/s10347-024-00680-3.
  4. ^ Bucur, I. I.; Del Piero, N.; Martini, R. (2024). "Clypeina? pamelareidae n. sp., a new dasycladalean alga from the Upper Triassic of Lime Peak (Yukon, Canada)". Micropaleontology. 70 (3): 253–262. Bibcode:2024MiPal..70..253B. doi:10.47894/mpal.70.3.04.
  5. ^ Krings, M. (2024). "Algae from the Lower Devonian Rhynie chert: Harpericystis verecunda gen. et sp. nov., a probable green alga (Chlorophyta) that forms few-celled colonies". Review of Palaeobotany and Palynology. 331. 105190. Bibcode:2024RPaPa.33105190K. doi:10.1016/j.revpalbo.2024.105190.
  6. ^ Pu, H. (2024). "Jimaodanus, a replacement name for the algal genus Heterocladus LoDuca, Kluessendorf, and Mikulic, 2003". Journal of Paleontology. 98 (3): 432–433. doi:10.1017/jpa.2024.19.
  7. ^ Liu, J.; Li, M.; Tang, F.; Zhao, J.; Song, S.; Zhou, Y.; Song, X.; Ren, L. (2023). "New Benthic Fossils from the Late Ediacaran Strata of Southwestern China". Acta Geologica Sinica (English Edition). 98 (2): 311–323. doi:10.1111/1755-6724.15153.
  8. ^ Siver, P. A. (2024). "Mallomonas enigmata sp. nov. (Synurales, Chrysophyceae), an Eocene fossil species with a second and unique scale morphotype attached to its cyst". European Journal of Phycology: 1–10. doi:10.1080/09670262.2024.2408296.
  9. ^ Siver, P. A. (2024). "Mallomonas gigantica sp. nov., an Eocene synurophyte possessing the largest known siliceous scales". Fottea. 24 (2): 261–268. doi:10.5507/fot.2024.006.
  10. ^ Hamad, M. M. (2024). "Geniculate coralline algae from the Pliocene Shagra formation at Wadi Abu Dabbab, Marsa, Alam area, Red Sea coastal plain, Egypt". Geopersia. doi:10.22059/geope.2024.366189.648732.
  11. ^ Krings, M. (2024). "Further observations on stalked microfossils from the Lower Devonian Rhynie cherts that resemble the algae Characiopsis (Eustigmatophyceae) and Characium (Chlorophyceae)". Review of Palaeobotany and Palynology. 324. 105081. Bibcode:2024RPaPa.32405081K. doi:10.1016/j.revpalbo.2024.105081.
  12. ^ Li, G.; Wei, F.; Guo, J.; Cong, P. (2024). "Macroalgae from the early Cambrian Chengjiang biota". Papers in Palaeontology. 10 (5). e1585. doi:10.1002/spp2.1585.
  13. ^ Choi, S.-W.; Graf, L.; Choi, J. W.; Jo, J.; Boo, G. H.; Kawai, H.; Choi, C. G.; Xiao, S.; Knoll, A. H.; Andersen, R. A.; Yoon, H. S. (2024). "Ordovician origin and subsequent diversification of the brown algae". Current Biology. 34 (4): 740–754.e4. Bibcode:2024CBio...34E.740C. doi:10.1016/j.cub.2023.12.069. hdl:10919/117989. PMID 38262417.
  14. ^ Kiel, S.; Goedert, J. L.; Huynh, T. L.; Krings, M.; Parkinson, D.; Romero, R.; Looy, C. V. (2024). "Early Oligocene kelp holdfasts and stepwise evolution of the kelp ecosystem in the North Pacific". Proceedings of the National Academy of Sciences of the United States of America. 121 (4). e2317054121. Bibcode:2024PNAS..12117054K. doi:10.1073/pnas.2317054121. PMC 10823212. PMID 38227671.
  15. ^ LoDuca, S. T. (2024). "Reinterpretation of Voronocladus from the Silurian of Ukraine as a bryopsidalean alga (Chlorophyta): The outlines of a major early Paleozoic macroalgal radiation begin to come into focus". Review of Palaeobotany and Palynology. 322. 105064. Bibcode:2024RPaPa.32205064L. doi:10.1016/j.revpalbo.2024.105064. S2CID 267155829.
  16. ^ Trabelsi, K.; Sames, B.; Martín-Closas, C. (2024). "First occurrence of family Clavatoraceae (fossil Charophyta) in the Middle Jurassic (Bathonian) of France". Papers in Palaeontology. 10 (2). e1548. Bibcode:2024PPal...10E1548T. doi:10.1002/spp2.1548.
  17. ^ Walker, Z.; Stockey, R. A.; Rothwell, G. W.; Atkinson, B. A.; Smith, S. Y.; Iglesias, A. (2024). "A fossil dicranid moss from the Late Cretaceous of Antarctica". The Bryologist. 127 (3): 342–352. doi:10.1639/0007-2745-127.3.342.
  18. ^ Ignatov, M. S.; Voronkova, T. V.; Spirina, U. N.; Polevova, S. V. (2024). "How to Recognize Mosses from Extant Groups among Paleozoic and Mesozoic Fossils". Diversity. 16 (10). 622. doi:10.3390/d16100622.
  19. ^ Juárez-Martínez, C.; Córdova-Tabares, V. M.; Estrada-Ruiz, E. (2024). "A new fossil species of a liverwort of the Frullania genus (Frullaniaceae, Marchantiophyta) from the Miocene amber of Simojovel de Allende, Chiapas, Mexico". Journal of South American Earth Sciences. 137. 104858. Bibcode:2024JSAES.13704858J. doi:10.1016/j.jsames.2024.104858. S2CID 268186677.
  20. ^ Mamontov, Y. S.; Atwood, J. J.; Ignatov, M. S.; Vasilenko, D. V; Legalov, A. A.; Perkovsky, E. E. (2024). "Hepatics from Rovno amber (Ukraine). 12. Jubula polessica sp. nov". Ecologica Montenegrina. 73: 1–10. doi:10.37828/em.2024.73.1.
  21. ^ Mamontov, Y. S.; Ignatov, M. S.; Vasilenko, D. V.; Perkovsky, E. E. (2024). "Hepatics from Rovno amber (Ukraine): Leptoscyphus davidii sp. nov". The Bryologist. 127 (1): 88–94. doi:10.1639/0007-2745-127.1.088. S2CID 267644428.
  22. ^ a b Mamontov, Y. S.; Schäfer-Verwimp, A.; Ignatov, M. S.; Vasilenko, D. V.; Perkovsky, E. E. (2024). "Hepatics from Rovno amber (Ukraine): Nipponolejeunea rovnoi sp. nov. and N. solodovnikovii sp. nov". Historical Biology: An International Journal of Paleobiology: 1–8. doi:10.1080/08912963.2024.2370004.
  23. ^ Mamontov, Y. S.; Ignatov, M. S.; Vasilenko, D. V; Legalov, A. A.; Perkovsky, E. E. (2024). "Hepatics from Rovno amber (Ukraine). 11. Radula oblongifolia and R. tikhomirovae sp. nov". Ecologica Montenegrina. 72: 189–199. doi:10.37828/em.2024.72.18.
  24. ^ Ignatov, M. S.; Spirina, U. N.; Voronkova, T. V; Polevova, S. V. (2024). "On the moss genus Gomankovia from the Upper Permian of the Russian Platform". Arctoa: A Journal of Bryology. 33: 71–79. doi:10.15298/arctoa.33.09.
  25. ^ Qin, M.; Wang, D.; Liu, L.; Liu, L.; Zhoi, Y. (2024). "In situ forest with lycopsid trees bearing lobed rhizomorphs from the Upper Devonian of Lincheng, China". PNAS Nexus. 3 (7). pgae241. doi:10.1093/pnasnexus/pgae241. PMC 11231945. PMID 38984150.
  26. ^ Pšenička, J.; Bek, J.; Nelson, W. J. (2024). "Lepidostrobus willardii sp. nov. and its spores from the Lower Pennsylvanian of the Illinois Basin, USA". Bulletin of Geosciences. 99 (3): 203–218. doi:10.3140/bull.geosci.1902.
  27. ^ Cariglino, B.; Zavattieri, A. M.; Lara, M. B. (2024). "A fertile spike moss (Selaginellites argentinensis sp. nov.) with in situ spores from the Triassic of Argentina: first fossil record of a Selaginellaceae lycophyte for South America". International Journal of Plant Sciences. 185 (4): 389–401. doi:10.1086/730196. S2CID 268100804.
  28. ^ Coturel, E. P. (2024). "The Carboniferous Gondwanan lycophyte Bumbudendron, revisited". Geobios. doi:10.1016/j.geobios.2024.08.010.
  29. ^ Feng, Z.; Sui, Q.; Wei, H.-B.; Chen, J. (2024). "Fossil evidence for silica biomineralisation in Permian lycophytes". National Science Review. 11 (12). nwae368. doi:10.1093/nsr/nwae368. PMC 11562828.
  30. ^ Rößler, R.; Merbitz, M.; Vogel, B.; Noll, B. (2024). "Gymnospermous wood anatomy in a new calamitalean – Arthropitys raimundii sp. nov. from the early Permian of Chemnitz, central-east Germany". Palaeontographica Abteilung B. doi:10.1127/palb/2024/0084.
  31. ^ Cleal, C. J.; Strullu-Derrien, C.; Spencer, A. R. T. (2024). "Early coal swamp vegetation from the Serpukhovian lower Clackmannan Group of Scotland". Fossil Imprint. 80 (1): 35–67. doi:10.37520/fi.2024.006.
  32. ^ Correia, P.; Sá, A. A. (2024). "The evolutionary macromorphological novelties of Bussacoconus zeliapereirae gen. et sp. nov. (Sphenophyllales, Polypodiopsida) from the Upper Pennsylvanian of Portugal". Historical Biology: An International Journal of Paleobiology: 1–7. doi:10.1080/08912963.2024.2388206.
  33. ^ Guo, Y.; Zhou, Y.; Pšenička, J.; Bek, J.; Feng, Z. (2024). "A marattialean fern with in situ spores, Cyathocarpus benefoliatii sp. nov., from the Lopingian of Southwest China". Review of Palaeobotany and Palynology. 331. 105218. doi:10.1016/j.revpalbo.2024.105218.
  34. ^ Li, C.; Moran, R. C.; Wang, Y.; Li, Y.; Ma, J. (2024). "A New Fossil of Cystodium (Cystodiaceae) from the mid-Cretaceous Myanmar amber". Cretaceous Research. 160. 105882. Bibcode:2024CrRes.16005882L. doi:10.1016/j.cretres.2024.105882.
  35. ^ Procopio Rodríguez, J. N.; Bodnar, J.; Beltrán, M. (2024). "A new species of the equisetalean plant Equicalastrobus from the Middle Triassic of Argentina". Acta Palaeontologica Polonica. 69 (2): 303–313. doi:10.4202/app.01130.2023.
  36. ^ Guo, Y.; Zhou, Y.; Pšenička, J.; Bek, J.; Votočková Frojdová, J.; Feng, Z. (2024). "Henanotheca qingyunensis sp. nov., a filicalean fern from the Lopingian of Southwest China". Palaeontographica Abteilung B. 305 (5–6): 193–210. doi:10.1127/palb/2024/0082. S2CID 267118129.
  37. ^ D'Antonio, M. P.; Hotton, C. L.; Smith, S. Y.; Crane, P. R.; Herrera, F. (2024). "Reconstruction of an enigmatic Pennsylvanian cone reveals a relationship to Sphenophyllales". American Journal of Botany. 111 (4): e16321. doi:10.1002/ajb2.16321. PMID 38659272.
  38. ^ a b Meyer-Berthaud, B.; Bert, C.; Decombeix, A.-L.; Lacand, M.; Ramel, M.; Becker, R. T.; Klug, C.; El Hassani, A.; Tahiri, A. (2024). "The euphyllophytes of a new Givetian plant assemblage from the eastern Anti-Atlas, Morocco". Geobios. 85: 58–78. Bibcode:2024Geobi..85...58M. doi:10.1016/j.geobios.2023.12.008.
  39. ^ Kuipers, I. I.; van Konijnenburg-van Cittert, J. H. A.; Wagner-Cremer, F. (2024). "A new species of Neocalamites from the Upper Buntsandstein (Anisian) of Üdingen (Rur Eifel, Germany)". Review of Palaeobotany and Palynology. 329. 105173. Bibcode:2024RPaPa.32905173K. doi:10.1016/j.revpalbo.2024.105173.
  40. ^ Kundu, S.; Hazra, T.; Chakraborty, T.; Bera, S.; Taral, S.; Khan, M. A. (2023). "First Cenozoic macrofossil record of Polypodiaceae from India, and its biogeographic implications". International Journal of Plant Sciences. 185 (1): 71–88. doi:10.1086/727457. S2CID 260996816.
  41. ^ Chu, J.; Durieux, T.; Tomescu, A. M. F. (2024). "An early cladoxylopsid with complex vascular architecture: Paracladoxylon kespekianum gen. et sp. nov. from the Lower Devonian (Emsian) of Quebec, Canada". American Journal of Botany. 111 (10). e16418. doi:10.1002/ajb2.16418. PMID 39397327.
  42. ^ Regalado, L.; Appelhans, M. S.; Poehlein, A.; Himmelbach, A.; Schmidt, A. R. (2024). "Plastome phylogenomics and new fossil evidence from Dominican amber shed light on the evolutionary history of the Neotropical fern genus Pecluma". American Journal of Botany. 111 (10). e16410. doi:10.1002/ajb2.16410. PMID 39347651.
  43. ^ Sun, W.; Zhou, W.; Wu, Y.; Pšenička, J.; Hilton, J.; Wang, J. (2024). "Scolecopteris oxydonta sp. nov., a new marattialean fern from the early Permian Wuda Tuff Flora". Review of Palaeobotany and Palynology. 332. 105231. doi:10.1016/j.revpalbo.2024.105231.
  44. ^ Liu, F.-X.; Bomfleur, B.; Hiller, P.; Wang, X.; Yang, X.-N.; Du, H.-E.; Wang, D.-W.; Zhang, Y.-J.; Cheng, Y.-M. (2024). "Tempskya hailunensis sp. nov. (Tempskyaceae), a new tree fern with preserved leaf-like structures, from the Cretaceous of the Songliao Basin, Northeast China". Review of Palaeobotany and Palynology. 328. 105155. Bibcode:2024RPaPa.32805155L. doi:10.1016/j.revpalbo.2024.105155.
  45. ^ Halle, T. G. (1927). Palaeozoic plants from central Shansi. Palaeontologia Sinica. Vol. 2. pp. 1–316.
  46. ^ Yang, J.; Hueber, F. M.; Li, Y.-Z.; Li, C.-S. (2024). "Re-investigation of Bowmanites laxus Halle, 1927, a sphenopsid fructification from the Permian of China". Review of Palaeobotany and Palynology. 331. 105214. doi:10.1016/j.revpalbo.2024.105214.
  47. ^ Wang, Y.; Kuang, H.; Liu, Y.; Zhao, F.; Peng, N.; Chen, X.; Qi, K.; Li, J.; Dong, G.; Li, S.; Li, Y. (2024). "Enhanced global terrestrial moisture from the Early Triassic to the Late Triassic: Evidence from extensive Neocalamites forests in North China". GSA Bulletin. doi:10.1130/B37522.1.
  48. ^ Wu, Y.; Li, D.; Sun, W.; Zhang, Y.; Wang, J. (2024). "Frond reconstruction of Pecopteris lativenosa Halle emend. Li et al". Acta Palaeontologica Sinica. 63 (3): 354–371. doi:10.19800/j.cnki.aps.2024008.
  49. ^ Jia, Z.; Lin, Z.; Qu, X.; Liu, W.; Yang, J.; Xu, S.; Wang, S.; Jia, S. (2024). "Discovery of Cladophlebis kwangyuanensis in the Upper Triassic of Yunyang, Chongqing and its paleoclimatic significance". Acta Palaeontologica Sinica. 63 (3): 372–385. doi:10.19800/j.cnki.aps.2023059.
  50. ^ Sender, L. M.; Villanueva-Amadoz, U.; Wappler, T.; Diez, J. B.; Cobos, A. (2024). "Colonisation of disturbed deltaic paleoenvironments from the Early Cretaceous (Albian): inferences from an exceptional record of the fern Ruffordia goeppertii (Dunker) Seward from north-eastern Spain". Cretaceous Research. 166. 106018. doi:10.1016/j.cretres.2024.106018.
  51. ^ Zhang, W. (2024). "Comment on «Microlepia burmasia sp. nov., a new fern species from mid-Cretaceous Kachin amber of norther Myanmar (Dennstaedtiaceae, Polypodiales) » [Cretaceous Research 143 (2023) 105417]". Cretaceous Research. 166. 106010. doi:10.1016/j.cretres.2024.106010.
  52. ^ Ramírez-Barahona, S. (2024). "Incorporating fossils into the joint inference of phylogeny and biogeography of the tree fern order Cyatheales". Evolution. 78 (5): 919–933. doi:10.1093/evolut/qpae034. PMID 38437579.
  53. ^ Machado, M. A.; Yañez, A.; Passalia, M. G.; Santonja, C.; Vera, E. I.; Suriano, J.; Bechis, F. (2024). "Pteridium (Dennstaedtiaceae) from Miocene of Patagonia (Río Negro, Argentina): the southernmost evidence of bracken fern in South America". Historical Biology: An International Journal of Paleobiology: 1–16. doi:10.1080/08912963.2024.2324442.
  54. ^ Lozano-Carmona, D. E.; Velasco-de León, M. P.; Jiménez-Rentería, J. (2024). "Reproductive organs of Early Jurassic Bennettitales from the collection of the Community Geological Museum of Rosario Nuevo "Ing. Jorge Jiménez Rentería", Oaxaca, Mexico". Paleontología Mexicana. 13 (1): 17–33. doi:10.22201/igl.05437652e.2024.13.1.370.
  55. ^ Velasco de León, M. P.; Ortiz Martínez, E. L.; Flores Barragan, M. A.; Guzmán Madrid, D. S.; Martínez Martinez, P. C. (2024). "New records of Bennettitales and associated flora from the Jurassic of the Cualac Formation, Mexico". Palaeontologia Electronica. 27 (1). 27.1.a14. doi:10.26879/1293.
  56. ^ a b Slodownik, M. A. (2024). "The non-flowering plants of a near-polar forest in East Gondwana, Tasmania, Australia, during the Early Eocene Climatic Optimum". American Journal of Botany. 111 (9). e16398. doi:10.1002/ajb2.16398. PMID 39192571.
  57. ^ Mendes, M. M.; Tekleva, M.; Kvaček, J.; Callapez, P. (2024). "Classostrobus doylei, a new cheirolepidiaceous cone with in situ pollen from the Figueira da Foz Formation (lower Aptian – upper Albian), western Portugal". Cretaceous Research. 166. 106028. doi:10.1016/j.cretres.2024.106028.
  58. ^ Sokolova, A. B.; Zavialova, N. E.; Moiseeva, M. G.; Kodrul, T. M. (2024). "The New Genus Amurodendron (Cupressaceae s.l.) from the Paleocene Boguchan Flora of the Amur Region (Russian Far East)". Paleontological Journal. 57 (10): 1188–1211. doi:10.1134/S0031030123100052. S2CID 267538529.
  59. ^ Jiang, S.; Shigeta, Y.; Matsunaga, K. K. S.; Yamada, T. (2024). "A new species of Cunninghamia (Cupressaceae) from the Upper Cretaceous (Maastrichtian) of Hokkaido, Japan". Phytotaxa. 664 (1): 1–11. doi:10.11646/phytotaxa.664.1.1.
  60. ^ a b Vanner, M. R.; Conran, J. G.; Larcombe, M. J.; Lee, D. E. (2024). "Mid-Cretaceous wood of Waihere Bay, Pitt Island, Chatham Islands, New Zealand". IAWA Journal. 45 (2): 129–153. doi:10.1163/22941932-bja10149. S2CID 267535911.
  61. ^ Hao, R.; Jiang, Z.; Xu, K.; Ning, Z.; Tian, N.; Wang, Y. (2024). "New investigations on Cretaceous woods from the Jiaolai Basin, Shandong Province and their palaeoclimate relevance". Cretaceous Research. 166. 106030. doi:10.1016/j.cretres.2024.106030.
  62. ^ Rothwell, R. W.; Stockey, R. A. (2024). "Pinaceous evolution illuminated by additional diversity of Early Cretaceous seed cones". Fossil Imprint. 80 (1): 1–8. doi:10.37520/fi.2024.003.
  63. ^ a b c d e Kowalski, R.; Tietz, O.; Worobiec, E.; Worobiec, G. (2024). "New floras from the Tetta Clay Pit, Upper Lusatia, late Oligocene–Early Miocene, Germany" (PDF). Annales Societatis Geologorum Poloniae. 94 (1): 19–59. doi:10.14241/asgp.2024.01.
  64. ^ Zhu, Y.-B.; Li, Y.; Zhang, J.-P.; Wang, Y.-D.; Zouros, N. (2024). "A new species of Pseudotsuga (Pinaceae) from the lower Miocene of Lesvos, Greece, and its palaeogeographical and palaeoclimatic implications". Palaeoworld. doi:10.1016/j.palwor.2024.06.001.
  65. ^ Li, Y.; Gee, C. T.; Tan, Z.-Z.; Zhu, Y.-B.; Yi, T.-M.; Li, C.-S. (2024). "Exceptionally well-preserved seed cones of a new fossil species of hemlock, Tsuga weichangensis sp. nov. (Pinaceae), from the Lower Miocene of Hebei Province, North China". Journal of Systematics and Evolution. 62: 164–180. doi:10.1111/jse.12952. S2CID 257368511.
  66. ^ Li, A.-J.; Du, B.-X.; Zhang, J.; Peng, J.; Fu, Y.-Q.; Cai, J.-J.; Wei, M.-Y.; Jin, P.-H. (2024). "A new species Torreya with the seed-bearing structure from the Lower Cretaceous of northwestern China and its evolutionary significance". Cretaceous Research. 106056. doi:10.1016/j.cretres.2024.106056.
  67. ^ a b Naugolnykh, S. V. (2024). "Kuedinskie Kluchiki, a Unique Middle Permian Biota Locality as a Key-point for Reconstruction of Late Paleozoic Terrestrial Ecosystems of the Urals, Russia". Acta Geologica Sinica (English Edition). 98 (4): 850–866. Bibcode:2024AcGlS..98..850N. doi:10.1111/1755-6724.15172.
  68. ^ Conceição, D. M.; Gobo, W. V.; Batista, M. E. P.; Oliveira, N. C.; Mastroberti, A. A.; Iannuzzi, R.; Bamford, M. K.; Kunzmann, L. (2024). "Expanding the diversity of conifer xyloflora from Early Cretaceous Crato Fossil Lagerstätte, Brazil". Review of Palaeobotany and Palynology. 322. 105061. Bibcode:2024RPaPa.32205061D. doi:10.1016/j.revpalbo.2024.105061. S2CID 267118634.
  69. ^ Frolov, A.; Mashchuk, I. (2024). "Early Jurassic Climate Warming in Eastern Siberia: First Macrofloristic Evidence from Irkutsk Basin, Russia". Acta Geologica Sinica (English Edition). 98 (4): 1035–1050. Bibcode:2024AcGlS..98.1035F. doi:10.1111/1755-6724.15190.
  70. ^ Batista, M. E. P.; Saraiva, A. Á. F.; De Lima, F. J.; Bantim, R. A. M.; Pinheiro, A. P.; Silva, D. B.; Kunzmann, L. (2024). "An enigmatic tropical conifer from the Early Cretaceous of Gondwana". Acta Palaeontologica Polonica. 69 (3): 375–393. doi:10.4202/app.01116.2023.
  71. ^ a b van Konijnenburg-van Cittert, J. H. A.; Schmeißner, S.; Dütsch, G.; Kustatscher, E.; Pott, C. (2024). "Plant macrofossils from the Rhaetian of Einberg near Coburg (Bavaria, Germany). Part 3. Conifers, incertae sedis and general discussion". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 310 (3): 251–282. doi:10.1127/njgpa/2023/1182.
  72. ^ Shi, X.; Yu, J.; Sun, Y.; Xu, Z.; Li, H. (2024). "A Novel Gymnosperm Wood from the Lopingian (Late Permian) in Zhangzi, Shanxi, North China and Its Paleoecological and Paleogeographic Implications". Journal of Earth Science. 35 (1): 167–176. Bibcode:2024JEaSc..35..167S. doi:10.1007/s12583-021-1510-3. S2CID 267696785.
  73. ^ Forte, G.; Branz, R.; Preto, N.; Kustatscher, E. (2024). "Morphology, epidermal features and δ13C signature of Lopingian (late Permian) conifers". Review of Palaeobotany and Palynology. 105239. doi:10.1016/j.revpalbo.2024.105239.
  74. ^ Decombeix, A.-L.; Hiller, P.; Bomfleur, B. (2024). "A dwarf conifer tree from the Triassic of Antarctica: the first fossil evidence of suppressed growth in a favorable climate?". Annals of Botany. doi:10.1093/aob/mcae106. PMID 38982647.
  75. ^ Xie, A.; Gee, C. T.; Griebeler, E. M. (2024). "Modelling height–diameter relationships in living Araucaria (Araucariaceae) trees to reconstruct ancient araucarian conifer height". Palaeontology. 67 (2). e12693. Bibcode:2024Palgy..6712693X. doi:10.1111/pala.12693.
  76. ^ Xie, A.; Low, S. L.; Wang, Y.; Tian, N.; Uhl, D. (2024). "Novel phylogenetic analysis of the Mesozoic common gymnosperm Xenoxylon Gothan reveals close affinity with extant Podocarpaceae (Coniferales)". Journal of Systematics and Evolution. doi:10.1111/jse.13132.
  77. ^ Torshilova, A. A.; Ozerov, I. A.; Zhinkina, N. A.; Rodionov, A. V. (2024). "Seeds Alapaja (Cupressaceae) from the Cretaceous of Western Siberia and their paleo-DNA". Review of Palaeobotany and Palynology. 332. 105236. doi:10.1016/j.revpalbo.2024.105236.
  78. ^ Jin, P.; Zhang, M.; Du, B.; Zhang, J.; Sun, B. (2024). "A New Gnetalean Macrofossil from the Lower Cretaceous of the Laiyang Basin, eastern China". Plant Diversity. 46 (5): 678–682. doi:10.1016/j.pld.2024.03.002. PMC 11403114. PMID 39290879.
  79. ^ a b c Friis, E. M.; Crane, P. R.; Pedersen, K. R.; Marone, F. (2024). "Cretaceous chloranthoids: early prominence, extinct diversity and missing links". Annals of Botany. 133 (2): 225–260. doi:10.1093/aob/mcad137. PMC 11005782. PMID 38597914.
  80. ^ Zhang, R.; Huang, L.-L.; Li, S.-F.; Su, T.; Oskolski, A. A. (2024). "Fossil woods of Cryptocarya (Lauraceae) from the middle Miocene of Southwest China". Review of Palaeobotany and Palynology. 324. 105096. Bibcode:2024RPaPa.32405096Z. doi:10.1016/j.revpalbo.2024.105096.
  81. ^ Rubalcava-Knoth, M. A.; Cevallos-Ferriz, S. R. S. (2024). "Trilobated Lauraceous leaves from the Upper Cretaceous Olmos Formation, Coahuila, Northern Mexico". Cretaceous Research. 158. 105820. Bibcode:2024CrRes.15805820R. doi:10.1016/j.cretres.2023.105820. S2CID 266968247.
  82. ^ Beurel, S.; Bachelier, J. B.; Munzinger, J.; Shao, F.; Hammel, J. U.; Shi, G.; Sadowski, E.-M. (2024). "First flower inclusion and fossil evidence of Cryptocarya (Laurales, Lauraceae) from Miocene amber of Zhangpu (China)". Fossil Record. 27 (1): 1–11. Bibcode:2024FossR..27....1B. doi:10.3897/fr.27.109621.
  83. ^ Kumar, S.; Khan, M. A. (2023). "First megafossil occurrence of Cryosophileae (Arecaceae) in Asia: anatomy, systematics, and biogeography". Botany Letters. 171 (2): 181–193. doi:10.1080/23818107.2023.2293111.
  84. ^ Kumar, S.; Roy, K.; Spicer, R. A.; Khan, M. A. (2024). "Earliest megafossils of scandent calamoid palms from the Deccan Intertrappean Beds of Central India and their paleobiogeographic implications". Journal of Palaeogeography. 13 (3): 509–527. Bibcode:2024JPalG..13..509K. doi:10.1016/j.jop.2024.05.001.
  85. ^ Ali, A.; Roy, K.; Mukherjee, B.; Bera, S.; Khan, M. A. (2024). "A new permineralized Corypha-type coryphoid palm stem from K-Pg of India: Anatomy, systematics, saprophytic fungi, and paleoecology". Turkish Journal of Botany. 48 (2): 105–119. doi:10.55730/1300-008X.2799.
  86. ^ Greenwood, D. R.; Conran, J. G. (2024). "A fossil pinnate palm leaf (Arecaceae, subfam. Arecoideae) from Island Lagoon, in the arid zone of South Australia". Historical Biology: An International Journal of Paleobiology: 1–13. doi:10.1080/08912963.2024.2403591.
  87. ^ Mahato, S.; Khan, M. A. (2024). "The First Fossil Record of Coryphoid Palm from Siwalik Strata (Middle Miocene) of Darjeeling Foothills of Eastern Himalaya". Paleontological Journal. 57 (3 supplement): S268–S284. doi:10.1134/S003103012360004X.
  88. ^ Kumar, S.; Su, T.; Spicer, R. A.; Khan, M. A. (2024). "The earliest fossil evidence of spiny feather (pinnate-leaved) palms from the K-Pg of Gondwana". Palaeontologia Electronica. 27 (1). 27.1.a12. doi:10.26879/1273.
  89. ^ a b Herrera, F.; Manchester, S. R. (2024). "Earliest Dioscorea fruits (Dioscoreaceae) from North America". International Journal of Plant Sciences. 185 (5): 474–481. doi:10.1086/729607. S2CID 267284371.
  90. ^ Brightly, W. H.; Crifò, C.; Gallaher, T. J.; Hermans, R.; Lavin, S.; Lowe, A. J.; Smythies, C. A.; Stiles, E.; Wilson Deibel, P.; Strömberg, C. A. E. (2024). "Palms of the past: can morphometric phytolith analysis inform deep time evolution and palaeoecology of Arecaceae?". Annals of Botany. 134 (2): 263–282. doi:10.1093/aob/mcae068. PMC 11232524. PMID 38687211.
  91. ^ Kumar, S.; Manchester, S. R.; Khan, M. A. (2024). "Cocoseae: a dominant arecoid palm element in the Deccan K-Pg flora of Madhya Pradesh, Central India". Cretaceous Research. 165. 105974. doi:10.1016/j.cretres.2024.105974.
  92. ^ Martinetto, E.; Jiménez-Mejías, P.; Hakobyan, E.; Krivonogov, S.; Hvalj, A. V. (2024). "Macro- and micromorphology of Carex pauciflora-type fossils (Cyperaceae) from Europe and Siberia reveals unexpected affinity to Carex sect. Cyperoideae". Plant Systematics and Evolution. 310 (4): 20. Bibcode:2024PSyEv.310...20M. doi:10.1007/s00606-024-01903-4.
  93. ^ Kara, E.; Bardin, J.; De Franceschi, D.; Del Rio, C. (2023). "Fossil endocarps of Menispermaceae from the late Paleocene of Paris Basin, France". Journal of Systematics and Evolution. 62 (4): 809–828. doi:10.1111/jse.13033.
  94. ^ a b Nares, F. R.; Huegele, I. B.; Manchester, S. R. (2024). "Compound-leaved Platanaceae in the Eocene of western North America". International Journal of Plant Sciences: 000. doi:10.1086/732310.
  95. ^ Latchaw, G.; Manchester, S. R. (2024). "Fruits of Sabia (Sabiaceae) from the Miocene of western North America and their biogeographic significance". Acta Palaeobotanica. 64 (1): 51–59. doi:10.35535/acpa-2024-0004.
  96. ^ Patel, R.; Ali, A.; Rana, R. S.; Khan, M. A. (2024). "A freshwater ecosystem once existed in the Rajasthan desert: evidence from a fossil of the aquatic herb Nelumbo". Alcheringa: An Australasian Journal of Palaeontology. 48 (3): 501–512. Bibcode:2024Alch...48..501P. doi:10.1080/03115518.2024.2349719.
  97. ^ Danika, D.; Adroit, B.; Velitzelos, D.; Denk, T. (2024). "On the origin of the Oriental plane tree (Platanus orientalis L.)". Papers in Palaeontology. 10 (4). e1576. Bibcode:2024PPal...10E1576D. doi:10.1002/spp2.1576.
  98. ^ Rasmussen, F. N.; Johansen, B.; Dollman, K.; Wisaeus, E.; Vilhelmsen, L. (2024). "First indisputable fossil Ilex (Aquifoliales: Aquifoliaceae) flower found in Baltic amber". Scientific Reports. 14 (1). 27730. doi:10.1038/s41598-024-78892-4. PMC 11557822. PMID 39532992.
  99. ^ Bhatia, H.; Srivastava, G.; Mehrotra, R. C. (2023). "Cordiaceae wood from the Miocene sediments of northeast India and its phytogeographical significance". IAWA Journal. 45 (2): 154–166. doi:10.1163/22941932-bja10139.
  100. ^ Ali, A.; Manchester, S. R.; Patel, R.; Rana, R. S.; Khan, M. A. (2024). "The first fossil of Ancistrocladus Wall. (Ancistrocladaceae) found from India". Brittonia. 76 (1): 62–73. Bibcode:2024Britt..76...62A. doi:10.1007/s12228-024-09776-0.
  101. ^ Nguyen, A. T.; Atkinson, B. A. (2024). "Cretaceous and Paleocene fossils reveal an extinct higher clade within Cornales, the dogwood order". American Journal of Botany. 111 (7). e16372. doi:10.1002/ajb2.16372. PMID 39010697.
  102. ^ a b c d e Cevallos-Ferriz, S. R. S.; Alvarado, G. E.; Huerta-Vergara, A. R.; Cárdenes, G.; Ramírez, T. D.; Bonilla, N. W.; Guzmán, E. (2024). "Fossil woods from the Miocene of Costa Rica and Nicaragua: Insights into the Neotropical floral puzzle". Journal of South American Earth Sciences. 144. 105005. doi:10.1016/j.jsames.2024.105005.
  103. ^ a b Xu, S.-L.; Kodrul, T.; Romanov, M. S.; Bobrov, A. V. F. Ch.; Maslova, N.; Li, S.-F.; Fu, Q.-Y.; Huang, W.-Y.; Quan, C.; Jin, J.-H.; Huang, L.-L. (2024). "Diversity of Symplocos (Symplocaceae, Ericales) at low latitudes in Asia during late Oligocene and Miocene". Plant Diversity. doi:10.1016/j.pld.2024.09.001.
  104. ^ a b Akkemik, Ü.; Toprak, Ö.; Mantzouka, D. (2024). "New fossil woods from the middle Eocene climate optimum of north-central Turkey". Palaeoworld. doi:10.1016/j.palwor.2024.06.005.
  105. ^ a b Ramos, R. S.; Via do Pico, G. M.; Brea, M.; Kröhling, D. M (2024). "New fossil woods (upper Pleistocene) from the lower-middle Uruguay river basin (South America) reveal the past distribution of Aspidosperma (Apocynaceae)". Quaternary International. 697: 19–37. Bibcode:2024QuInt.697...19R. doi:10.1016/j.quaint.2024.03.004.
  106. ^ Manchester, S.; Judd, W.; Correa-Narvaez, J. (2024). "Vegetative and reproductive morphology of Othniophyton elongatum (MacGinitie) gen. et comb. nov., an extinct angiosperm of possible caryophyllalean affinity from the Eocene of Colorado and Utah, USA". Annals of Botany. Accepted manuscript. doi:10.1093/aob/mcae196. PMID 39520137.
  107. ^ Brown, R.W. (1934). "Chapter C". The recognizable species of the Green River flora (Report). Professional Papers. Vol. 185. United States Geological Survey. pp. 45–77. doi:10.3133/pp185C.
  108. ^ MacGinitie, H.D. (1969). "The Eocene green River flora of northwestern Colorado and northeastern Utah". University of California Publications in Geological Sciences. 83 (116): 1–202.
  109. ^ Manchester, S. R.; Kapgate, D. K.; Judd, W. S. (2024). "Anatomically Preserved Fruits of Montiaceous Affinity (Caryophyllales) from the Latest Cretaceous of India: Kuprianovaites deccanensis Nambudiri & Thomas". International Journal of Plant Sciences. 185 (6): 548–554. doi:10.1086/731504.
  110. ^ Cao, R.; Song, Z.H.; Wang, Z.E.; Wang, Z.S.; Li, H.S.; Wu, J.Y.; Ding, S.T. (2024). "Late Pliocene Bauhinia s.l. (Cercidoideae, Fabaceae) fossils from Tengchong, Yunnan, southwestern China". Review of Palaeobotany and Palynology. 327. 105131. Bibcode:2024RPaPa.32705131C. doi:10.1016/j.revpalbo.2024.105131.
  111. ^ El-Noamani, Z. M.; Ziada, N. A. (2024). "Cynometroxylon aegyptiacum n. sp. (Fabaceae-Detarioideae) from the Miocene of Egypt with palaeoclimatic and biogeographic insights". Palaeoworld. doi:10.1016/j.palwor.2024.10.007.
  112. ^ Zhao, Y.; Wappler, T.; Labandeira, C.; Huang, J.; Song, A.; Xie, S.; Jia, L.; Deng, W.; Su, T. (2024). "Cenozoic Dalbergia (Fabaceae) plant fossils from Southwest China: Biogeographic implications and their plant-insect interactions". Palaeogeography, Palaeoclimatology, Palaeoecology. 112260. doi:10.1016/j.palaeo.2024.112260.
  113. ^ Hernández-Damián, A. L.; Rubalcava-Knoth, M. A.; Cevallos-Ferriz, S. R. S. (2024). "A new extinct member of the resin producer group of the Mexican amber: Hymenaeaphyllum mirandae n. gen. n. sp. (Detarioideae-Leguminosae)". Palaeoworld. 33 (6): 1710–1726. doi:10.1016/j.palwor.2024.04.004.
  114. ^ Spagnuolo, E. J.; Wilf, P.; Zonneveld, J.-P.; Shaw, D.; Aswan; Rizal, Y.; Zaim, Y.; Bloch, J. I.; Ciochon, R. L. (2024). "Giant Seeds of an Extant Australasian Legume Lineage Discovered in Eocene Borneo (South Kalimantan, Indonesia)". International Journal of Plant Sciences. 185 (5): 482–502. doi:10.1086/730538.
  115. ^ Zhao, Y.-S.; Wang, T.-X.; Jia, L.-B.; Song, A.; Huang, J.; Su, T. (2024). "First fossil pod of Mezoneuron (Caesalpinioideae, Fabaceae) in Asia". Review of Palaeobotany and Palynology. 325. 105111. Bibcode:2024RPaPa.32505111Z. doi:10.1016/j.revpalbo.2024.105111.
  116. ^ a b Iamandei, S.; Iamandei, E.; Velitzelos, D.; Velitzelos, E. (2024). "Palaeoxylotomical studies in the Cenozoic petrified forests of Greece. Part three - dicots". Acta Palaeontologica Romaniae. 20 (2): 61–96. doi:10.35463/j.apr.2024.02.06.
  117. ^ a b c Manchester, S. R.; Wilson, R.; Liu, Y.; Basinger, J. F. (2024). "Arctic walnuts! Nuts of Juglans (Juglandaceae) from the middle Eocene of Axel Heiberg Island, Northern Canada". International Journal of Plant Sciences. 185 (5): 453–473. doi:10.1086/730541.
  118. ^ Song, X.-B.; Wang, Z.-X.; Su, T.; Dong, C.; Huang, D.-Y. (2024). "First fruit record of Pterocarya (Juglandaceae) from the upper Eocene of the central Qinghai-Tibetan Plateau, China". Mesozoic. 1 (3): 288–297. doi:10.11646/mesozoic.1.3.9.
  119. ^ Lou, R.-Q.; Wang, Z.-E.; Jiang, Y.; Xie, Y.-Q.; Wu, J.-Y.; Ding, S.-T. (2024). "First fossil record of Aspidopterys (Malpighiaceae) from the Early Pliocene of southwestern China and its palaeobiogeographic implications". Historical Biology: An International Journal of Paleobiology: 1–8. doi:10.1080/08912963.2024.2404494.
  120. ^ Mahato, S.; More, S.; Taral, S.; Chakrabarty, T.; Khan, M. A. (2024). "Calophyllum L.: An important tropical element in the monsoon-influenced ancient Siwalik Forest of eastern Himalaya". Review of Palaeobotany and Palynology. 331. 105215. doi:10.1016/j.revpalbo.2024.105215.
  121. ^ Hazra, T.; Manchester, S.; Khan, M. A. (2024). "First fossil record of the extant neotropical genus Dicella Griseb. (Malpighiaceae) from India". International Journal of Plant Sciences. 185 (6): 535–547. doi:10.1086/731323.
  122. ^ Stults, D. Z.; Hermsen, E.; Starnes, J. E. (2024). "Fossil seeds of Passiflora L.: An Oligocene record of a new species and a Pleistocene record of a modern species from the Gulf of Mexico Coastal Plain". Review of Palaeobotany and Palynology. 324. 105093. Bibcode:2024RPaPa.32405093S. doi:10.1016/j.revpalbo.2024.105093.
  123. ^ Siegert, C.; Gandolfo, M. A.; Wilf, P. (2024). "Early Eocene infructescences from Argentine Patagonia expand the biogeography of Malvoideae". American Journal of Botany. 111 (9). e16384. doi:10.1002/ajb2.16384. PMID 39095998.
  124. ^ a b c Ayala-Usma, D. A.; Lozano-Gutiérrez, R.; Orejuela, C.; Pérez-Ángel, L. C.; Montes, C.; González-Arango, C. (2024). "Exceptionally preserved subfossil woods from late Pleistocene volcanic deposits from the Northern Andes of Colombia". Review of Palaeobotany and Palynology. 324. 105090. Bibcode:2024RPaPa.32405090A. doi:10.1016/j.revpalbo.2024.105090.
  125. ^ Patel, R.; Ali, A.; de Almeida, R. F.; Rana, R. S.; Khan, M. A. (2024). "Reproductive and vegetative remains of an eucalypt (Myrtaceae) from the early Eocene of India". Journal of Systematics and Evolution. doi:10.1111/jse.13078.
  126. ^ Centeno-González, N. K.; Alvarado-Cárdenas, L.; Estrada-Ruiz, E. (2024). "An inclusion of Melastomataceae leaf from the Miocene amber of Simojovel de Allende, Chiapas, México". Journal of South American Earth Sciences. 141. 104950. Bibcode:2024JSAES.14104950C. doi:10.1016/j.jsames.2024.104950.
  127. ^ Woodcock, D. W. (2024). "Wood of Qualea from the Piedra Chamana in-situ fossil forest (late Middle Eocene, Peru) and the comparative wood anatomy of Vochysiaceae and Myrtaceae". IAWA Journal. 45 (4): 424–443. doi:10.1163/22941932-bja10152. S2CID 268015193.
  128. ^ Xiao, L.; Yuan, M.; Ji, D.-S.; Guo, L.-Y.; Li, X.-C.; Wang, X.; Wang, J.-N.; Liang, J.-Q.; Wang, M.-T. (2024). "Three-dimensional reconstruction of Late Miocene Trapa from eastern Zhejiang Province, China: Insights into its phytogeography and evolution". Journal of Palaeogeography. 13 (4): 954–970. doi:10.1016/j.jop.2024.08.002.
  129. ^ a b Agbamuche, M. J.; Hamersma, A.; Manchester, S. R. (2024). "Tracing the Cenozoic history of roses (Rosaceae: Rosa) in North America based on fossil foliage and fruiting remains". International Journal of Plant Sciences. 185 (6): 555–570. doi:10.1086/732598.
  130. ^ Akkemik, Ü.; Toprak, Ö. (2024). "A new fossil wood species of Ziziphus from the Middle Miocene of Türkiye and its palaeoenvironmental evaluation". Turkish Journal of Botany. 48 (2): 91–104. doi:10.55730/1300-008X.2798.
  131. ^ Wilf, P.; González, C. C.; Gandolfo, M. A.; Zamaloa, M. C. (2024). "Putative Celtis leaves from Eocene Patagonia are allied with Asian Anacardiaceae". Ameghiniana. 61 (2): 73–92. doi:10.5710/AMGH.21.02.2024.3586.
  132. ^ Mejia-Roldán, A. J.; González-Barba, G.; Rodríguez-Reyes, O.; Estrada-Ruiz, E. (2024). "A new genus of Anacardiaceae based on wood from the Tepetate Formation (upper Eocene) of Baja California Sur, Mexico". Bulletin of Geosciences. 99 (1): 73–83. doi:10.3140/bull.geosci.1892.
  133. ^ Xu, S.-L.; Maslova, N.; Kodrul, T.; Zdravchev, N.; Kachkina, V.; Liu, X.-Y.; Wu, X.-K.; Jin, J.-H. (2024). "Structurally Preserved Liquidambar Infructescences, Associated Pollen, and Leaves from the Late Oligocene of the Nanning Basin, South China". Plants. 13 (2). 275. doi:10.3390/plants13020275. PMC 10819801. PMID 38256828.
  134. ^ Wu, X.-T.; Shu, J.-W.; Yin, S.-X.; Sadowski, E.-M.; Shi, G.-L. (2023). "Parrotia flower blooming in Miocene rainforest". Journal of Systematics and Evolution. 62 (3): 449–456. doi:10.1111/jse.13001.
  135. ^ Wu, M.; Huang, J.; Zhou, Z.; Kunzmann, L. (2024). "A new fossil genus of Altingiaceae based on unlobed leaves from Eocene subtropical evergreen broad-leaved forest in Europe". International Journal of Plant Sciences. 185 (6): 523–534. doi:10.1086/732281.
  136. ^ a b c d Herrera, F.; Carvalho, M. R.; Stull, G. W.; Jaramillo, C.; Manchester, S. R. (2024). "Cenozoic seeds of Vitaceae reveal a deep history of extinction and dispersal in the Neotropics". Nature Plants. 10 (7): 1091–1099. Bibcode:2024NatPl..10.1091H. doi:10.1038/s41477-024-01717-9. PMID 38951689.
  137. ^ Tosal, A.; Vicente, A.; Denk, T. (2024). "Cenozoic Ampelopsis and Nekemias leaves (Vitaceae, Ampelopsideae) from Eurasia: Paleobiogeographic and paleoclimatic implications". Journal of Systematics and Evolution. doi:10.1111/jse.13126.
  138. ^ Lagrange, F.; Martínez, C.; Del Rio, C. (2024). "Seed morphology of the paleotropical tribe Paropsieae (Passifloraceae, Malpighiales), and paleobotanical implications". European Journal of Taxonomy (943): 1–23. doi:10.5852/ejt.2024.943.2583.
  139. ^ Tilley, L. J. (2024). "Composition of Palaeocene forests from Antarctica based on fossil wood". Review of Palaeobotany and Palynology. 330. 105174. Bibcode:2024RPaPa.33005174T. doi:10.1016/j.revpalbo.2024.105174.
  140. ^ Huang, W.; Wang, X. (2024). "Flower Buds Confirmed in the Early Cretaceous of China". Biology. 13 (6). 413. doi:10.3390/biology13060413. PMC 11200749. PMID 38927293.
  141. ^ Jud, N. A.; Bradley, K. E.; Zahnd, B.; Rothwell, G. W.; Stockey, R. A. (2024). "Anatomy of a fossil liana from the Upper Cretaceous of British Columbia, Canada". IAWA Journal: 1–22. doi:10.1163/22941932-bja10168.
  142. ^ Heřmanová, Z.; von Balthazar, M.; Kvaček, J.; Schönenberger, J. (2024). "Felinanthus: A new Normapolles genus from the Late Cretaceous of Central Europe". International Journal of Plant Sciences: 000. doi:10.1086/732627.
  143. ^ a b Beurel, S.; Bachelier, J. B.; Schmidt, A. R.; Sadowski, E.-M. (2024). "Novel three-dimensional reconstructions of presumed Phylica (Rhamnaceae) from Cretaceous amber suggest Lauralean affinities". Nature Plants. 10 (2): 223–227. Bibcode:2024NatPl..10..223B. doi:10.1038/s41477-023-01592-w. PMID 38278948. S2CID 267267851.
  144. ^ Oskolski, A. A.; Morris, B. B.; Severova, E. E.; Sokoloff, D. D. (2024). "Flowers from Myanmar amber confirm the Cretaceous age of Rhamnaceae but not of the extant genus Phylica". Nature Plants. 10 (2): 219–222. Bibcode:2024NatPl..10..219O. doi:10.1038/s41477-023-01591-x. PMID 38278949. S2CID 267267981.
  145. ^ Chambers, K. L.; Poinar, G. O. (2023). "Reinterpretation of the mid-Cretaceous fossil flower Endobeuthos paleosum as a capitular, unisexual inflorescence of Proteaceae". Journal of the Botanical Research Institute of Texas. 17 (2): 449–456. doi:10.17348/jbrit.v17.i2.1324.
  146. ^ Lamont, B. B.; Ladd, P. G. (2024). "Endobeuthos paleosum in 99-million-year-old amber does not belong to the Proteaceae". Journal of the Botanical Research Institute of Texas. 18 (1): 143–147. doi:10.17348/jbrit.v18.i1.1343.
  147. ^ Hošek, J.; Pokorný, P.; Storch, D.; Kvaček, J.; Havig, J.; Novák, J.; Hájková, P.; Jamrichová, E.; Brengman, L.; Radoměřský, T.; Křížek, M.; Magna, T.; Rapprich, V.; Laufek, F.; Hamilton, T.; Pack, A.; Di Rocco, T.; Horáček, I. (2024). "Hot spring oases in the periglacial desert as the Last Glacial Maximum refugia for temperate trees in Central Europe". Science Advances. 10 (22): eado6611. Bibcode:2024SciA...10O6611H. doi:10.1126/sciadv.ado6611. PMC 11141633. PMID 38820152.
  148. ^ Wang, D.; Yang, J.; Liu, L.; Zhou, Y.; Xu, P.; Qin, M.; Huang, P. (2024). "Alasemenia, the earliest ovule with three wings and without cupule". eLife. 13. RP92962. doi:10.7554/eLife.92962. PMC 11460947. PMID 39376046.
  149. ^ Hayes, P. A.; Pearson, H.-C. (2024). "Anisopteris shuteana sp. nov., a fertile adpression fossil from the Mississippian (lower Carboniferous) of Teilia Quarry, North Wales, UK". Fossil Imprint. 80 (1): 125–134. doi:10.37520/fi.2024.011.
  150. ^ Chen, X.-Y.; Zhang, H.-C.; Yang, J.-Y. (2024). "A new fossil species of Callipteris (Callipteridae) in the Early Permian from the Xishan Area in Beijing, North China". Phytotaxa. 641 (4): 295–300. doi:10.11646/phytotaxa.641.4.6.
  151. ^ a b c Šimůnek, Z. (2024). "Leaf cuticular analysis of the upper Pennsylvanian and lower Cisuralian (Carboniferous – Permian) species of Cordaites Unger from the Bohemian Massif, Czech Republic". Palaeontographica Abteilung B. 305 (5–6): 121–191. doi:10.1127/palb/2024/0083.
  152. ^ Wan, M.; Li, D.; Wan, S.; Yang, W.; Zhou, W.; Wang, K.; Jiang, K.; Wang, J. (2024). "Frond characteristics of Cyrillopteris (ex. Odontopteris) orbicularis (Halle) comb. et emend. nov.: New evidence from the Permian Upper Shihezi (Upper Shihhotse) Formation of North China". Review of Palaeobotany and Palynology. 324. 105092. Bibcode:2024RPaPa.32405092W. doi:10.1016/j.revpalbo.2024.105092.
  153. ^ Sun, Y.; Deng, S.; Lu, Y.; Fan, R.; Ma, X.; Lyu, D. (2024). "The first record of the Gondwanan seed fern Dicroidium Gothan in Laurasia". Review of Palaeobotany and Palynology. 325. 105114. Bibcode:2024RPaPa.32505114S. doi:10.1016/j.revpalbo.2024.105114.
  154. ^ Wang, D.; Zhoy, Y.; Xu, P.; Liu, L.; Qin, M. (2024). "A fossil ovule with wind dispersal mechanisms and a probable micropyle". Current Biology. 34 (18): R850–R851. Bibcode:2024CBio...34.R850W. doi:10.1016/j.cub.2024.07.067. PMID 39317152.
  155. ^ a b Shi, G.; Friis, E. M.; Pedersen, K. R.; Fu, Q.; Crane, P. R. (2024). "A new Harrisiothecium pollen organ from the Upper Triassic of South Central China". Review of Palaeobotany and Palynology. 323. 105079. Bibcode:2024RPaPa.32305079S. doi:10.1016/j.revpalbo.2024.105079. S2CID 267676131.
  156. ^ Zhou, W.; Pšenička, J.; Hilton, J.; Wang, J. (2024). "Discovery of the enigmatic taeniopterid plant Ilfeldia from the lower Permian of North China and its palaeophytogeographical implications". Historical Biology: An International Journal of Paleobiology: 1–8. doi:10.1080/08912963.2024.2417806.
  157. ^ Oh, C.; Woo, J.; Philippe, M.; Bomfleur, B.; Kang, D.; Lee, J.-H.; Lee, J. I. (2024). "Taxonomic revision of in situ tree trunks and silicified wood from the Early Jurassic Kirkpatrick Basalt in the Mesa Range area, northern Victoria Land, Antarctica". Review of Palaeobotany and Palynology. 329. 105160. Bibcode:2024RPaPa.32905160O. doi:10.1016/j.revpalbo.2024.105160.
  158. ^ Qin, Y.-F.; He, X.-Y.; Hilton, J.; Wang, S.-J.; Dai, J.-Q. (2024). "Panxianopteris taeniopteroides gen. et sp. nov., an anatomically preserved taeniopterid leaf from the upper Permian of Guizhou Province, China". Review of Palaeobotany and Palynology. 326. 105117. Bibcode:2024RPaPa.32605117Q. doi:10.1016/j.revpalbo.2024.105117.
  159. ^ Zhao, Y.; Xu, X.; Yang, L.; Dong, C.; Zhongga, C.; Deng, J.; Zhang, X.; Zhang, B.; Zhuoma, G. (2024). "New record of Cretaceous Protocircoporoxylon wood from the Guyang Basin, northern China and its palaeoclimatic implications". Review of Palaeobotany and Palynology. 328. 105153. Bibcode:2024RPaPa.32805153Z. doi:10.1016/j.revpalbo.2024.105153.
  160. ^ Jiang, K.; Wang, K.; Wang, J.; Wan, M. (2024). "Protocupressinoxylon baii sp. nov., a gymnospermous fossil trunk from the Upper Shihhotse Formation (Permian) of Yangquan City, Shanxi Province, North China". Review of Palaeobotany and Palynology. 325. 105110. Bibcode:2024RPaPa.32505110J. doi:10.1016/j.revpalbo.2024.105110.
  161. ^ Nosova, N.; Fedyaevskiy, A.; Lyubarova, A. (2024). "New findings of gymnosperms in the Middle Jurassic of the East European platform". Review of Palaeobotany and Palynology. 324. 105095. Bibcode:2024RPaPa.32405095N. doi:10.1016/j.revpalbo.2024.105095.
  162. ^ Gastaldo, R. A.; Gensel, P. G.; Glasspool, I. J.; Hinds, S. J.; King, O. A.; McLean, D.; Park, A. F.; Stimson, M. R.; Stonesifer, T. (2024). "Enigmatic fossil plants with three-dimensional, arborescent-growth architecture from the earliest Carboniferous of New Brunswick, Canada". Current Biology. 34 (4): 781–792.e3. Bibcode:2024CBio...34E.781G. doi:10.1016/j.cub.2024.01.011. PMID 38309270.
  163. ^ Agnihotri, D.; Srivastava, A. K.; McLoughlin, S. (2024). "Satpuraphyllum furcatum—a new genus and species of Peltaspermales foliage from the mid-Permian Barakar Formation of India". Alcheringa: An Australasian Journal of Palaeontology: 1–11. doi:10.1080/03115518.2024.2415097.
  164. ^ Wang, X.; Chen, L.-J. (2024). "Shaolinia: A Fossil Link between Conifers and Angiosperms". Plants. 13 (15). 2162. doi:10.3390/plants13152162. PMC 11313709. PMID 39124280.
  165. ^ Fu, Q.; Sun, J.; Zheng, S.; Wang, X. (2024). "Unique Jurassic Ovaries Shed a New Light on the Nature of Carpels". Plants. 13 (16). 2239. doi:10.3390/plants13162239. PMC 11360278. PMID 39204675.
  166. ^ Drovandi, J. M.; Conde, O. A.; Lopez, F. E.; Coturel, E. P.; Alarcón Gómez, C. M.; Arnol, J. A.; Kaufmann, C.; Braeckman, A. R.; Pedernera, F. A.; Abarca, U. (2024). "The southwesternmost record of late Silurian (Pridolian) early land plants of Gondwana". Scientific Reports. 14 (1). 22071. Bibcode:2024NatSR..1422071D. doi:10.1038/s41598-024-63196-4. PMC 11436854. PMID 39333147.
  167. ^ Morris, J. L.; Edwards, D.; Axe, L.; Crooks, T.; Murdock, D.; Donoghue, P. C. J. (2024). "Lower Devonian Tortilicaulis is an early tracheophyte and not a bryophyte". Fossil Imprint. 80 (1): 135–153. doi:10.37520/fi.2024.012.
  168. ^ Gess, R. W.; Berry, C. (2024). "Archaeopteris trees at high southern latitudes in the late Devonian". Review of Palaeobotany and Palynology. 331. 105212. doi:10.1016/j.revpalbo.2024.105212.
  169. ^ Durieux, T.; Decombeix, A.-L.; Harper, C.; Galtier, J. (2024). "Re-investigation of Stauroxylon beckii, a possible aneurophytalean progymnosperm from the Mississippian of France". International Journal of Plant Sciences. 185 (3): 270–290. doi:10.1086/729412. S2CID 267099585.
  170. ^ Coiro, M.; Seyfullah, L. J. (2024). "Disparity of cycad leaves dispels the living fossil metaphor". Communications Biology. 7 (1). 328. doi:10.1038/s42003-024-06024-9. PMC 10940627. PMID 38485767.
  171. ^ Zhang, B.; Xin, C.; Yang, D.; Jiao, Z.; Liu, S.; Di, G.; Zhao, H. (2024). "Numerical taxonomy and genus-species identification of Czekanowskiales in China based on machine learning". Palaeontologia Electronica. 27 (1). 27.1.a10. doi:10.26879/1357.
  172. ^ Saxena, A.; Cleal, C. J.; Singh, K. J. (2024). "The Permian – Triassic boundary in peninsular India and the extinction of the Glossopteridales". Gondwana Research. 137: 318–330. doi:10.1016/j.gr.2024.10.005.
  173. ^ Crane, P. R.; Anderson, J. M.; Anderson, H.; Herendeen, P. S.; Herrera, F. (2024). "The enigmatic Triassic ovulate reproductive structures of Dordrechtites are recurved cupules fundamentally comparable to the cupules of Doylea and similar plants". New Phytologist. 244 (5): 2089–2100. doi:10.1111/nph.20132. PMID 39301873.
  174. ^ Coiro, M.; McLoughlin, S.; Steinthorsdottir, M.; Vajda, V.; Fabrikant, D.; Seyfullah, L. J. (2024). "Parallel evolution of angiosperm-like venation in Peltaspermales: a reinvestigation of Furcula". New Phytologist. 242 (6): 2845–2856. Bibcode:2024NewPh.242.2845C. doi:10.1111/nph.19726. PMID 38623034.
  175. ^ Naugolnykh, S. V.; Mitta, V. V. (2024). "A first record of possible caytonialean pteridosperms from the Upper Bajocian (Middle Jurassic) of Northern Caucasus, Russia". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 310 (2): 133–146. doi:10.1127/njgpa/2023/1174. S2CID 267557803.
  176. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae Cooling, J. J.; McKellar, J. L. (2024). "Palynology of the Jurassic–Cretaceous transition, Surat Basin, Australia". Palynology. 2384509. doi:10.1080/01916122.2024.2384509.
  177. ^ a b c d De Benedetti, F.; Zamaloa, M. C.; Gandolfo, M. A.; Cúneo, N. R. (2024). "Spores from the K–Pg boundary of the La Colonia Formation, Patagonia, Argentina". Review of Palaeobotany and Palynology. 328. 105159. Bibcode:2024RPaPa.32805159D. doi:10.1016/j.revpalbo.2024.105159.
  178. ^ Thakre, D.; Samant, B.; Mohabey, D. M.; Manchester, S. R.; Sangode, S. (2024). "Palynology of the uppermost Cretaceous to lowermost Paleocene Deccan volcanic associated sediments of the Mandla Lobe, central India". Palynology. 48 (2). 2288669. Bibcode:2024Paly...4888669T. doi:10.1080/01916122.2023.2288669.
  179. ^ Mendes, M.; Pereira, Z.; Rodrigues, C.; Nsungani, P. C. (2024). "New pollen taxon Syncolpraedapollis angolensis nov. gen. sp. nov.: A noteworthy discovery reported in the preliminary investigation of the latest Eocene-latest Oligocene deposits in the Kwanza Basin, Angola". Review of Palaeobotany and Palynology. 330. 105178. Bibcode:2024RPaPa.33005178M. doi:10.1016/j.revpalbo.2024.105178.
  180. ^ Strother, P. K.; Taylor, W. A. (2024). "A Fossil Record of Spores before Sporophytes". Diversity. 16 (7). 428. doi:10.3390/d16070428.
  181. ^ Taylor, W. A.; Strother, P. K. (2024). "Ultrastructure of Cambrian cryptospores and the early evolution of the plant spore wall". Fossil Imprint. 80 (1): 90–106. doi:10.37520/fi.2024.009.
  182. ^ Mamontov, D. A.; McLean, D.; Gavrilova, O. A. (2024). "Maiaspora: the hallmark of gleichenioid ferns (Gleicheniales) from the early Carboniferous". Papers in Palaeontology. 10 (3). e1561. Bibcode:2024PPal...10E1561M. doi:10.1002/spp2.1561.
  183. ^ El Atfy, H.; Bek, J.; Hosny, A. M.; Uhl, D. (2024). "The Carboniferous spore genus Vestispora: New palynological insights from Gondwana". Review of Palaeobotany and Palynology. 331. 105207. Bibcode:2024RPaPa.33105207E. doi:10.1016/j.revpalbo.2024.105207.
  184. ^ Balarino, M. L.; Gutiérrez, P. R.; Prevec, R.; Ruffo Rey, L.; Cariglino, B. (2024). "First palynological record for the Lebombo Basin, South Africa with implications for Guadalupian (middle Permian) palaeofloras and palaeoenvironments". Gondwana Research. 130: 100–115. Bibcode:2024GondR.130..100B. doi:10.1016/j.gr.2023.12.020. S2CID 267271195.
  185. ^ Vajda, V.; Kear, B. P. (2024). "An earliest Triassic riparian ecosystem from the Bulgo Sandstone (Sydney Basin), Australia: palynofloral evidence of a high-latitude terrestrial vertebrate habitat after the end-Permian mass extinction". Alcheringa: An Australasian Journal of Palaeontology. 48 (3): 483–494. Bibcode:2024Alch...48..483V. doi:10.1080/03115518.2024.2392489.
  186. ^ Leu, M.; Schneebeli-Hermann, E.; Hammer, Ø.; Lindemann, F.-J.; Bucher, H. (2024). "Spatiotemporal dynamics of nektonic biodiversity and vegetation shifts during the Smithian–Spathian transition: conodont and palynomorph insights from Svalbard". Lethaia. 57 (2): 1–19. doi:10.18261/let.57.2.3.
  187. ^ Benavente, C. A.; Irmis, R. B.; Pedernera, T. E.; Mancuso, A. C.; Mundil, R. (2024). "Triassic Gondwanan floral assemblages reflect paleogeography more than geologic time". Gondwana Research. 130: 140–157. Bibcode:2024GondR.130..140B. doi:10.1016/j.gr.2024.01.008. S2CID 267468814.
  188. ^ Vajda, V.; McLoughlin, S.; Slater, S. M.; Gustafsson, O.; Rasmusson, A. G. (2023). "The 'seed-fern' Lepidopteris mass-produced the abnormal pollen Ricciisporites during the end-Triassic biotic crisis". Palaeogeography, Palaeoclimatology, Palaeoecology. 627. 111723. Bibcode:2023PPP...62711723V. doi:10.1016/j.palaeo.2023.111723.
  189. ^ Zavialova, N. (2024). "Comment on "The 'seed-fern' Lepidopteris mass-produced the abnormal pollen Ricciisporites during the end-Triassic biotic crisis" by V. Vajda, S. McLoughlin, S. M. Slater, O. Gustafsson, and A. G. Rasmusson [Palaeogeography, Palaeoclimatology, Palaeoecology, 627 (2023), 111,723]". Review of Palaeobotany and Palynology. 322. 105065. Bibcode:2024RPaPa.32205065Z. doi:10.1016/j.revpalbo.2024.105065. S2CID 267072212.
  190. ^ Vajda, V.; McLoughlin, S.; Slater, S. M.; Gustafsson, O.; Rasmusson, A. G. (2024). "Confirmation that Antevsia zeilleri microsporangiate organs associated with latest Triassic Lepidopteris ottonis (Peltaspermales) leaves produced Cycadopites-Monosulcites-Chasmatosporites- and Ricciisporites-type monosulcate pollen". Palaeogeography, Palaeoclimatology, Palaeoecology. 640. 112111. Bibcode:2024PPP...64012111V. doi:10.1016/j.palaeo.2024.112111. S2CID 267992880.
  191. ^ Zhang, P.; Yang, M.; Lu, J.; Jiang, Z.; Zhou, K.; Xu, X.; Wang, L.; Wu, L.; Zhang, Y.; Chen, H.; Zhu, X.; Guo, Y.; Ye, H.; Shao, L.; Hilton, J. (2024). "Different wildfire types promoted two-step terrestrial plant community change across the Triassic-Jurassic transition". Frontiers in Ecology and Evolution. 12. 1329533. doi:10.3389/fevo.2024.1329533.
  192. ^ Bos, R.; Zheng, W.; Lindström, S.; Sanei, H.; Waajen, I.; Fendley, I. M.; Mather, T. A.; Wang, Y.; Rohovec, J.; Navrátil, T.; Sluijs, A.; van de Schootbrugge, B. (2024). "Climate-forced Hg-remobilization associated with fern mutagenesis in the aftermath of the end-Triassic extinction". Nature Communications. 15 (1). 3596. Bibcode:2024NatCo..15.3596B. doi:10.1038/s41467-024-47922-0. PMC 11519498. PMID 38678037.
  193. ^ Rodrigues, C.; Mendes, M.; Pereira, Z.; Nsungani, P. C.; Fernandes, P.; Duarte, L.; Chitangueleca, B.; Sebastião, L.; Aida, B.; Degli Esposti, D.; Freitas, D. (2024). "Palynology of the Albian–Turonian sediments from the Sumbe region, Kwanza Basin (Angola): Implications for paleoenvironment, paleoclimate, and paleogeography". Cretaceous Research. 164. 105953. Bibcode:2024CrRes.16405953R. doi:10.1016/j.cretres.2024.105953. hdl:10400.9/4328.
  194. ^ El Atfy, H.; Coiffard, C.; El Beialy, S. Y.; Doyle, J. A. (2024). "Understanding an exceptional Afropollis-dominated flora in the middle Cretaceous palaeotropics of the southern Tethys". Papers in Palaeontology. 10 (6). e1602. doi:10.1002/spp2.1602.
  195. ^ Patel, N. U.; McLachlan, S. M. S.; Galloway, J. M.; Greenwood, D. R.; Pospelova, V. (2024). "A maritime location reduced palynofloral turnover and extirpation across the end Cretaceous boundary interval on the west coast of Canada". Cretaceous Research. 166. 106011. doi:10.1016/j.cretres.2024.106011.
  196. ^ Smith, V.; Hessler, A.; Moscardelli, L.; Bord, D.; Olariu, I.; Lorente, M. A.; Sivil, E.; Liu, X. (2024). "A late refugium for Classopollis in the Paleocene Lower Wilcox Group along the Texas Gulf Coast". Geology. 52 (4): 251–255. Bibcode:2024Geo....52..251S. doi:10.1130/G51772.1.
  197. ^ Wei, C.; Li, M.; Mao, L.; Mander, L.; Jardine, P. E.; Gosling, W. D.; Hoorn, C. (2024). "A 23-million-year record of morphological evolution within Neotropical grass pollen". New Phytologist. doi:10.1111/nph.20214. PMID 39462786.
  198. ^ Pinaya, J. L. D.; Pitman, N. C. A.; Cruz, F. W.; Akabane, T. K.; Lopez, M. del C. S.; Pereira-Filho, A. J.; Grohman, C. H.; Reis, L. S.; Rodrigues, E. S. F.; Ceccantini, G. C. T.; De Oliveira, P. E. (2024). "Humid and cold forest connections in South America between the eastern Andes and the southern Atlantic coast during the LGM". Scientific Reports. 14 (1). 2080. Bibcode:2024NatSR..14.2080P. doi:10.1038/s41598-024-51763-8. PMC 10808232. PMID 38267489.
  199. ^ Akabane, T. K.; Chiessi, C. M.; Hirota, M.; Bouimetarhan, I.; Prange, M.; Mulitza, S.; Bertassoli, D. J.; Häggi, C.; Staal, A.; Lohmann, G.; Boers, N.; Daniau, A. L.; Oliveira, R. S.; Campos, M. C.; Shi, X.; De Oliveira, P. E. (2024). "Weaker Atlantic overturning circulation increases the vulnerability of northern Amazon forests". Nature Geoscience: 1–7. doi:10.1038/s41561-024-01578-z.
  200. ^ Coiro, M (2024). "Embracing uncertainty: The way forward in plant fossil phylogenetics". American Journal of Botany. 111 (2). e16282. doi:10.1002/ajb2.16282. PMID 38334302.
  201. ^ McElwain, J. C.; Matthaeus, W. J.; Barbosa, C.; Chondrogiannis, C.; O' Dea, K.; Jackson, B.; Knetge, A. B.; Kwasniewska, K.; Nair, R.; White, J. D.; Wilson, J. P.; Montañez, I. P.; Buckley, Y. M.; Belcher, C. M.; Nogué, S. (2024). "Functional traits of fossil plants". New Phytologist. 242 (2): 392–423. Bibcode:2024NewPh.242..392M. doi:10.1111/nph.19622. PMID 38409806.
  202. ^ Butrim, M. J.; Lowe, A. J.; Currano, E. D. (2024). "Leaf mass per area: An investigation into the application of the ubiquitous functional trait from a paleobotanical perspective". American Journal of Botany. 111 (10). e16419. doi:10.1002/ajb2.16419. PMID 39397294.
  203. ^ Liu, B-C.; Wang, K.; Bai, J.; Wang, Y.; Huang, B.; Xu, H.-H. (2024). "Plant dispersal in the Devonian world (c. 419–359 Ma)". Palaeontology. 67 (3). e12699. Bibcode:2024Palgy..6712699L. doi:10.1111/pala.12699.
  204. ^ Davies, N. S.; McMahon, W. J.; Berry, C. M. (2024). "Earth's earliest forest: fossilized trees and vegetation-induced sedimentary structures from the Middle Devonian (Eifelian) Hangman Sandstone Formation, Somerset and Devon, SW England". Journal of the Geological Society. 181 (4). Bibcode:2024JGSoc.181..204D. doi:10.1144/jgs2023-204.
  205. ^ Stacey, J.; Wallace, M. W.; Hood, A. v.S.; Shuster, A. M.; Corlett, H.; Reed, C. P.; Moynihan, C. (2024). "Ocean oxygenation and ecological restructuring caused by the late Paleozoic evolution of land plants". Geology. doi:10.1130/G52502.1.
  206. ^ Molina-Solís, A.; Cleal, C. J.; Monnet, C.; Cascales-Miñana, B. (2024). "Macrofloral biostratigraphy reflects late Carboniferous vegetation dynamics in the Nord-Pas-de-Calais Coalfield, France". Papers in Palaeontology. 10 (2). e1551. doi:10.1002/spp2.1551.
  207. ^ Santos, A. A.; Wappler, T.; McLoughlin, S. (2024). "Earliest evidence of granivory from China (Shanxi Formation) points to seeds as a food source and nursing habitat for insects in the earliest Permian humid tropical forests of Cathaysia". PLOS ONE. 19 (10). e0311737. doi:10.1371/journal.pone.0311737. PMC 11472943. PMID 39401203.
  208. ^ Hua, F.; Shao, L.; Wang, X.; Jones, T. P.; Zhang, T.; Bond, D. P. G.; Yan, Z.; Hilton, J. (2024). "The impact of frequent wildfires during the Permian–Triassic transition: Floral change and terrestrial crisis in southwestern China". Palaeogeography, Palaeoclimatology, Palaeoecology. 641. 112129. Bibcode:2024PPP...64112129H. doi:10.1016/j.palaeo.2024.112129.
  209. ^ Turner, H.-A.; McLoughlin, S.; Mays, C. (2024). "Comprehensive survey of Early to Middle Triassic Gondwanan floras reveals under-representation of plant–arthropod interactions". Frontiers in Ecology and Evolution. 12. 1419254. doi:10.3389/fevo.2024.1419254.
  210. ^ Gurung, K.; Field, K. J.; Batterman, S. A.; Poulton, S. W.; Mills, B. J. W. (2024). "Geographic range of plants drives long-term climate change". Nature Communications. 15 (1). 1805. Bibcode:2024NatCo..15.1805G. doi:10.1038/s41467-024-46105-1. PMC 10901853. PMID 38418475.
  211. ^ Seyfullah, L. J.; Coiro, M.; Vajda, V.; McLoughlin, S.; Steinthorsdottir, M. (2024). "Detection of in situ resinous traces in Jurassic conifers from floras lacking amber". Fossil Imprint. 80 (1): 68–76. doi:10.37520/fi.2024.007.
  212. ^ Kvaček, J.; Svobodová, M.; Čepičková, J.; Veselá, V.; Špičáková, L.; Uličný, D.; Teodoridis, V.; Dašková, J.; Mendes, M. M.; Zahajská, P. (2024). "Cenomanian terrestrial paleoenvironments from the Bohemian Cretaceous Basin in Central Europe and their implications for angiosperm paleoecology". Palaeogeography, Palaeoclimatology, Palaeoecology. 650. 112348. Bibcode:2024PPP...65012348K. doi:10.1016/j.palaeo.2024.112348.
  213. ^ Quirk, Z. J.; Smith, S. Y.; Acosta, R. P.; Poulsen, C. J. (2024). "Where did they come from, where did they go? Niche conservatism in woody and herbaceous plants and implications for plant-based paleoclimatic reconstructions". American Journal of Botany: e16426. doi:10.1002/ajb2.16426. PMID 39449637.
  214. ^ Rossetto-Harris, G.; Wilf, P. (2024). "Reassessing floral diversity at Río Pichileufú, earliest middle Eocene of Río Negro, Argentina". Palaeontologia Electronica. 27 (3). 27.3.a49. doi:10.26879/1383.
  215. ^ Kim, M.-S.; Ko, J.-J.; An, K.-I.; Kim, H.-J.; Jong, Y.-S.; Hong, S.-C. (2024). "The middle Miocene Hamjin flora and preliminary palaeoclimatic analysis of the Democratic People's Republic of Korea". Review of Palaeobotany and Palynology. 331. 105216. doi:10.1016/j.revpalbo.2024.105216.
  216. ^ Kelley, D. I.; Sato, H.; Ecker, M.; Burton, C. A.; Capurucho, J. M. G.; Bates, J. (2024). "Niche-dependent forest and savanna fragmentation in Tropical South America during the Last Glacial Maximum". npj Biodiversity. 3 (1). 23. Bibcode:2024npjBD...3...23K. doi:10.1038/s44185-024-00056-4. PMC 11391077. PMID 39261588.
  217. ^ Mariani, M.; Wills, A.; Herbert, A.; Adeleye, M.; Florin, S. A.; Cadd, H.; Connor, S.; Kershaw, P.; Theuerkauf, M.; Stevenson, J.; Fletcher, M.-S.; Mooney, S.; Bowman, D.; Haberle, S. (2024). "Shrub cover declined as Indigenous populations expanded across southeast Australia". Science. 386 (6721): 567–573. doi:10.1126/science.adn8668. PMID 39480950.
  218. ^ Shevchuk, O. A.; Boyarina, N.; Sukhov, O.; Shevchuk, O. I.; Vajda, V.; Mcloughlin, S. (2024). "The palaeobotanical heritage of Ukraine and its endangered status following the Russian military invasion". Review of Palaeobotany and Palynology. 331. 105201. Bibcode:2024RPaPa.33105201S. doi:10.1016/j.revpalbo.2024.105201.
  219. ^ jones, K. (February 28, 2024). "Estella Bergere Leopold, environmentalist and daughter of Aldo Leopold, dies at 97".