Family of lifetime distributions with decreasing failure rate
Exponential-Logarithmic distribution (EL)
Probability density function
Parameters
p
∈
(
0
,
1
)
{\displaystyle p\in (0,1)}
β
>
0
{\displaystyle \beta >0}
Support
x
∈
[
0
,
∞
)
{\displaystyle x\in [0,\infty )}
PDF
1
−
ln
p
×
β
(
1
−
p
)
e
−
β
x
1
−
(
1
−
p
)
e
−
β
x
{\displaystyle {\frac {1}{-\ln p}}\times {\frac {\beta (1-p)e^{-\beta x}}{1-(1-p)e^{-\beta x}}}}
CDF
1
−
ln
(
1
−
(
1
−
p
)
e
−
β
x
)
ln
p
{\displaystyle 1-{\frac {\ln(1-(1-p)e^{-\beta x})}{\ln p}}}
Mean
−
polylog
(
2
,
1
−
p
)
β
ln
p
{\displaystyle -{\frac {{\text{polylog}}(2,1-p)}{\beta \ln p}}}
Median
ln
(
1
+
p
)
β
{\displaystyle {\frac {\ln(1+{\sqrt {p}})}{\beta }}}
Mode
0 Variance
−
2
polylog
(
3
,
1
−
p
)
β
2
ln
p
{\displaystyle -{\frac {2{\text{polylog}}(3,1-p)}{\beta ^{2}\ln p}}}
−
polylog
2
(
2
,
1
−
p
)
β
2
ln
2
p
{\displaystyle -{\frac {{\text{polylog}}^{2}(2,1-p)}{\beta ^{2}\ln ^{2}p}}}
MGF
−
β
(
1
−
p
)
ln
p
(
β
−
t
)
hypergeom
2
,
1
{\displaystyle -{\frac {\beta (1-p)}{\ln p(\beta -t)}}{\text{hypergeom}}_{2,1}}
(
[
1
,
β
−
t
β
]
,
[
2
β
−
t
β
]
,
1
−
p
)
{\displaystyle ([1,{\frac {\beta -t}{\beta }}],[{\frac {2\beta -t}{\beta }}],1-p)}
In probability theory and statistics , the Exponential-Logarithmic (EL) distribution is a family of lifetime distributions with
decreasing failure rate , defined on the interval [0, ∞). This distribution is parameterized by two parameters
p
∈
(
0
,
1
)
{\displaystyle p\in (0,1)}
and
β
>
0
{\displaystyle \beta >0}
.
The study of lengths of the lives of organisms, devices, materials, etc., is of major importance in the biological and engineering sciences. In general, the lifetime of a device is expected to exhibit decreasing failure rate (DFR) when its behavior over time is characterized by 'work-hardening' (in engineering terms) or 'immunity' (in biological terms).
The exponential-logarithmic model, together with its various properties, are studied by Tahmasbi and Rezaei (2008).[ 1]
This model is obtained under the concept of population heterogeneity (through the process of
compounding).
Properties of the distribution [ edit ]
The probability density function (pdf) of the EL distribution is given by Tahmasbi and Rezaei (2008)[ 1]
f
(
x
;
p
,
β
)
:=
(
1
−
ln
p
)
β
(
1
−
p
)
e
−
β
x
1
−
(
1
−
p
)
e
−
β
x
{\displaystyle f(x;p,\beta ):=\left({\frac {1}{-\ln p}}\right){\frac {\beta (1-p)e^{-\beta x}}{1-(1-p)e^{-\beta x}}}}
where
p
∈
(
0
,
1
)
{\displaystyle p\in (0,1)}
and
β
>
0
{\displaystyle \beta >0}
. This function is strictly decreasing in
x
{\displaystyle x}
and tends to zero as
x
→
∞
{\displaystyle x\rightarrow \infty }
. The EL distribution has its modal value of the density at x=0, given by
β
(
1
−
p
)
−
p
ln
p
{\displaystyle {\frac {\beta (1-p)}{-p\ln p}}}
The EL reduces to the exponential distribution with rate parameter
β
{\displaystyle \beta }
, as
p
→
1
{\displaystyle p\rightarrow 1}
.
The cumulative distribution function is given by
F
(
x
;
p
,
β
)
=
1
−
ln
(
1
−
(
1
−
p
)
e
−
β
x
)
ln
p
,
{\displaystyle F(x;p,\beta )=1-{\frac {\ln(1-(1-p)e^{-\beta x})}{\ln p}},}
and hence, the median is given by
x
median
=
ln
(
1
+
p
)
β
{\displaystyle x_{\text{median}}={\frac {\ln(1+{\sqrt {p}})}{\beta }}}
.
The moment generating function of
X
{\displaystyle X}
can be determined from the pdf by direct integration and is given by
M
X
(
t
)
=
E
(
e
t
X
)
=
−
β
(
1
−
p
)
ln
p
(
β
−
t
)
F
2
,
1
(
[
1
,
β
−
t
β
]
,
[
2
β
−
t
β
]
,
1
−
p
)
,
{\displaystyle M_{X}(t)=E(e^{tX})=-{\frac {\beta (1-p)}{\ln p(\beta -t)}}F_{2,1}\left(\left[1,{\frac {\beta -t}{\beta }}\right],\left[{\frac {2\beta -t}{\beta }}\right],1-p\right),}
where
F
2
,
1
{\displaystyle F_{2,1}}
is a hypergeometric function . This function is also known as Barnes's extended hypergeometric function . The definition of
F
N
,
D
(
n
,
d
,
z
)
{\displaystyle F_{N,D}({n,d},z)}
is
F
N
,
D
(
n
,
d
,
z
)
:=
∑
k
=
0
∞
z
k
∏
i
=
1
p
Γ
(
n
i
+
k
)
Γ
−
1
(
n
i
)
Γ
(
k
+
1
)
∏
i
=
1
q
Γ
(
d
i
+
k
)
Γ
−
1
(
d
i
)
{\displaystyle F_{N,D}(n,d,z):=\sum _{k=0}^{\infty }{\frac {z^{k}\prod _{i=1}^{p}\Gamma (n_{i}+k)\Gamma ^{-1}(n_{i})}{\Gamma (k+1)\prod _{i=1}^{q}\Gamma (d_{i}+k)\Gamma ^{-1}(d_{i})}}}
where
n
=
[
n
1
,
n
2
,
…
,
n
N
]
{\displaystyle n=[n_{1},n_{2},\dots ,n_{N}]}
and
d
=
[
d
1
,
d
2
,
…
,
d
D
]
{\displaystyle {d}=[d_{1},d_{2},\dots ,d_{D}]}
.
The moments of
X
{\displaystyle X}
can be derived from
M
X
(
t
)
{\displaystyle M_{X}(t)}
. For
r
∈
N
{\displaystyle r\in \mathbb {N} }
, the raw moments are given by
E
(
X
r
;
p
,
β
)
=
−
r
!
Li
r
+
1
(
1
−
p
)
β
r
ln
p
,
{\displaystyle E(X^{r};p,\beta )=-r!{\frac {\operatorname {Li} _{r+1}(1-p)}{\beta ^{r}\ln p}},}
where
Li
a
(
z
)
{\displaystyle \operatorname {Li} _{a}(z)}
is the polylogarithm function which is defined as
follows:[ 2]
Li
a
(
z
)
=
∑
k
=
1
∞
z
k
k
a
.
{\displaystyle \operatorname {Li} _{a}(z)=\sum _{k=1}^{\infty }{\frac {z^{k}}{k^{a}}}.}
Hence the mean and variance of the EL distribution
are given, respectively, by
E
(
X
)
=
−
Li
2
(
1
−
p
)
β
ln
p
,
{\displaystyle E(X)=-{\frac {\operatorname {Li} _{2}(1-p)}{\beta \ln p}},}
Var
(
X
)
=
−
2
Li
3
(
1
−
p
)
β
2
ln
p
−
(
Li
2
(
1
−
p
)
β
ln
p
)
2
.
{\displaystyle \operatorname {Var} (X)=-{\frac {2\operatorname {Li} _{3}(1-p)}{\beta ^{2}\ln p}}-\left({\frac {\operatorname {Li} _{2}(1-p)}{\beta \ln p}}\right)^{2}.}
The survival, hazard and mean residual life functions[ edit ]
Hazard function
The survival function (also known as the reliability
function) and hazard function (also known as the failure rate
function) of the EL distribution are given, respectively, by
s
(
x
)
=
ln
(
1
−
(
1
−
p
)
e
−
β
x
)
ln
p
,
{\displaystyle s(x)={\frac {\ln(1-(1-p)e^{-\beta x})}{\ln p}},}
h
(
x
)
=
−
β
(
1
−
p
)
e
−
β
x
(
1
−
(
1
−
p
)
e
−
β
x
)
ln
(
1
−
(
1
−
p
)
e
−
β
x
)
.
{\displaystyle h(x)={\frac {-\beta (1-p)e^{-\beta x}}{(1-(1-p)e^{-\beta x})\ln(1-(1-p)e^{-\beta x})}}.}
The mean residual lifetime of the EL distribution is given by
m
(
x
0
;
p
,
β
)
=
E
(
X
−
x
0
|
X
≥
x
0
;
β
,
p
)
=
−
Li
2
(
1
−
(
1
−
p
)
e
−
β
x
0
)
β
ln
(
1
−
(
1
−
p
)
e
−
β
x
0
)
{\displaystyle m(x_{0};p,\beta )=E(X-x_{0}|X\geq x_{0};\beta ,p)=-{\frac {\operatorname {Li} _{2}(1-(1-p)e^{-\beta x_{0}})}{\beta \ln(1-(1-p)e^{-\beta x_{0}})}}}
where
Li
2
{\displaystyle \operatorname {Li} _{2}}
is the dilogarithm function
Random number generation [ edit ]
Let U be a random variate from the standard uniform distribution .
Then the following transformation of U has the EL distribution with
parameters p and β :
X
=
1
β
ln
(
1
−
p
1
−
p
U
)
.
{\displaystyle X={\frac {1}{\beta }}\ln \left({\frac {1-p}{1-p^{U}}}\right).}
Estimation of the parameters [ edit ]
To estimate the parameters, the EM algorithm is used. This method is discussed by Tahmasbi and Rezaei (2008).[ 1] The EM iteration is given by
β
(
h
+
1
)
=
n
(
∑
i
=
1
n
x
i
1
−
(
1
−
p
(
h
)
)
e
−
β
(
h
)
x
i
)
−
1
,
{\displaystyle \beta ^{(h+1)}=n\left(\sum _{i=1}^{n}{\frac {x_{i}}{1-(1-p^{(h)})e^{-\beta ^{(h)}x_{i}}}}\right)^{-1},}
p
(
h
+
1
)
=
−
n
(
1
−
p
(
h
+
1
)
)
ln
(
p
(
h
+
1
)
)
∑
i
=
1
n
{
1
−
(
1
−
p
(
h
)
)
e
−
β
(
h
)
x
i
}
−
1
.
{\displaystyle p^{(h+1)}={\frac {-n(1-p^{(h+1)})}{\ln(p^{(h+1)})\sum _{i=1}^{n}\{1-(1-p^{(h)})e^{-\beta ^{(h)}x_{i}}\}^{-1}}}.}
The EL distribution has been generalized to form the Weibull-logarithmic distribution.[ 3]
If X is defined to be the random variable which is the minimum of N independent realisations from an exponential distribution with rate parameter β , and if N is a realisation from a logarithmic distribution (where the parameter p in the usual parameterisation is replaced by (1 − p ) ), then X has the exponential-logarithmic distribution in the parameterisation used above.
^ a b c Tahmasbi, R., Rezaei, S., (2008), "A two-parameter lifetime distribution with decreasing failure rate", Computational Statistics and Data Analysis , 52 (8), 3889-3901. doi :10.1016/j.csda.2007.12.002
^ Lewin, L. (1981) Polylogarithms and Associated Functions , North
Holland, Amsterdam.
^ Ciumara, Roxana; Preda, Vasile (2009) "The Weibull-logarithmic distribution in lifetime analysis and its properties" . In: L. Sakalauskas, C. Skiadas and
E. K. Zavadskas (Eds.) Applied Stochastic Models and Data Analysis Archived 2011-05-18 at the Wayback Machine , The XIII International Conference, Selected papers. Vilnius, 2009 ISBN 978-9955-28-463-5
Discrete univariate
with finite support with infinite support
Continuous univariate
supported on a bounded interval supported on a semi-infinite interval supported on the whole real line with support whose type varies
Mixed univariate
Multivariate (joint) Directional Degenerate and singular Families