From Wikipedia, the free encyclopedia
Raised cosine
Probability density function
Cumulative distribution function
Parameters
μ
{\displaystyle \mu \,}
(real )
s
>
0
{\displaystyle s>0\,}
(real ) Support
x
∈
[
μ
−
s
,
μ
+
s
]
{\displaystyle x\in [\mu -s,\mu +s]\,}
PDF
1
2
s
[
1
+
cos
(
x
−
μ
s
π
)
]
=
1
s
hvc
(
x
−
μ
s
π
)
{\displaystyle {\frac {1}{2s}}\left[1+\cos \left({\frac {x-\mu }{s}}\,\pi \right)\right]\,={\frac {1}{s}}\operatorname {hvc} \left({\frac {x-\mu }{s}}\,\pi \right)\,}
CDF
1
2
[
1
+
x
−
μ
s
+
1
π
sin
(
x
−
μ
s
π
)
]
{\displaystyle {\frac {1}{2}}\left[1+{\frac {x-\mu }{s}}+{\frac {1}{\pi }}\sin \left({\frac {x-\mu }{s}}\,\pi \right)\right]}
Mean
μ
{\displaystyle \mu \,}
Median
μ
{\displaystyle \mu \,}
Mode
μ
{\displaystyle \mu \,}
Variance
s
2
(
1
3
−
2
π
2
)
{\displaystyle s^{2}\left({\frac {1}{3}}-{\frac {2}{\pi ^{2}}}\right)\,}
Skewness
0
{\displaystyle 0\,}
Excess kurtosis
6
(
90
−
π
4
)
5
(
π
2
−
6
)
2
=
−
0.59376
…
{\displaystyle {\frac {6(90-\pi ^{4})}{5(\pi ^{2}-6)^{2}}}=-0.59376\ldots \,}
MGF
π
2
sinh
(
s
t
)
s
t
(
π
2
+
s
2
t
2
)
e
μ
t
{\displaystyle {\frac {\pi ^{2}\sinh(st)}{st(\pi ^{2}+s^{2}t^{2})}}\,e^{\mu t}}
CF
π
2
sin
(
s
t
)
s
t
(
π
2
−
s
2
t
2
)
e
i
μ
t
{\displaystyle {\frac {\pi ^{2}\sin(st)}{st(\pi ^{2}-s^{2}t^{2})}}\,e^{i\mu t}}
In probability theory and statistics , the raised cosine distribution is a continuous probability distribution supported on the interval
[
μ
−
s
,
μ
+
s
]
{\displaystyle [\mu -s,\mu +s]}
. The probability density function (PDF) is
f
(
x
;
μ
,
s
)
=
1
2
s
[
1
+
cos
(
x
−
μ
s
π
)
]
=
1
s
hvc
(
x
−
μ
s
π
)
for
μ
−
s
≤
x
≤
μ
+
s
{\displaystyle f(x;\mu ,s)={\frac {1}{2s}}\left[1+\cos \left({\frac {x-\mu }{s}}\,\pi \right)\right]\,={\frac {1}{s}}\operatorname {hvc} \left({\frac {x-\mu }{s}}\,\pi \right){\text{ for }}\mu -s\leq x\leq \mu +s}
and zero otherwise. The cumulative distribution function (CDF) is
F
(
x
;
μ
,
s
)
=
1
2
[
1
+
x
−
μ
s
+
1
π
sin
(
x
−
μ
s
π
)
]
{\displaystyle F(x;\mu ,s)={\frac {1}{2}}\left[1+{\frac {x-\mu }{s}}+{\frac {1}{\pi }}\sin \left({\frac {x-\mu }{s}}\,\pi \right)\right]}
for
μ
−
s
≤
x
≤
μ
+
s
{\displaystyle \mu -s\leq x\leq \mu +s}
and zero for
x
<
μ
−
s
{\displaystyle x<\mu -s}
and unity for
x
>
μ
+
s
{\displaystyle x>\mu +s}
.
The moments of the raised cosine distribution are somewhat complicated in the general case, but are considerably simplified for the standard raised cosine distribution. The standard raised cosine distribution is just the raised cosine distribution with
μ
=
0
{\displaystyle \mu =0}
and
s
=
1
{\displaystyle s=1}
. Because the standard raised cosine distribution is an even function , the odd moments are zero. The even moments are given by:
E
(
x
2
n
)
=
1
2
∫
−
1
1
[
1
+
cos
(
x
π
)
]
x
2
n
d
x
=
∫
−
1
1
x
2
n
hvc
(
x
π
)
d
x
=
1
n
+
1
+
1
1
+
2
n
1
F
2
(
n
+
1
2
;
1
2
,
n
+
3
2
;
−
π
2
4
)
{\displaystyle {\begin{aligned}\operatorname {E} (x^{2n})&={\frac {1}{2}}\int _{-1}^{1}[1+\cos(x\pi )]x^{2n}\,dx=\int _{-1}^{1}x^{2n}\operatorname {hvc} (x\pi )\,dx\\[5pt]&={\frac {1}{n+1}}+{\frac {1}{1+2n}}\,_{1}F_{2}\left(n+{\frac {1}{2}};{\frac {1}{2}},n+{\frac {3}{2}};{\frac {-\pi ^{2}}{4}}\right)\end{aligned}}}
where
1
F
2
{\displaystyle \,_{1}F_{2}}
is a generalized hypergeometric function .
Discrete univariate
with finite support with infinite support
Continuous univariate
supported on a bounded interval supported on a semi-infinite interval supported on the whole real line with support whose type varies
Mixed univariate
Multivariate (joint) Directional Degenerate and singular Families