In probability theory and directional statistics , a wrapped asymmetric Laplace distribution is a wrapped probability distribution that results from the "wrapping" of the asymmetric Laplace distribution around the unit circle . For the symmetric case (asymmetry parameter κ = 1), the distribution becomes a wrapped Laplace distribution. The distribution of the ratio of two circular variates (Z ) from two different wrapped exponential distributions will have a wrapped asymmetric Laplace distribution. These distributions find application in stochastic modelling of financial data.
The probability density function of the wrapped asymmetric Laplace distribution is:[ 1]
f
W
A
L
(
θ
;
m
,
λ
,
κ
)
=
∑
k
=
−
∞
∞
f
A
L
(
θ
+
2
π
k
,
m
,
λ
,
κ
)
=
κ
λ
κ
2
+
1
{
e
−
(
θ
−
m
)
λ
κ
1
−
e
−
2
π
λ
κ
−
e
(
θ
−
m
)
λ
/
κ
1
−
e
2
π
λ
/
κ
if
θ
≥
m
e
−
(
θ
−
m
)
λ
κ
e
2
π
λ
κ
−
1
−
e
(
θ
−
m
)
λ
/
κ
e
−
2
π
λ
/
κ
−
1
if
θ
<
m
{\displaystyle {\begin{aligned}f_{WAL}(\theta ;m,\lambda ,\kappa )&=\sum _{k=-\infty }^{\infty }f_{AL}(\theta +2\pi k,m,\lambda ,\kappa )\\[10pt]&={\dfrac {\kappa \lambda }{\kappa ^{2}+1}}{\begin{cases}{\dfrac {e^{-(\theta -m)\lambda \kappa }}{1-e^{-2\pi \lambda \kappa }}}-{\dfrac {e^{(\theta -m)\lambda /\kappa }}{1-e^{2\pi \lambda /\kappa }}}&{\text{if }}\theta \geq m\\[12pt]{\dfrac {e^{-(\theta -m)\lambda \kappa }}{e^{2\pi \lambda \kappa }-1}}-{\dfrac {e^{(\theta -m)\lambda /\kappa }}{e^{-2\pi \lambda /\kappa }-1}}&{\text{if }}\theta <m\end{cases}}\end{aligned}}}
where
f
A
L
{\displaystyle f_{AL}}
is the asymmetric Laplace distribution . The angular parameter is restricted to
0
≤
θ
<
2
π
{\displaystyle 0\leq \theta <2\pi }
. The scale parameter is
λ
>
0
{\displaystyle \lambda >0}
which is the scale parameter of the unwrapped distribution and
κ
>
0
{\displaystyle \kappa >0}
is the asymmetry parameter of the unwrapped distribution.
The cumulative distribution function
F
W
A
L
{\displaystyle F_{WAL}}
is therefore:
F
W
A
L
(
θ
;
m
,
λ
,
κ
)
=
κ
λ
κ
2
+
1
{
e
m
λ
κ
(
1
−
e
−
θ
λ
κ
)
λ
κ
(
e
2
π
λ
κ
−
1
)
+
κ
e
−
m
λ
/
κ
(
1
−
e
θ
λ
/
κ
)
λ
(
e
−
2
π
λ
/
κ
−
1
)
if
θ
≤
m
1
−
e
−
(
θ
−
m
)
λ
κ
λ
κ
(
1
−
e
−
2
π
λ
κ
)
+
κ
(
1
−
e
(
θ
−
m
)
λ
/
κ
)
λ
(
1
−
e
2
π
λ
/
κ
)
+
e
m
λ
κ
−
1
λ
κ
(
e
2
π
λ
κ
−
1
)
+
κ
(
e
−
m
λ
/
κ
−
1
)
λ
(
e
−
2
π
λ
/
κ
−
1
)
if
θ
>
m
{\displaystyle F_{WAL}(\theta ;m,\lambda ,\kappa )={\dfrac {\kappa \lambda }{\kappa ^{2}+1}}{\begin{cases}{\dfrac {e^{m\lambda \kappa }(1-e^{-\theta \lambda \kappa })}{\lambda \kappa (e^{2\pi \lambda \kappa }-1)}}+{\dfrac {\kappa e^{-m\lambda /\kappa }(1-e^{\theta \lambda /\kappa })}{\lambda (e^{-2\pi \lambda /\kappa }-1)}}&{\text{if }}\theta \leq m\\{\dfrac {1-e^{-(\theta -m)\lambda \kappa }}{\lambda \kappa (1-e^{-2\pi \lambda \kappa })}}+{\dfrac {\kappa (1-e^{(\theta -m)\lambda /\kappa })}{\lambda (1-e^{2\pi \lambda /\kappa })}}+{\dfrac {e^{m\lambda \kappa }-1}{\lambda \kappa (e^{2\pi \lambda \kappa }-1)}}+{\dfrac {\kappa (e^{-m\lambda /\kappa }-1)}{\lambda (e^{-2\pi \lambda /\kappa }-1)}}&{\text{if }}\theta >m\end{cases}}}
Characteristic function [ edit ]
The characteristic function of the wrapped asymmetric Laplace is just the characteristic function of the asymmetric Laplace function evaluated at integer arguments:
φ
n
(
m
,
λ
,
κ
)
=
λ
2
e
i
m
n
(
n
−
i
λ
/
κ
)
(
n
+
i
λ
κ
)
{\displaystyle \varphi _{n}(m,\lambda ,\kappa )={\frac {\lambda ^{2}e^{imn}}{\left(n-i\lambda /\kappa \right)\left(n+i\lambda \kappa \right)}}}
which yields an alternate expression for the wrapped asymmetric Laplace PDF in terms of the circular variable z=ei(θ-m) valid for all real θ and m :
f
W
A
L
(
z
;
m
,
λ
,
κ
)
=
1
2
π
∑
n
=
−
∞
∞
φ
n
(
0
,
λ
,
κ
)
z
−
n
=
λ
π
(
κ
+
1
/
κ
)
{
Im
(
Φ
(
z
,
1
,
−
i
λ
κ
)
−
Φ
(
z
,
1
,
i
λ
/
κ
)
)
−
1
2
π
if
z
≠
1
coth
(
π
λ
κ
)
+
coth
(
π
λ
/
κ
)
if
z
=
1
{\displaystyle {\begin{aligned}f_{WAL}(z;m,\lambda ,\kappa )&={\frac {1}{2\pi }}\sum _{n=-\infty }^{\infty }\varphi _{n}(0,\lambda ,\kappa )z^{-n}\\[10pt]&={\frac {\lambda }{\pi (\kappa +1/\kappa )}}{\begin{cases}{\textrm {Im}}\left(\Phi (z,1,-i\lambda \kappa )-\Phi \left(z,1,i\lambda /\kappa \right)\right)-{\frac {1}{2\pi }}&{\text{if }}z\neq 1\\[12pt]\coth(\pi \lambda \kappa )+\coth(\pi \lambda /\kappa )&{\text{if }}z=1\end{cases}}\end{aligned}}}
where
Φ
(
)
{\displaystyle \Phi ()}
is the Lerch transcendent function and coth() is the hyperbolic cotangent function.
In terms of the circular variable
z
=
e
i
θ
{\displaystyle z=e^{i\theta }}
the circular moments of the wrapped asymmetric Laplace distribution are the characteristic function of the asymmetric Laplace distribution evaluated at integer arguments:
⟨
z
n
⟩
=
φ
n
(
m
,
λ
,
κ
)
{\displaystyle \langle z^{n}\rangle =\varphi _{n}(m,\lambda ,\kappa )}
The first moment is then the average value of z , also known as the mean resultant, or mean resultant vector:
⟨
z
⟩
=
λ
2
e
i
m
(
1
−
i
λ
/
κ
)
(
1
+
i
λ
κ
)
{\displaystyle \langle z\rangle ={\frac {\lambda ^{2}e^{im}}{\left(1-i\lambda /\kappa \right)\left(1+i\lambda \kappa \right)}}}
The mean angle is
(
−
π
≤
⟨
θ
⟩
≤
π
)
{\displaystyle (-\pi \leq \langle \theta \rangle \leq \pi )}
⟨
θ
⟩
=
arg
(
⟨
z
⟩
)
=
arg
(
e
i
m
)
{\displaystyle \langle \theta \rangle =\arg(\,\langle z\rangle \,)=\arg(e^{im})}
and the length of the mean resultant is
R
=
|
⟨
z
⟩
|
=
λ
2
(
1
κ
2
+
λ
2
)
(
κ
2
+
λ
2
)
.
{\displaystyle R=|\langle z\rangle |={\frac {\lambda ^{2}}{\sqrt {\left({\frac {1}{\kappa ^{2}}}+\lambda ^{2}\right)\left(\kappa ^{2}+\lambda ^{2}\right)}}}.}
The circular variance is then 1 − R
Generation of random variates [ edit ]
If X is a random variate drawn from an asymmetric Laplace distribution (ALD), then
Z
=
e
i
X
{\displaystyle Z=e^{iX}}
will be a circular variate drawn from the wrapped ALD, and,
θ
=
arg
(
Z
)
+
π
{\displaystyle \theta =\arg(Z)+\pi }
will be an angular variate drawn from the wrapped ALD with
0
<
θ
≤
2
π
{\displaystyle 0<\theta \leq 2\pi }
.
Since the ALD is the distribution of the difference of two variates drawn from the exponential distribution , it follows that if Z 1 is drawn from a wrapped exponential distribution with mean m 1 and rate λ/κ and Z 2 is drawn from a wrapped exponential distribution with mean m 2 and rate λκ , then Z 1 /Z 2 will be a circular variate drawn from the wrapped ALD with parameters ( m 1 - m 2 , λ, κ) and
θ
=
arg
(
Z
1
/
Z
2
)
+
π
{\displaystyle \theta =\arg(Z_{1}/Z_{2})+\pi }
will be an angular variate drawn from that wrapped ALD with
−
π
<
θ
≤
π
{\displaystyle -\pi <\theta \leq \pi }
.
Discrete univariate
with finite support with infinite support
Continuous univariate
supported on a bounded interval supported on a semi-infinite interval supported on the whole real line with support whose type varies
Mixed univariate
Multivariate (joint) Directional Degenerate and singular Families