Jump to content

Snub triapeirotrigonal tiling

From Wikipedia, the free encyclopedia
Snub triapeirotrigonal tiling
Snub triapeirotrigonal tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic uniform tiling
Vertex configuration 3.3.3.3.3.∞
Schläfli symbol s{3,∞}
s(∞,3,3)
Wythoff symbol | ∞ 3 3
Coxeter diagram
Symmetry group [(∞,3,3)]+, (∞33)
Dual Order-i-3-3_t0 dual tiling
Properties Vertex-transitive Chiral

In geometry, the snub triapeirotrigonal tiling is a uniform tiling of the hyperbolic plane with a Schläfli symbol of s{3,∞}.

[edit]
Paracompact hyperbolic uniform tilings in [(∞,3,3)] family
Symmetry: [(∞,3,3)], (*∞33) [(∞,3,3)]+, (∞33)
(∞,∞,3) t0,1(∞,3,3) t1(∞,3,3) t1,2(∞,3,3) t2(∞,3,3) t0,2(∞,3,3) t0,1,2(∞,3,3) s(∞,3,3)
Dual tilings
V(3.∞)3 V3.∞.3.∞ V(3.∞)3 V3.6.∞.6 V(3.3) V3.6.∞.6 V6.6.∞ V3.3.3.3.3.∞

References

[edit]
  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.

See also

[edit]
[edit]