Jump to content

Truncated order-5 pentagonal tiling

From Wikipedia, the free encyclopedia
Truncated order-5 pentagonal tiling
Truncated order-5 pentagonal tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic uniform tiling
Vertex configuration 5.10.10
Schläfli symbol t{5,5}
Wythoff symbol 2 5 | 5
Coxeter diagram
Symmetry group [5,5], (*552)
Dual Order-5 pentakis pentagonal tiling
Properties Vertex-transitive

In geometry, the truncated order-5 pentagonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of t0,1{5,5}, constructed from one pentagons and two decagons around every vertex.

[edit]
Uniform pentapentagonal tilings
Symmetry: [5,5], (*552) [5,5]+, (552)

=

=

=

=

=

=

=

=
Order-5 pentagonal tiling
{5,5}
Truncated order-5 pentagonal tiling
t{5,5}
Order-4 pentagonal tiling
r{5,5}
Truncated order-5 pentagonal tiling
2t{5,5} = t{5,5}
Order-5 pentagonal tiling
2r{5,5} = {5,5}
Tetrapentagonal tiling
rr{5,5}
Truncated order-4 pentagonal tiling
tr{5,5}
Snub pentapentagonal tiling
sr{5,5}
Uniform duals
Order-5 pentagonal tiling
V5.5.5.5.5
V5.10.10 Order-5 square tiling
V5.5.5.5
V5.10.10 Order-5 pentagonal tiling
V5.5.5.5.5
V4.5.4.5 V4.10.10 V3.3.5.3.5

See also

[edit]

References

[edit]
  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
[edit]