Jump to content

2020 in paleomammalogy

From Wikipedia, the free encyclopedia

List of years in paleomammalogy
In paleontology
2017
2018
2019
2020
2021
2022
2023
In paleobotany
2017
2018
2019
2020
2021
2022
2023
In arthropod paleontology
2017
2018
2019
2020
2021
2022
2023
In paleoentomology
2017
2018
2019
2020
2021
2022
2023
In paleoichthyology
2017
2018
2019
2020
2021
2022
2023
In paleomalacology
2017
2018
2019
2020
2021
2022
2023
In reptile paleontology
2017
2018
2019
2020
2021
2022
2023
In archosaur paleontology
2017
2018
2019
2020
2021
2022
2023

This paleomammalogy list records new fossil mammal taxa that were described during the year 2020, as well as notes other significant paleomammalogy discoveries and events which occurred during the year.

Afrotherians

[edit]

Proboscidea

[edit]

Proboscidea research

[edit]
  • A study on dietary differences among Pleistocene proboscideans in North America, and their implications for the knowledge of the causes of extinction of Cuvieronius, is published by Smith & DeSantis (2020).[1]
  • Evidence of dietary resource partitioning among three proboscidean taxa from the early Pliocene locality of Langebaanweg in South Africa (Anancus capensis, Mammuthus subplanifrons and Loxodonta cookei) is presented by Groenewald et al. (2020).[2]
  • A study on the morphology of teeth and mandible of "Serridentinus" gobiensis and Miomastodon tongxinensis, as well as on the phylogenetic affinities of these taxa, is published by Wang, Zhang & Li (2020), who reestablish Miomastodon as a genus distinct from Zygolophodon, and transfer S. gobiensis to the genus Miomastodon.[3] update headers and lead
  • A study on the phylogeography of the American mastodon, based on data from 35 complete mitochondrial genomes, is published by Karpinski et al. (2020).[4]

Sirenia

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Trichechus hesperamazonicus[5]

Sp. nov

Valid

Perini, Nascimento & Cozzuol

Late Pleistocene

Rio Madeira Formation

 Brazil

A manatee.

Sirenian research

[edit]
  • The hindlimbs of the quadrupedal sirenian Sobrarbesiren cardieli from the Eocene of Northeastern Spain are described in detail with suggestions on the aquatic locomotion of the species.[6]
  • Review of the Miocene sirenian fossil record from Sardinia is published by Carone & Rizzo, with referral of specimens to Metaxytherium cf. M. krahuletzi, and reaffirmation of "Metaxytherium lovisati" as nomen dubium.[7]

Other afrotherians

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Stylolophus major[8]

Sp. nov

Valid

Gheerbrant et al.

Eocene (Ypresian)

Ouled Abdoun

 Morocco

An early member of Embrithopoda. Announced in 2020; the final article version was published in 2021.

Miscellaneous afrotherian research

[edit]
  • A study on the anatomy of the petrosal and inner ear of Ocepeia daouiensis is published by Gheerbrant, Schmitt & Billet (2020).[9]

Euarchontoglires

[edit]

Primates

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images
Fanchangia[10] Gen. et sp. nov Valid Harrison et al. Early Miocene  China A member of Pliopithecoidea. Genus includes new species F. jini.

Kapi[11]

Gen. et sp. nov

Valid

Gilbert et al.

Miocene

 India

A catarrhine of uncertain affinities; originally identified as a gibbon, but subsequently argued to be a pliopithecoid.[12] Genus includes new species K. ramnagarensis.

Nesomomys[13] Gen. et sp. nov Valid Beard et al. Eocene (Lutetian) Uzunçarşidere  Turkey A member of the family Omomyidae. Genus includes new species N. bunodens. Announced in 2020; the final version of the article naming was published in 2021.

Ucayalipithecus[14]

Gen. et sp. nov

Valid

Seiffert et al.

Paleogene

Santa Rosa locality

 Peru

A member of the family Parapithecidae. Genus includes new species U. perdita.

General primate research

[edit]
  • A study aiming to determine whether the relationship between primate brain size and brain shape is characterized by allometry, and whether any such relationship may reflect shared macroevolutionary trends in primate brain shape, based on data from extant and four fossil primates (Homo heidelbergensis, Australopithecus africanus, Antillothrix bernensis and Archaeolemur sp.), is published by Sansalone et al. (2020).[15]
  • Marigó et al. (2020) describe navicular bones of Anchomomys frontanyensis from the Eocene fossil site of Sant Jaume de Frontanyà-3C (Barcelona, Spain), representing first known navicular bones of an Eocene euprimate from Europe, and evaluate the implications of these fossils for the knowledge of early patterns of locomotor evolution in primates.[16]
  • A study evaluating the potential impact of a large-scale mid-Cenozoic extinction and diversification event on lemurs from Madagascar, based on comparison of the terrestrial vertebrate fauna of Madagascar in the Holocene to that of early Cenozoic continental Africa and on phylogenetic modeling, is published by Godfrey et al. (2020).[17]
  • Virtual endocast of a specimen of Necrolemur antiquus is presented by Harrington, Yapuncich & Boyer (2020), who compare the endocast morphology of N. antiquus with those of other Eocene primates.[18]
  • New fossil material of Ganlea megacanina is described by Jaeger et al. (2020), who evaluate the implications of this finding for the knowledge of the phylogenetic relationships of amphipithecine primates, and interpret amphipithecines as stem anthropoids.[19]
  • A study on the anatomy of the talus of Paralouatta marianae and P. varonai, evaluating its implications for the knowledge of the locomotor behaviors of these primate (especially for the knowledge whether or not Paralouatta represents the first known semi-terrestrial platyrrhine), is published by Püschel et al. (2020).[20]
  • New specimens of Mesopithecus pentelicus, representing the easternmost occurrence of this genus to date, are described from the Miocene site of Shuitangba (Yunnan, China) by Jablonski et al. (2020), who evaluate the implications of these fossils for the knowledge of primate dispersals and paleoecology in the late Miocene.[21]
  • A study on the evolution of the vestibular apparatus in hominoids and on the utility of the study of the inner ear morphology for reconstructions of phylogenetic relationships of fossil apes, based on data from extant anthropoids and two fossil taxa (Oreopithecus and Australopithecus), is published by Urciuoli et al. (2020).[22]
  • A study on the biomechanical performance of the patella of Pierolapithecus catalaunicus is published by Pina et al. (2020).[23]
  • A study reevaluating the anatomical evidence for bipedalism in Danuvius guggenmosi is published by Williams et al. (2020).[24][25]
  • A study on the ecology of fossil hominins and co-existing primates in the Turkana Basin area (circa 4 to 2 Ma), based on data from tooth enamel stable calcium isotope values, is published by Martin et al. (2020).[26]

Paleoanthropological research

[edit]
  • A study on the impact caused by hard plant tissues in contact with tooth enamel is published by van Casteren et al. (2020), who evaluate the implications of their findings for the knowledge of the diet of early hominins.[27]
  • A study on the mandible morphology, chewing biomechanics and probable diet of early hominins is published by Marcé-Nogué et al. (2020).[28]
  • A study on metacarpal trabecular and cortical bone in early hominins, and on its implications for the knowledge of diversity in hominin hand use (especially in Australopithecus sediba), is published by Dunmore et al. (2020).[29]
  • A study on the phalangeal curvature of a chimpanzee who was raised during the 1930s to live much like a human, having very few opportunities to engage in arboreal activities, is published by Wallace, Burgess & Patel (2020), who attempt to determine the extent to which phalangeal curvature is shaped by arboreal locomotion during life relative to genetic factors, and evaluate the implications of their findings for the interpretations of phalangeal curvature among fossil hominins.[30]
  • A study on the evolution of human brain size, shape, and asymmetry, based on data from apes and from species belonging to the genus Homo, is published by Melchionna et al. (2020), who report evidence indicating a significant shift in the rate of brain shape evolution in the clade including modern humans, Neanderthals and Homo heidelbergensis.[31]
  • Two hominin skulls, representing the earliest definitive occurrence of Paranthropus robustus and the earliest occurrence of a cranium with clear affinities to Homo erectus reported so far, are described from Drimolen (South Africa) by Herries et al. (2020), who interpret their findings as evidence that Homo, Paranthropus and Australopithecus were contemporaneous at ~2 million years ago.[32]
  • A study on the locomotion of two hominins from the Sterkfontein Caves in South Africa (Australopithecus africanus and a geologically younger hominin of uncertain phylogenetic placement, either Paranthropus robustus or a member of the genus Homo), testing for evidence of committed terrestrial bipedalism and for significant bouts of climbing, is published by Georgiou et al. (2020).[33][34][35]
  • A study on changes of the diet of the hominins from the Shungura and Usno Formations (Ethiopia) through time, as indicated by carbon isotope data, is published by Wynn et al. (2020).[36]
  • A study on the maturational pattern of Paranthropus robustus, based on data from fossils from the Kromdraai B cave site (South Africa), is published by Cazenave et al. (2020), who report evidence indicating that P. robustus had a maturational pattern that more closely approached the extant ape rather than the human condition.[37]
  • A study on the histology of a third permanent molar of a specimen of Paranthropus robustus from the Swartkrans site (South Africa), evaluating its implications for the knowledge of the timing of teeth maturation in this hominin, is published by Dean et al. (2020).[38]
  • An approximately 2-million-year-old skull of a male Paranthropus robustus is described from the Drimolen Main Quarry by Martin et al. (2020), who argue that the morphology of this specimen refutes existing hypotheses of sexual dimorphism in this hominin, and instead documents microevolutionary changes within this species.[39]
  • Detailed comparative description of the DNH 7 skull from Drimolen is published by Rak et al. (2020).[40]
  • Richmond et al. (2020) report the first associated hand and upper limb skeleton of Paranthropus boisei from the Ileret site (Kenya).[41]
  • A study aiming to determine the length of the Achilles tendon in Australopithecus is published by McNutt & DeSilva (2020).[42]
  • A study on the anatomy of the atlas of the Australopithecus specimen Stw 573 ("Little Foot") and an additional Australopithecus specimen StW 679 from the Sterkfontein Member 4 (South Africa, evaluating their implications for the knowledge of kinematics of head-neck movements and blood supply contributing to brain metabolism in Australopithecus is published by Beaudet et al. (2020).[43]
  • A study on brain organization and growth in Australopithecus afarensis is published by Gunz et al. (2020).[44]
  • A 1.4-million-y-old large bone fragment shaped into handaxe-like form is described from the Konso Formation (Ethiopia) by Sano et al. (2020), expanding the documented technological repertoire of African Early Pleistocene Homo.[45][46][47]
  • An assemblage of immature remains of Homo naledi, including the first partial skeleton of a juvenile member of this species, is reported from the Dinaledi Chamber of the Rising Star Cave (South Africa) by Bolter et al. (2020).[48]
  • Bolter & Cameron (2020) utilize the methods used to study human growth and development for the reconstruction of ontogeny of Homo naledi.[49]
  • A study on the morphology of the mandibular premolars of Homo naledi, and on its implications for the knowledge of possible evolutionary links between H. naledi and hominins from Sterkfontein and Swartkrans, is published by Davies et al. (2020).[50]
  • A study on the timing of the first appearance of Homo erectus at the Sangiran site (Indonesia) is published by Matsu'ura et al. (2020).[51]
  • Semaw et al. (2020) report the discovery of crania of Homo erectus and both Acheulean and Oldowan artifacts at the Busidima North and Dana Aoule North sites (Gona, Afar, Ethiopia), and interpret these findings as evidence of behavioral diversity and flexibility of H. erectus.[52]
  • Reconstruction of the thorax of the juvenile H. erectus skeleton KNM-WT 15000 from Nariokotome (Kenya) is presented by Bastir et al. (2020), who evaluate the implications of the anatomy of this individual for the knowledge of the evolution of the modern human body shape.[53]
  • A study on the anatomy of the Dali Man is published by Wu (2020).[54]
  • Welker et al. (2020) present tooth enamel proteomes of Homo antecessor from Atapuerca (Spain) and Homo erectus from Dmanisi (Georgia), and evaluate the implications of their findings for the knowledge of the phylogenetic placement of H. antecessor.[55]
  • A study on tooth enamel development in hominins from the paleontological sites of the Atapuerca complex, aiming to determine whether the Atapuerca hominins shared a suite or pattern of dental developmental characteristics with Homo sapiens, is published by Modesto-Mata et al. (2020).[56]
  • A study on the morphology of hominin bones from the Sima de los Huesos site (Atapuerca, Spain) is published by Bartsiokas & Arsuaga (2020), who interpret their findings as likely evidence of hibernation in the Atapuerca hominins.[57]
  • A study on the age of the Kabwe 1 skull from Broken Hill (Zambia), and on its implications for the knowledge of human evolution, is published by Grün et al. (2020).[58]
  • Evidence of interbreeding between common ancestors of Neanderthals and Denisovans with a different hominin population that separated from other humans about 2 million years ago is presented by Rogers, Harris & Achenbach (2020).[59]
  • Petr et al. (2020) sequence Y chromosomes from Neanderthals and Denisovans, and evaluate the implications of their findings for the knowledge of the evolutionary history of Neanderthals and Denisovans.[60]
  • Zhang et al. (2020) report the discovery of Denisovan mitochondrial DNA from sediments of the Baishiya Karst Cave deposited ~100 thousand, ~60 thousand and possibly as recently as ~45 thousand years ago, and interpret their findings as evidence of long-term occupation of this cave by Denisovans.[61]
  • A study on the early life of Neanderthals, based on data from three Neanderthal individuals from northeastern Italy, is published by Nava et al. (2020), who interpret their findings as indicating that the modern human nursing strategy was present among these Neanderthals.[62]
  • A study on the exploitation of bivalves by Neanderthals from the Moscerini cave site (Italy) is published by Villa et al. (2020), who report evidence indicating that Neanderthals collected aquatic resources by skin diving.[63]
  • Zilhão et al. (2020) present evidence from the Figueira Brava site on the Atlantic coast of Portugal indicating that Middle Paleolithic Neanderthals from this site exploited marine resources at a scale on par with the modern human–associated Middle Stone Age of southern Africa.[64]
  • A study on an assemblage of Neanderthal remains and Middle Paleolithic artifacts from the Chagyrskaya Cave (Russia) is published by Kolobova et al. (2020), who compare this assemblage with other Altai sites, and interpret their findings as evidence of at least two Neanderthal incursions into southern Siberia.[65]
  • A high-quality genome of a Neanderthal from the Chagyrskaya Cave is sequenced by Mafessoni et al. (2020), who interpret the data from the genes expressed in the striatum of the brain as indicating that the striatum may have evolved unique functions in Neanderthals.[66]
  • Evidence of use of fibre technology by Neanderthals is reported from the Abri du Maras site (France) by Hardy et al. (2020), who evaluate the implications of this finding for the knowledge of cognitive abilities of Neanderthals.[67]
  • García-Martínez et al. (2020) reconstruct the ribcages of perinatal and infant Neanderthal individuals, and report evidence indicating that most of the skeletal differences between the Neanderthal and modern human thorax were already largely established at birth.[68]
  • Two new reconstructions of the Kebara 2 pelvis are presented by Adegboyega et al. (2020), who evaluate the implications of this specimen for the knowledge of the Neanderthal pelvic morphology.[69]
  • Evidence of stable climatic and environmental conditions in Apulia (Italy) during the Middle to Upper Palaeolithic transition, when Neanderthals and modern humans coexisted, is presented by Columbu et al. (2020), who interpret their findings as indicating that climate did not play a key role in the disappearance of Neanderthals in this area.[70]
  • A study on the biological affinities of the Olduvai Hominid 1 is published by Willman et al. (2020), who also report evidence from tooth wear indicating that this individual wore three facial piercings.[71]
  • A study on environmental dynamics associated with the replacement of the Acheulean by early Middle Stone Age, aiming to determine how shifts in landscape-scale ecological resources might have influenced hominin adaptation during this interval on the basis of data from the Olorgesailie basin, is published by Potts et al. (2020).[72]
  • A study on an assemblage more than 400 Late Pleistocene human footprints from Engare Sero (Tanzania), and on their implications for the knowledge of the body sizes, locomotor behaviors and composition of the group of humans who generated these tracks, is published by Hatala et al. (2020), who interpret these tracks as likely evidence of cooperative and sexually divided foraging behaviors in Late Pleistocene humans.[73]
  • Wadley et al. (2020) report the discovery of grass bedding likely used to create comfortable areas for sleeping and working by people who lived in Border Cave (South Africa) at least 200,000 years ago.[74]
  • A study on the evolution of early symbolic behavior in Homo sapiens, based on data from the engraved ochre and ostrich eggshell fragments from the South African Blombos Cave and Diepkloof Rock Shelter dating up to about 100,000 years ago, is published by Tylén et al. (2020).[75]
  • Hublin et al. (2020) report the discovery and study the age of human remains found in association with Initial Upper Paleolithic artefacts from the Bacho Kiro cave (Bulgaria), and argue that this assemblage represents the earliest arrival of Upper Paleolithic Homo sapiens in Europe reported so far;[76] a study on the 14C chronology of this site is published by Fewlass et al. (2020).[77]
  • Newborns from a double grave from the Gravettian site Krems-Wachtberg (Austria) are identified as the earliest known case of monozygotic twins by Teschler-Nicola et al. (2020).[78]
  • A study on the genome of a ~34,000-year-old hominin skull cap discovered in the Salkhit Valley in northeastern Mongolia is published by Massilani et al. (2020), who present evidence indicating that this individual was a woman from a modern human population carrying genomic segments of Denisovan ancestry derived from the same Denisovan admixture event that contributed to present-day mainland Asians.[79]
  • Evidence indicating that the Paleolithic colonization of the Ryukyu Islands was a result of active and continued exploration, backed up by technological advancement, is presented by Kaifu et al. (2020).[80]
  • A study aiming to determine the varying reliance of early human colonisers of Wallacea on tropical forest and terrestrial versus marine resources, as indicated by stable carbon and oxygen isotope data from human and faunal tooth enamel from six Late Pleistocene/Holocene archaeological sequences on Timor and Alor Island, is published by Roberts et al. (2020).[81]
  • Bordes et al. (2020) identify bone micro-residues on two cobbles from the Cerutti Mastodon site (California, United States), and interpret this finding as evidence supporting human agency on bone and stone artefacts from this site.[82]
  • Evidence from fecal biomarkers indicating that pre-Clovis coprolites from the Paisley Caves complex (Oregon, United States) are human is presented by Shillito et al. (2020).[83]
  • A study on the timing of the peopling of the Americas, based on chronometric data from 42 North American and Beringian archaeological sites, is published by Becerra-Valdivia & Higham (2020).[84]
  • Evidence of human presence in the Americas during the Last Glacial Maximum is reported from the Chiquihuite Cave (Zacatecas, Mexico) by Ardelean et al. (2020), who interpret their findings as pushing back dates for human dispersal to the region possibly as early as 33,000–31,000 years ago.[85]
  • A study on the age and duration of the Clovis complex is published by Waters, Stafford & Carlson (2020).[86]
  • Two Early Holocene hunter-gatherer burials, including a burial of a young adult woman associated with a hunting toolkit of stone projectile points and animal processing tools, are reported from the Wilamaya Patjxa site (Peru) by Haas et al. (2020), who also review other Late Pleistocene and Early Holocene burials throughout the Americas, and interpret their findings as consistent with nongendered labor practices in which early hunter-gatherer women were big-game hunters.[87]

Rodents

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images
Anomalomys grytsivensis[88] Sp. nov In press Nesin & Kovalchuk Miocene  Ukraine A member of the family Anomalomyidae
Argaleogaulus[89] Gen. et sp. nov Valid Korth & Kron Arikareean Troublesome  United States
( Colorado)
A member of the family Mylagaulidae. Genus includes new species A. primoticus.
Arvicola nahalensis[90] Sp. nov Valid Maul, Rabinovich & Biton Late Pleistocene  Israel A species of Arvicola. Announced in 2020; the final version of the article naming it was published in 2021.
Balantiomys coloradensis[89] Sp. nov Valid Korth & Kron Troublesome  United States
( Colorado)
A member of the family Heteromyidae.
Bibimys massoiai[91] Sp. nov Valid Das Neves et al. Late Quaternary  Brazil A species of Bibimys.
Borikenomys[92] Gen. et sp. nov Marivaux et al. late Early Oligocene San Sebastián  United States
( Puerto Rico)
A member of the superfamily Chinchilloidea, possibly belonging to the family Dinomyidae. The type species is B. praecursor.
Ceratogaulus cornutasagma[93] Sp. nov Valid Calede & Samuels  United States
( Nebraska)
"Cricetodon" venczeli[94] Sp. nov Valid Hír, Codrea & Prieto Miocene  Romania A large hamster. Announced in 2019; the final version of the article naming it was published in 2020.
Ctenomys viarapaensis[95] Sp. nov In press De Santi et al. Holocene  Argentina A tuco-tuco
Cupidinimus robinsoni[89] Sp. nov Valid Korth & Kron Troublesome  United States
( Colorado)
A member of the family Heteromyidae.
Entoptychus rensbergeri[89] Sp. nov Valid Korth & Kron Troublesome  United States
( Colorado)
A gopher.
Episiphneus dalianensis[96] Sp. nov Valid Qin et al. Late Pliocene  China A zokor. Announced in 2020; the final version of the article naming it was published in 2021.
Golunda aouraghei[97] Sp. nov Valid Piñero et al. Pliocene-Pleistocene boundary  Morocco A relative of the Indian bush rat
Gregorymys mixtecorum[98] Sp. nov Valid Ortiz-Caballero, Jiménez-Hidalgo & Bravo-Cuevas Oligocene (Arikareean)  Mexico A gopher.
Gregorymys montanus[89] Sp. nov Valid Korth & Kron Troublesome  United States
( Colorado)
A gopher.
Gregorymys tavenneri[99] Sp. nov Valid Calede & Rasmussen Arikareean Renova  United States
( Montana)
A gopher.
Harrymys cyanothos[89] Sp. nov Valid Korth & Kron Troublesome  United States
( Colorado)
A member of the family Heteromyidae.
Harrymys taussigi[89] Sp. nov Valid Korth & Kron Troublesome  United States
( Colorado)
A member of the family Heteromyidae.
Honeymys[100] Gen. et comb. nov Valid Martin et al. Miocene (Clarendonian)  United States
( Nebraska
 Nevada
 Oklahoma)
A member of the family Cricetidae, possibly belonging to the subfamily Sigmodontinae; a new genus for "Copemys" mariae Baskin & Korth (1996). Genus also includes "Copemys" esmeraldensis Clark, Dawson & Wood (1964).[101]
Huerzelerimys asiaticus[102] Sp. nov Valid Wang, Qiu & Li Late Miocene Liushu  China A member of the family Muridae belonging to the subfamily Murinae
Hystrix brevirostra[103] Sp. nov Valid Wang & Qiu Late Miocene and early Pliocene Hewangjia
Liushu
 China A species of Hystrix.
Luantus sompallwei[104] Sp. nov In press Solórzano et al. Miocene Cura-Mallín  Chile A member of Caviomorpha.
Namaphiomys[105] Gen. et sp. nov Valid Pickford Eocene  Namibia A member of Phiomorpha of uncertain phylogenetic placement. The type species is N. scopulus.
Oregonomys perilaccos[89] Sp. nov Valid Korth & Kron Troublesome  United States
( Colorado)
A member of the family Heteromyidae.
Paraethomys baeticus[106] Sp. nov Valid Piñero & Verzi Pliocene (Ruscinian) Baza  Spain A member of the family Muridae belonging to the subfamily Murinae.
Pareumys flynni[107] Sp. nov Valid Korth Eocene (Bridgerian and Uintan) Washakie  United States
( Wyoming)
A member of the family Cylindrodontidae.
Pareumys muffleri[108] Sp. nov Valid Lofgren et al. Eocene  United States
( Montana)
Pauromys turnbulli[107] Sp. nov Valid Korth Eocene (Uintan) Washakie  United States
( Wyoming)
A member of the family Sciuravidae.
Perasciuravus[109] Gen. et sp. nov Valid Korth Eocene (Bridgerian) Washakie  United States
( Wyoming)
A member of the family Sciuravidae. Genus includes new species P. mcintoshi.
Petaurista tetyukhensis[110] Sp. nov Valid Tiunov & Gimranov Late Pleistocene  Russia A species of Petaurista. Announced in 2019; the final version of the article naming it was published in 2020.
Pleurolicus compressus[89] Sp. nov Valid Korth & Kron Troublesome  United States
( Colorado)
A gopher.
Pleurolicus gwinni[99] Sp. nov Valid Calede & Rasmussen Arikareean Renova  United States
( Montana)
A gopher.
Pleurolicus mensae[89] Sp. nov Valid Korth & Kron Troublesome  United States
( Colorado)
A gopher.
Pleurolicus nelsoni[99] Sp. nov Valid Calede & Rasmussen Arikareean Renova  United States
( Montana)
A gopher.
Pleurolicus rensbergeri[99] Sp. nov Valid Calede & Rasmussen Arikareean Renova  United States
( Montana)
A gopher.
Protospermophilus parvus[89] Sp. nov Valid Korth & Kron Troublesome  United States
( Colorado)
A member of the family Sciuridae.
Pseudocylindrodon yihesubuensis[111] Sp. nov Valid Li Late Eocene Erlian Basin  China A member of the family Cylindrodontidae.
Rupestromys[105] Gen. et sp. nov Valid Pickford Eocene  Namibia A member of Phiomorpha of uncertain phylogenetic placement. The type species is R. brevirostris.
Schizodontomys bareia[89] Sp. nov Valid Korth & Kron Troublesome  United States
( Colorado)
A member of the family Heteromyidae.
Spermophilinus kumkolensis[112] Sp. nov Valid Li et al. Middle Miocene Shimagou  China A member of the family Sciuridae belonging to the subfamily Sciurinae. Announced in 2019; the final version of the article naming it was published in 2020.
Thisbemys intermedius[113] Sp. nov Valid Korth Bridgerian Washakie  United States
( Wyoming)
A member of the family Ischyromyidae.
Thryonomys kamulai[114] Sp. nov Valid Tanabe et al. Late Miocene Nakali  Kenya A cane rat.
Uromys aplini[115] Sp. nov Valid Cramb, Hocknull & Price Middle Pleistocene  Australia A species of Uromys.

Rodentian research

[edit]
  • Description of new fossil material of Cephalomys arcidens from the Deseadan locality of Cabeza Blanca (Argentina), and a study on the species belonging to the genus Cephalomys and on the phylogenetic relationships of cephalomyids, is published by Busker, Dozo & Soto (2020).[116]
  • A study on brain anatomy and size in Neoepiblema acreensis is published by Ferreira et al. (2020).[117]
  • A study on the anatomy of the auditory region of the skull of Prospaniomys priscus is published by Arnaudo, Arnal & Ekdale (2020).[118]
  • A study on the locomotor agility of fossil ischyromyid, sciurid and aplodontid rodents, as inferred from the anatomy of the semicircular canals in their inner ear, is published by Bhagat, Bertrand & Silcox (2020).[119]
  • A study on a specimen of Ischyromys douglassi from the White River Formation of West Canyon Creek (Wyoming, United States), representing the oldest and most complete articulated skeleton yet known of Ischyromys, is published by Rankin, Emry & Asher (2020), who report that this specimen exhibits anatomical sciuromorphy, and evaluate its implications for the knowledge of jaw musculature evolution in rodents.[120]
  • A study on the locomotor behavior of Paramys delicatus is published by Prufrock, Ruff & Rose (2020), who also attempt to determine the body mass of P. delicatus and other early North American paramyines.[121]
  • A study on the morphology of the skull of the endemic dormouse Leithia melitensis from the Pleistocene of Sicily is published by Hennekam et al. (2020), who present a composite digital model of the skull of this rodent.[122]
  • A study on the evolution of island gigantism in fossil dormice from Sicily and the Balearic Islands is published by Hennekam et al. (2020).[123]
  • A study on the diet of Pliocene beavers belonging to the genus Dipoides from the High Arctic Beaver Pond fossil locality (Ellesmere Island, Canada), aiming to determine whether early woodcutting behaviour of beavers was driven by nutritional needs, is published by Plint et al. (2020).[124]
  • Partial mitochondrial genome of the extinct beaver Castoroides is reported by Xenikoudakis et al. (2020), who evaluate the implications of this finding for the knowledge of the origin of aquatic behavior of beavers.[125]
  • A study on the anatomy of the skeleton of Copemys loxodon is published by Ronez, Martin & Pardiñas (2020).[126]
  • A study on the anatomy and phylogenetic relationships of Megaoryzomys curioi is published by Ronez et al. (2020).[127]
  • A study aiming to determine whether insularity might have affected bone metabolism in Late Quaternary murine rodents from Timor is published by Miszkiewicz et al. (2020).[128]

Other euarchontoglires

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images
Alilepus spassovi[129] Sp. nov Valid Sen Early Pliocene Chepino Basin  Bulgaria A member of the family Leporidae.
Chiromyoides kesiwah[130] Sp. nov Valid Beard et al. Tiffanian  United States
( Wyoming)
A member of the family Plesiadapidae.
Tonomochota[131] Gen. et 3 sp. nov Valid Tiunov & Gusev Late Pleistocene  Russia A pika. Genus includes new species T. khasanensis, T. sikhotana and T. major. Announced in 2020; the final version of the article naming it was published in 2021.

Miscellaneous euarchontoglires research

[edit]

Xenarthrans

[edit]

Cingulata

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Chlamydophractus[137][138]

Gen. et sp. nov

Valid

Barasoain et al.

Late Miocene

Arroyo Chasicó Formation

 Argentina

A fairy armadillo.
The type species is C. dimartinoi.

Glyptodon jatunkhirkhi[139]

Sp. nov

Valid

Cuadrelli et al.

Quaternary

 Bolivia

Panochthus florensis[140]

Sp. nov

In press

Brambilla, Lopez & Parent

Late Pleistocene

 Argentina

A glyptodont.

Prozaedyus scillatoyanei[141]

Sp. nov

Valid

Barasoain et al.

Miocene (Chasicoan)

Loma de Las Tapias Formation

 Argentina

An armadillo belonging to the subfamily Euphractinae.

Cingulatan research

[edit]

Pilosa

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Magdalenabradys[143]

Gen. et comb. et sp. nov

Valid

Rincón & McDonald

Miocene (Laventan to Huayquerian)

Urumaco Formation
Villavieja Formation

 Colombia
 Venezuela

A Mylodontidae sloth.
The type species is "Pseudoprepotherium" confusum Hirschfeld (1985)
genus also includes new species M. kolossiaia.

Sibotherium[144]

Gen. et sp. nov

Valid

Rincón, Valerio & Laurito

Miocene (Hemphillian)

Curré Formation

 Costa Rica

A Megatheriidae sloth.
The type species is S. ka.

Xibalbaonyx exinferis[145]

Sp. nov

In press

Stinnesbeck et al.

Pleistocene

 Mexico

A Megalonychidae sloth.

Pilosan research

[edit]
  • A study on the anatomy of the skull of Pronothrotherium typicum, and on the validity of the species assigned to the genus Pronothrotherium, is published by Gaudin et al. (2020).[146]
  • Barbosa et al. (2020) describe a femur of a specimen of Nothrotherium maquinense from the Lapa dos Peixes I cave (Brazil) affected by parosteal osteosarcoma, representing the first case of cancer in a Quaternary non-human mammal reported so far.[147]
  • A study on an assemblage of at least 22 specimens of Eremotherium laurillardi from the Pleistocene locality Tanque Loma (Ecuador) is published by Lindsey et al. (2020), who interpret this assemblage as likely resulting from a mass mortality event, and evaluate its implications for the knowledge of the ecology of ground sloths.[148]
  • Previously unreported postcranial material of the holotype specimen of Xibalbaonyx oviceps, providing information on the locomotion capabilities of this species, is described by Stinnesbeck et al. (2020).[149]
  • A study on the external and internal anatomy of the skull of Catonyx tarijensis is published by Boscaini et al. (2020).[150]
  • A study on the anatomy of the skeleton of the manus of Scelidotherium, and on the phylogenetic relationships of this genus, is published by Nieto et al. (2020).[151]
  • A study on a late Pleistocene assemblage of several individuals of Lestodon armatus from Playa del Barco site (Argentina), aiming to determine the origin of this assemblage and its implications for the knowledge of the biology of L. armatus, is published by Tomassini et al. (2020).[152]
  • A study on the anatomy and phylogenetic relationships of Glossotherium wegneri is published by De Iuliis et al. (2020), who argue against the recognition of Oreomylodon as a distinct genus.[153]
  • A study testing the inhibitory cascade model on the evolution of the dentition of sloths is published by Varela et al. (2020).[154]

Other xenarthans

[edit]

Miscellaneous xenarthan research

[edit]

Laurasiatherians

[edit]

Chiroptera

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Cuvierimops penalveri[156]

Sp. nov

Valid

Crespo et al.

Early Miocene

 Spain

A free-tailed bat.

Macroderma handae[157]

Sp. nov

Valid

Aplin & Armstrong in Armstrong, Aplin & Motokawa

Pliocene or early Pleistocene

 Australia

Mops kerio[158]

Sp. nov

Valid

Gunnell & Manthi

Pliocene

Kanapoi site

 Kenya

Announced in 2018; the final article version was published in 2020.

Mops turkwellensis[158]

Sp. nov

Valid

Gunnell & Manthi

Pliocene

Kanapoi site

 Kenya

Announced in 2018; the final article version was published in 2020.

Rousettus pattersoni[158]

Sp. nov

Valid

Gunnell & Manthi

Pliocene

Kanapoi site

 Kenya

Announced in 2018; the final article version was published in 2020.

Saccolaimus kenyensis[158]

Sp. nov

Valid

Gunnell & Manthi

Pliocene

Kanapoi site

 Kenya

Announced in 2018; the final article version was published in 2020.

Turkanycteris[158]

Gen. et sp. nov

Valid

Gunnell & Manthi

Pliocene

Kanapoi site

 Kenya

A very large fruit bat, larger than all extant fruit bats other than select Pteropus and Hypsignathus.
The type species is T. harrisi.
Announced in 2018; final article version published in 2020.

Chiropteran research

[edit]
  • Part of the humerus of a large-bodied vampire bat (similar in body size to Desmodus draculae) is described from the late Pliocene or early Pleistocene asphalt-bearing deposit of El Breal de Orocual (Venezuela) by Czaplewski & Rincón (2020), representing one of the oldest vampire bats in the fossil record reported so far.[159]

Notoungulates

[edit]
  • Studies on the anatomy of the skull of Paedotherium and Tremacyllus, and on its implications for the knowledge of the paleobiology of these notoungulates, are published by Ercoli et al. (2020).[160][161]
Name Novelty Status Authors Age Type locality Country Notes Images
Archaeogaia[162] Gen. et sp. nov In press Zimicz et al. Paleocene Mealla  Argentina An early notoungulate. Genus includes new species A. macachaae.
Juchuysillu[163] Gen. et sp. nov Valid Croft & Anaya Miocene Nazareno  Bolivia A member of the family Interatheriidae. Genus includes new species J. arenalesensis.
Teratopithecus[164] Gen. et sp. nov Valid López et al. Early Eocene ?Laguna del Hunco  Argentina A member of the family Archaeopithecidae. Genus includes new species T. elpidophoros.

Odd-toed ungulates

[edit]
  • A study comparing changes of body mass of ungulates belonging to the genera Lophiodon and Propalaeotherium from the middle Eocene site of Geiseltal (Germany) is published by Ring et al. (2020).[165]
  • A study on the diet of lophialetid tapiroids from the Eocene of the Erlian Basin (China), as indicated by tooth wear, is published online by Gong et al. (2020).[166]
  • A study on the sexual dimorphism and body size of Plesiaceratherium gracile is published by Lu et al. (2020), who also present a reconstruction of the body of P. gracile.[167]
  • Iurino et al. (2020) describe the braincase with a natural brain endocast of a 12–18 months old rhinocerotine rhinoceros from the Middle Pleistocene site of Melpignano (Italy).[168]
  • A study on the demographic history of the woolly rhinoceros leading up to its extinction, based on data from one complete nuclear genome and 14 mitogenomes, is published by Lord et al. (2020).[169]
  • A study aiming to determine the diet of the woolly rhinoceros and Stephanorhinus kirchbergensis is published by Stefaniak et al. (2020).[170]
  • Revision of the fossil material of hipparionines from the Miocene locality of Tizi N'Tadderht (Morocco) is published by Cirilli et al. (2020).[171]
  • Catalano et al. (2020) reconstruct a near complete mitogenome of a specimen of Equus hydruntinus from San Teodoro Cave (Sicily, Italy), and evaluate the implications of their findings for the knowledge of the phylogenetic relationships of this taxon.[172]
  • A study on the geographical origin and mobility behavior of Rancholabrean horses from the La Cinta-Portalitos and La Piedad-Santa Ana sites (Mexico), as indicated by radiogenic strontium and stable oxygen isotope data from tooth enamel, is published by Marín-Leyva et al. (2020).[173]
  • A study on near-complete mitochondrial genomes retrieved from specimens of Equus dalianensis and Przewalski's horse from Late Pleistocene strata in northeastern China, evaluating their implications for the knowledge of the phylogenetic relationships of these horses, is published by Yuan et al. (2020).[174]
Name Novelty Status Authors Age Type locality Country Notes Images
Amynodontopsis jiyuanensis[175] Sp. nov Valid Wang et al. Middle Eocene Niezhuang  China A member of the family Amynodontidae
"Dihoplus" bethlehemsis[176] Sp. nov Valid Pandolfi, Rivals & Rabinovich Pliocene Israel-Palestine water divide A rhinoceros

Ephyrachyus woodi[177]

Sp. nov

Valid

Bai et al.

Early–middle Eocene

Arshanto

 China

Possibly a member of the family Hyracodontidae.

Gobioceras[177]

Gen. et sp. nov

Junior homonym

Bai et al.

Early Eocene

Arshanto

 China

A relative of Forstercooperia. The type species is G. wangi. The generic name is preoccupied by Gobioceras Bogoslovskaya (1988).

Hyrachyus? tumidus[177]

Sp. nov

Valid

Bai et al.

Early Eocene

Arshanto

 China

A member of the family Hyrachyidae.

Iriritherium[178]

Gen. et sp. nov

Valid

Pickford

Early Miocene

 Uganda

A chalicothere belonging to the subfamily Chalicotheriinae. The type species is I. pyroclasticum.

Mesaceratherium tschani[179] Sp. nov Valid Tissier, Antoine & Becker Late Oligocene   Switzerland A rhinoceros.
Rhodopagus guoi[180] Sp. nov Valid Paepen et al. Eocene (Arshantan) Arshanto  China Announced in 2020; the final version of the article naming was published in 2021.

Triplopus? youjingensis[177]

Sp. nov

Valid

Bai et al.

Early Eocene

Arshanto

 China

A member of Rhinocerotoidea of uncertain phylogenetic placement.

Winamia[178]

Nom. nov

Valid

Pickford

Early Miocene

 Kenya

A chalicothere belonging to the subfamily Chalicotheriinae; a replacement name for Butleria de Bonis et al. (1995).

Yimengia chaganense[177]

Sp. nov

Valid

Bai et al.

Early Eocene

Arshanto

 China

A member of Rhinocerotoidea of uncertain phylogenetic placement.

Yimengia magna[177]

Sp. nov

Valid

Bai et al.

Early Eocene

Nomogen

 China

A member of Rhinocerotoidea of uncertain phylogenetic placement.

Even-toed ungulates

[edit]
  • A systematic revision of the even-toed ungulate fauna from Aumelas and Saint-Martin-de-Londres localities (France), and a study on the implications of these ungulates for the knowledge of the phylogenetic relationships and evolutionary history of early endemic even-toed ungulates from Europe, is published by Busker, Dozo & Soto (2020).[181]
  • New sample of isolated fossil auditory ossicles of cainotheriids is reported from the Paleogene karstic infillings of Dams (France) by Assemat et al. (2020), who provide the first description of a reconstructed ossicular chain of Caenomeryx filholi.[182]
  • A study on the Old World fossil record of the family Camelidae, aiming to determine the timing of the divergence between the Bactrian camel and the dromedary, is published by Geraads et al. (2020).[183]
  • A study on the phylogenetic relationships of fossil South and North American camelids is published by Lynch, Sánchez-Villagra & Balcarcel (2020), who also describe a partial skeleton of a member of Lamini from the Ensenadan locality of San Nicolas (Buenos Aires Province, Argentina).[184]
  • A study on the systematic relationships of extant and fossil members of the family Cervidae is published by Heckeberg (2020).[185]
  • A study on the evolution of the cycle of growth, death and regeneration of antlers in cervids, based on data from fossil and extant taxa, is published by Rössner, Costeur & Scheyer (2020).[186]
  • A study on the brain endocast of Antifer ensenadensis is published by Fontoura et al. (2020).[187]
  • A study on the diet of Cervus astylodon, as indicated by data from tooth microwear, is published by Kubo & Fujita (2020).[188]
  • Postcranial remains and first almost complete skulls of members of the genus Samotherium are described from the Middle Maragheh sequence (northwest Iran) by Parizad et al. (2020), who also discuss the validity of the genus Alcicephalus.[189]
  • Description of new fossil bovid material from Xishuigou (Gansu, China) and a revision of the type material of "Eotragus" halamagaiensis from the Halamagai Formation (Xinjiang, China) is published by Li et al. (2020), who transfer "E." halamagaiensis to the genus Turcocerus.[190]
  • New fossil material of Miotragocerus monacensis, including the most complete skull of a member of this species reported so far, is described from the late Miocene hominid locality Hammerschmiede (southern Germany) by Hartung, Lechner & Böhme (2020).[191]
  • A record of the European water buffalo dating to the time of the Bølling–Allerød warming is reported from the Moscow Region of Russia by Vislobokova et al. (2020), who evaluate the implications of this finding for the knowledge of the dispersal and final extinction of this species.[192]
  • A study on the anatomy of molars of extant and fossil suids, and on its implications for reconstructions of diets of fossil suids from the Plio-Pleistocene Turkana Basin (Kenya), is published by Rannikko et al. (2020).[193]
  • A study on the anatomy of the deciduous teeth of members of Cetartiodactyla, and on its implications for the knowledge of the phylogenetic relationships within Hippopotamoidea, is published by Rodrigues et al. (2020), who interpret their findings as supporting the emergence of the family Hippopotamidae within bothriodontine anthracotheres from the Paleogene of Africa.[194]
  • A study comparing the distribution of ecomorphologies in the artiodactyl communities of North American Neogene savannas and modern-day African savannas is published by Morales-García, Säilä & Janis (2020).[195]
Name Novelty Status Authors Age Type locality Country Notes Images
Bubalus murrensis extremus[196] Subsp. nov Valid Vislobokova, Tarasenko & Lopatin Late Pleistocene  Russia
( Moscow Oblast)
A subspecies of the European water buffalo.
Cervus canadensis combrayicus[197] Subsp. nov Valid Croitor Late Pleistocene  France A subspecies of the elk. Announced in 2019; the final version of the article naming it was published in 2020.
Geniokeryx[198] Gen. et comb. nov Valid Ducrocq Late Eocene Krabi Basin  Thailand A member of the family Anthracotheriidae; a new genus for "Anthracokeryx" thailandicus Ducrocq (1999).
Heliosus[199] Gen. et sp. nov Valid Burger & Jolley Eocene (Bridgerian) Washakie  United States
( Wyoming)
A member of the family Helohyidae. The type species is H. apophis.
Metkatius babbiangalensis[200] Sp. nov Valid Waqas & Rana Eocene Subathu  India A member of the family Raoellidae
Nyanzachoerus nakaliensis[201] Sp. nov Valid Tsubamoto et al. Late Miocene Nakali  Kenya A member of the family Suidae belonging to the subfamily Tetraconodontinae
Palembertina[202] Gen. et sp. nov Valid Weppe et al. Eocene Quercy Phosphorites  France A member of the family Cainotheriidae. The type species is P. deplasi.
Paukkaungmeryx[203] Gen. et sp. nov Valid Ducrocq et al. Middle Eocene Pondaung  Myanmar A relative of Archaeomeryx. Genus includes new species P. minutus.

Praemuntiacus[204]

Gen. et comb. nov

Valid

Croitor, Zakharov & Mararescul

Pliocene

 China
 Italy
 Moldova

A small muntjac-like deer. The type species is "Eostyloceros" pidoplitschkoi Korotkevich (1964); genus also includes P. triangularis (Zdansky, 1925).

Prolistriodon[205] Gen. et sp. nov Valid Pickford et al. Early Miocene Soma  Turkey A member of the family Suidae belonging to the subfamily Listriodontinae. The type species is P. smyrnensis.
Qurliqnoria chorakensis[206] Sp. nov Valid Kostopoulos et al. Late Miocene  Turkey A stem-caprine bovid. Announced in 2019; the final version of the article naming it was published in 2020.
Stenomeryx[203] Gen. et sp. nov Valid Ducrocq et al. Middle Eocene Pondaung  Myanmar Probably an early chevrotain. Genus includes new species S. bahinensis.

Cetaceans

[edit]
  • A study on the evolution of asymmetry in the skulls of living and extinct cetaceans is published by Coombs et al. (2020).[207]
  • A study comparing the morphology of the carpus of Ambulocetus natans, other archaeocetes and Eocene terrestrial even-toed ungulates, and evaluating its implications for the knowledge of the evolution of the forelimbs of early cetaceans, is published by Gavazzi et al. (2020).[208]
  • A study on the distributional patterns of the aetiocetids is published by Cisneros & Velez-Juarbe (2020).[209]
  • A vertebra of a small member of Neoceti, representing one of the earliest known members of this group, is described from the Eocene Submeseta Formation (Seymour Island, Antarctica) by Davydenko, Mörs & Gol'din (2020), who evaluate the implications of this finding for the knowledge of the early evolution of Neoceti.[210]
Name Novelty Status Authors Age Type locality Country Notes Images
Ankylorhiza[211] Gen. et comb. nov Boessenecker et al. Oligocene Ashley
Chandler Bridge
 United States
( South Carolina)
A large dolphin. Genus includes "Squalodon" tiedemani.
Antwerpibalaena[212] Gen. et sp. nov Valid Lavigerie et al. Pliocene  Belgium A stem-balaenid. Genus includes new species A. liberatlas.
Archaebalaenoptera liesselensis[213] Sp. nov Valid Bisconti et al. Miocene (Tortonian) Breda  Netherlands A rorqual
Archaeobalaena[214] Gen. et sp. nov Valid Tanaka, Furusawa & Kimura Pliocene (Zanclean) Chippubetsu  Japan A member of the family Balaenidae. The type species is A. dosanko.
Atlanticetus[215] Gen. et comb. et sp. nov Valid Bisconti et al. Miocene Calvert
Pietra da Cantoni
 Italy
 United States
An early baleen whale. The type species is "Aglaocetus" patulus Kellogg (1968); genus also includes new species A. lavei.
Cozzuoliphyseter[216] Gen. et comb. nov Valid Paolucci et al. Miocene Gran Bajo del Gualicho  Argentina A member of the family Physeteridae; a new genus for "Aulophyseter" rionegrensis.
Dolgopolis[217] Gen. et sp. nov Valid Viglino et al. Miocene (Burdigalian) Gaiman  Argentina A toothless platanistoid dolphin. Genus includes new species D. kinchikafiforo. Announced in 2020; the final version of the article naming it was published in 2021.
Ensidelphis[218] Gen. et sp. nov Valid Bianucci et al. Miocene (Burdigalian) Chilcatay  Peru A member of Platanistoidea. The type species is E. riveroi.
Furcacetus[218] Gen. et sp. nov Valid Bianucci et al. Miocene (Burdigalian) Chilcatay  Peru A member of the family Squalodelphinidae. The type species is F. flexirostrum.
Marzanoptera[219] Gen. et sp. nov Valid Bisconti et al. Pliocene  Italy A rorqual. Genus includes new species M. tersillae.
Norisdelphis[220] Gen. et sp. nov Valid Kimura & Hasegawa Miocene (Tortonian) Haraichi  Japan An oceanic dolphin. Genus includes new species N. annakaensis.
Perditicetus[221] Gen. et sp. nov Valid Nelson & Uhen Oligocene–Miocene (ChattianAquitanian) Nye  United States
( Oregon)
A member of Platanistoidea. Genus includes new species P. yaconensis.
Platyscaphokogia[222] Gen. et sp. nov Valid Collareta et al. Miocene (Messinian) Pisco  Peru A member of the family Kogiidae belonging to the subfamily Scaphokogiinae. The type species is P. landinii.
Protororqualus wilfriedneesi[223] Sp. nov Valid Bisconti & Bosselaers Pliocene (Zanclean Kattendijk Sands
Yorktown
 Belgium
 Netherlands
 United States
( North Carolina)
Rhaphicetus[224] Gen. et sp. nov Valid Lambert et al. Miocene (Burdigalian) Chilcatay  Peru A member of Physeteroidea. Genus includes new species R. valenciae.
Samaydelphis[225] Gen. et sp. nov Valid Lambert et al. Miocene (Tortonian) Pisco  Peru A member of the family Pontoporiidae. Genus includes new species S. chacaltanae.
Scaphokogia totajpe[226] Sp. nov Valid Benites-Palomino et al. Late Miocene Pisco  Peru A member of the family Kogiidae.

Carnivorans

[edit]
  • A study on changes in hindlimb functional diversity in North American carnivoran communities (especially in felids) over the last 19 million years is published by Polly (2020).[227]
  • Description of the tarsal bones of the bear dogs from the Paleogene of Europe, and a study on the evolution of posture and locomotion of European bear dogs, is published by Fournier et al. (2020).[228]
  • New fossil material of Megamphicyon giganteus, providing new information on the locomotor adaptations of this species and allowing an estimation of its body mass, is described from the middle Miocene (MN6) site of Carpetana (Spain) by Siliceo et al. (2020).[229]
  • A study aiming to determine the impact of large body size and adaptation to hypercarnivory on extinction risk throughout the evolutionary history of North American canids is published by Balisi & Van Valkenburgh (2020).[230]
  • A study on the anatomy of the holotype specimen of Vulpes alopecoides and on the diversity of the Plio-Pleistocene members of the genus Vulpes from Europe is published by Bartolini Lucenti & Madurell-Malapeira (2020), who consider the species Vulpes praeglacialis and V. praecorsac to be junior synonyms of V. alopecoides.[231]
  • A study on the anatomy and likely diet of "Canis" ferox is published online by Bartolini Lucenti & Rook (2020), who transfer this species to the genus Eucyon.[232]
  • Tong et al. (2020) document dental injuries (likely caused by processing hard food, such as bones) and infections and a healed tibia fracture in specimens of Canis chihliensis from the Early Pleistocene Nihewan Basin (China), and interpret these findings as possible evidence of social hunting and family care in this canid.[233]
  • A study comparing the anatomy of hyoid bones of dire wolves and coyotes from La Brea Tar Pits with those of extant canids, and evaluating the implications of reported anatomical differences for the knowledge of likely vocalizations of fossil canids, is published by Flores et al. (2020).[234]
  • The study of the extensive record of Canis from Dmanisi showed the combination so primitive and derived species that contrast with the previous interpretation of these specimens to Canis etruscus and support the description of the new species Canis borjgali, very close to Canis mosbachensis and probably to modern wolves, coyotes and affine dogs (Bartolini Lucenti et al. 2020 [235])
  • Partial fragment of the mandible of a dire wolf is described from the Late Pleistocene of northeastern China by Lu et al. (2020), representing the first record of this species from Eurasia reported so far.[236]
  • Ramos-Madrigal et al. (2020) sequence the genomes of four Pleistocene wolves from Northeast Siberia, including specimens with divergent skull morphologies.[237]
  • A study on a 57,000-years-old wolf pup mummy discovered in thawing permafrost in the Klondike goldfields (Yukon, Canada), aiming to determine her appearance, evolutionary relationships, life history and ecology, is published by Meachen et al. (2020).[238]
  • A study on fossil canid remains from the Pleistocene of the Paglicci Cave and the Romanelli Cave (southern Italy) is published by Boschin et al. (2020), who interpret their findings as attesting the presence of dogs in Italy at least 14,000 calibrated years before present.[239]
  • A study on the genomes of modern Greenland sled dogs, an ~9500-year-old Siberian dog associated with archaeological evidence for sled technology, and an ~33,000-year-old Siberian wolf is published by Sinding et al. (2020), who interpret their findings as indicating that sled dogs represent an ancient lineage going back at least 9500 years and that wolves bred with the ancestors of sled dogs and precontact American dogs.[240]
  • A study on aiming to reconstruct dog population history, based on data from 27 ancient (up to 10.9 thousand years old) dog genomes from Europe, the Near East and Siberia, is published by Bergström et al. (2020).[241]
  • New specimen of Agnotherium antiquum, providing new information on the anatomy of this species, is described from the Miocene locality of Eppelsheim (Germany) by Morlo et al. (2020), who interpret this species as a powerful, strictly carnivorous ambush hunter.[242]
  • A metacarpal bone of a short-faced bear is described from Daisy Cave (San Miguel Island, California Channel Islands) by Mychajliw et al. (2020), who attempt to the determine the most likely explanation of the occurrence of this specimen on San Miguel Island.[243]
  • A study on anatomical specializations in cave bears for longer hibernation periods, and on their impact on feeding biomechanics in cave bears, is published by Pérez-Ramos et al. (2020).[244]
  • A study on the diet of cave bears from cave sites in Romania, as indicated by nitrogen isotope values of individual amino acids from fossil collagen, is published by Naito et al. (2020).[245]
  • A study on the relationship between the shape of tooth crown surfaces and feeding behaviour in living bears, evaluating its implications for the knowledge of likely diet and possible extinction causes of cave bears, is published by Pérez-Ramos et al. (2020).[246]
  • Description of new fossils and a review of the fossil material of large mustelids Sivaonyx hendeyi and Plesiogulo aff. monspessulanus from the Pliocene of the Langebaanweg fossil site (South Africa) is published by Valenciano & Govender (2020).[247]
  • Description of new fossil material of Mellivora benfieldi from the Langebaanweg site and a revision of the taxonomic status of Mio–Pliocene African mellivorines is published by Valenciano & Govender (2020), who name a new tribe Eomellivorini.[248]
  • A study on the phylogenetic relationships of extant and fossil pinnipeds is published by Paterson et al. (2020).[249]
  • New fossil material of pinnipeds, including fossils referrable to Phocidae and a humerus referrable specifically to Monachinae, is described from the Upper Miocene–Lower Pliocene Beaumaris Local Fauna (Victoria, Australia) by Rule, Adams & Fitzgerald (2020), who evaluate the implications of these fossils for the knowledge of the origins of the southern true seals from the Southern Ocean.[250]
  • Rule, Hocking & Fitzgerald (2020) describe a tooth of a monachine seal from the Pliocene Whalers Bluff Formation (Victoria, Australia), and evaluate its implications for the knowledge of the timing of pinniped faunal turnovers in the Southern Hemisphere.[251]
  • Fossil teeth of a hyaenid Adcrocuta eximia and a saber-toothed cat belonging or related to the genus Paramachaerodus are described from the Miocene Chu Formation (Kyrgyzstan) by Miller et al. (2020), who evaluate the implications of these fossils for the knowledge of endemism in the fossil fauna in Kyrgyzstan.[252]
  • A study on the evolutionary history of the genus Crocuta, based on paleogenomic data from Late Pleistocene cave hyenas from across Eurasia and on population-level genomic data from sub-Saharan spotted hyenas, is published by Westbury et al. (2020).[253]
  • Description of a skull of Machairodus giganteus from the late Miocene locality Hadjidimovo (Bulgaria), and a study on the evolution of the genus Machairodus, is published by Geraads & Spassov (2020).[254]
  • A study on the evolutionary history of Homotherium, as indicated by genomic analyses, is published by Barnett et al. (2020).[255]
  • An almost complete skull of Smilodon populator, likely belonging to one of the largest known specimens of the genus with an estimated body mass over 400 kg, is described from the Lujanian Dolores Formation (Uruguay) by Manzuetti et al. (2020).[256]
  • Fossil material of Panthera gombaszoegensis georgica, representing the first record of the Eurasian jaguar in southern Asia, is described from the middle Early Pleistocene Haro River quarry (Pakistan) by Jiangzuo & Liu (2020), who present a new dispersal scenario of the jaguar in Eurasia, and compare the morphology of the teeth of the Eurasian jaguar and the living jaguar.[257]
  • A study on the evolutionary history of the cave lion, based on data from mitochondrial genomes of cave lions from across their entire prehistoric range, is published by Stanton et al. (2020).[258]
  • A study on the evolutionary history of lions, based on whole-genome resequencing data from a set of modern, historic, and Pleistocene lions, is published by de Manuel et al. (2020).[259]
Name Novelty Status Authors Age Type locality Country Notes Images
Agriotherium hendeyi[260] Sp. nov Valid Jiangzuo & Flynn Late Hemphillian Quiburis  United States
( Arizona)
Announced in 2019; the final version of the article naming it was published in 2020.

Aurorarctos[261]

Gen. et sp. nov

Jiangzuo & Flynn

Late Barstovian

 United States
( Nebraska)

A bear belonging to the subfamily Ursinae. The type species is A. tirawa.

Canis borjgali[235] Sp. nov. Valid Bartolini Lucenti et al. Early Pleistocene Dmanisi  Georgia An ancestor of wolf-like canids
Circamustela peignei[262] Sp. nov Valid Valenciano et al. Miocene (Vallesian) Cerro de los Batallones fossil site  Spain A member of the family Mustelidae belonging to the subfamily Guloninae.
Cryptailurus tinaynakti[263] Sp. nov Valid Barrett et al. Hemingfordian Mascall  United States
( Oregon)
A hypercarnivorous feliform
Cynelos stenos[264] Sp. nov Valid Hunt & Yatkola Early Miocene Runningwater  United States
( Nebraska)
A bear dog
Cynodictis peignei[265] Sp. nov Valid Le Verger, Solé & Ladevèze Late Eocene to early Oligocene Quercy Phosphorites  France A bear dog
Eodesmus[266] Gen. et sp. nov Valid Tate-Jones et al. Miocene (Burdigalian) Astoria  United States
( Oregon)
An early member of the family Desmatophocidae. Genus includes new species E. condoni.
Eomonachus[267] Gen. et sp. nov Valid Rule et al. Pliocene Tangahoe  New Zealand A monk seal. Genus includes new species E. belegaerensis.
Ferrucyon[268] Gen. et comb. nov Valid Ruiz-Ramoni et al. Pliocene  Mexico A vulpine canid; a new genus for "Cerdocyon" avius.
Jinomrefu[269] Gen. et sp. nov Valid Friscia et al. PaleogeneNeogene boundary  Kenya A member of the family Barbourofelidae. Genus includes new species J. lakwanza.
Leptoplesictis peignei[270] Sp. nov Valid Grohé et al. Miocene Mae Moh Basin  Thailand A mongoose
Lycophocyon tabrumi[108] Sp. nov Valid Lofgren et al. Eocene  United States
( Montana)
A caniformian carnivoran.
Martes crassidens[271] Sp. nov Valid Jiangzuo et al. Early Pleistocene  China A marten. Announced in 2020; the final version of the article naming it was published in 2021.
Oriensmilus[272] Gen. et sp. nov Valid Wang, White & Guan Middle Miocene Tongxin  China A barbourofeline. Genus includes new species O. liupanensis.
Osodobenus[273] Gen. et sp. nov Valid Biewer, Velez-Juarbe & Parham Miocene (Messinian) Capistrano  United States
( California)
A member of the family Odobenidae. The type species is O. eodon.
Panthera balamoides[274] Sp. nov Valid Stinnesbeck et al. Pleistocene  Mexico A species of Panthera. Announced in 2018; the final version of the article naming it was published in 2020.
Pontolis barroni[273] Sp. nov Valid Biewer, Velez-Juarbe & Parham Miocene (probably Tortonian) Monterey  United States
( California)
A member of the family Odobenidae.
Pontolis kohnoi[273] Sp. nov Valid Biewer, Velez-Juarbe & Parham Miocene (Messinian) Capistrano  United States
( California)
A member of the family Odobenidae.
Sarcodectes[275][276] Gen. et sp. nov Valid Rule et al. Pliocene (Zanclean) Yorktown  United States
( North Carolina)
An earless seal belonging to the subfamily Monachinae. The type species is S. magnus.
Siamictis[270] Gen. et sp. nov Valid Grohé et al. Miocene Mae Moh Basin  Thailand A member of the family Viverridae belonging to the subfamily Paradoxurinae. The type species is S. carbonensis.
Siamogale bounosa[270] Sp. nov Valid Grohé et al. Miocene Mae Moh Basin  Thailand An otter
Skopelogale[277] Gen. et sp. nov Valid Baskin Miocene (Barstovian)  United States
( Nebraska)
A member of the family Mustelidae of uncertain phylogenetic placement. The type species is S. melitodes.
Storchictis[278] Gen. et comb. nov Valid De Bonis Possibly middle or late Eocene Quercy phosphorites  France A bear dog. The type species is "Cynodon" miacinus Teilhard de Chardin (1915).
Tungurictis peignei[279] Sp. nov Valid Wang et al. Middle Miocene Suosuoquan  China A hyena
Vishnuonyx maemohensis[270] Sp. nov Valid Grohé et al. Miocene Mae Moh Basin  Thailand An otter

Other laurasiatherians

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images
Africtis[280] Gen. et sp. nov In press Mattingly et al. Early Oligocene  Libya An early member of Carnivoraformes. Genus includes new species A. sirtensis.
Atelerix steensmai[281] Sp. nov Valid Van Dam, Mein & Alcalá Late Miocene Teruel Basin  Spain A hedgehog, a species of Atelerix.
Desmana marci[282] Sp. nov Valid Minwer-Barakat et al. Early Pliocene  Spain A relative of the Russian desman.
Ereberix[283] Gen. et sp. nov Valid Lopatin Early Miocene Loo  Mongolia A member of the family Erinaceidae. Genus includes new species E. erebericulus.
Lantanotherium anthrace[284] Sp. nov Valid Cailleux et al. Miocene Mae Moh  Thailand A gymnure.
Leonhardtina meridianum[285] Sp. nov Valid Solé, Marandat & Lihoreau Eocene  France A member of the family Hyaenodontidae.
Matthodon peignei[285] Sp. nov Valid Solé, Marandat & Lihoreau Eocene  France A member of the family Hyaenodontidae.
Mesolicaphrium[286] Gen. et comb. nov Valid McGrath, Anaya & Croft Miocene (Laventan) Honda Group (La Venta)  Colombia A member of Litopterna belonging to the family Proterotheriidae, a new genus for "Prolicaphrium" sanalfonensis.
Oxyaenoides aumelasiensis[285] Sp. nov Valid Solé, Marandat & Lihoreau Eocene  France A member of the family Hyaenodontidae.
Plioblarinella[287] Gen. et comb. nov Valid Koenigswald & Reumer Pliocene  Austria A shrew belonging to the tribe Blarinellini; a new genus for "Petenyia" dubia
Proscalops brevidens[288] Sp. nov Valid Korth Oligocene (Whitneyan)  United States
( South Dakota)
A soricomorph.
Pseudobrachytherium[289] Gen. et sp. nov Valid Corona et al. Miocene (Huayquerian) Camacho  Uruguay A member of Litopterna belonging to the family Proterotheriidae. Genus includes new species P. breve.
Pseudotrimylus metaxy[288] Sp. nov Valid Korth Oligocene (Whitneyan)  United States
( South Dakota)
A shrew belonging to the subfamily Heterosoricinae. Originally described as a species of Pseudotrimylus, but subsequently transferred to the genus Noritrimylus.[290]
Rodcania[291] Gen. et sp. nov Valid Gelfo, García-López & Bergqvist Paleocene Río Loro  Argentina A member of Xenungulata. Genus includes new species R. kakan.
Saltaodus[292] Gen. et sp. nov Valid Gelfo et al. Eocene Lumbrera  Argentina A native South American ungulate belonging to the family Didolodontidae. Genus includes new species S. sirolli. Announced in 2019; the final version of the article naming it was published in 2020.
Suncus honeyi[293] Sp. nov Valid Flynn et al. Late Miocene Dhok Pathan
Nagri
 Pakistan A shrew, a species of Suncus

Miscellaneous laurasiatherian research

[edit]
  • A review of the origins, evolution and paleoecology of major clades of extinct native South American ungulates is published by Croft, Gelfo & López (2020).[294]
  • Redescription of the type material of Carodnia feruglioi, providing new information on the anatomy of this species, is published by Vera, Fornasiero & del Favero (2020).[295]
  • A study on the phylogenetic relationships of the litopterns is published by Chimento & Agnolin (2020), who recover the litopterns as pan-perissodactyls, and evaluate the palaeobiogeographical implications of litoptern affinities.[296]
  • A study on the dietary habits of Macrauchenia patachonica and Xenorhinotherium bahiense is published by de Oliveira et al. (2020);[297] the study is subsequently criticized by Dantas, Lobo & Bernardes (2020).[298][299]
  • A study on the anatomy, phylogenetic relationships and likely diet and locomotion of Cambaytherium is published by Rose et al. (2020), who also name a new clade Perissodactylamorpha containing the group Anthracobunia and odd-toed ungulates.[300]

Other eutherians

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images
Bisonalveus gracilis[301] Sp. nov Valid Fox & Scott Paleocene (Tiffanian) Paskapoo  Canada
( Alberta)
A member of the family Pentacodontidae.
Wyonycteris kingi[302] Sp. nov Valid Hooker Paleogene Woolwich  United Kingdom A member of the family Nyctitheriidae. Announced in 2018; the final version of the article naming it was published in 2020.

Miscellaneous eutherian research

[edit]

General eutherian research

[edit]
  • A study on the evolution of feeding strategies in marine mammals throughout their evolutionary history is published by Berta & Lanzetti (2020).[304]
  • A study on zinc isotope ratios in tooth enamel of Late Pleistocene mammals from the Tam Hay Marklot cave (Laos) is published by Bourgon et al. (2020), who evaluate potential utility of zinc isotopes as dietary tracers in paleontology and archeology.[305]
  • A study on the dietary patterns of nine herbivore families from the Shungura Formation (Ethiopia) throughout the late Pliocene and early Pleistocene, as indicated by carbon isotope data from fossil teeth, is published by Negash et al. (2020).[306]
  • Hominin and non-hominin mammal footprints and fossils dating to the last interglacial are reported from the Alathar lacustrine deposit in the western Nefud Desert (Saudi Arabia) by Stewart et al. (2020), who interpret this finding as likely to be the earliest evidence of Homo sapiens in the Arabian Peninsula reported so far.[307]
  • A study on ancient DNA recovered from fragmented bovid and rhinoceros specimens from the Neolithic site of Shannashuzha is published by Chen et al. (2020), who interpret their findings as indicating that the gaur and a rhinoceros closely related to the extant Sumatran rhinoceros lived as far north as the margin of the northeastern Tibetan Plateau during the late Neolithic.[308]

Metatherians

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Amphidolops intermedius[309]

Sp. nov

Valid

Chornogubsky

Eocene

Huancache Formation
Laguna del Hunco Formation

 Argentina

A member of Polydolopimorphia belonging to the family Polydolopidae.

Amphidolops minimus[309]

Sp. nov

Valid

Chornogubsky

Eocene

Tufolitas Laguna del Hunco

 Argentina

A member of Polydolopimorphia belonging to the family Polydolopidae.

Apeirodon[310]

Gen. et sp. nov

Valid

Babot et al.

Eocene (Priabonian)

Geste Formation

 Argentina

A small bunodont metatherian, possibly an early divergent member of Polydolopimorphia.
Type species A. sorianoi.
Announced in 2019; final published article in 2020.

Aquiladelphis analetris[311]

Sp. nov

Valid

Cohen, Davis & Cifelli

Late Cretaceous

Judith River Formation

 United States
( Montana)

An Aquiladelphidae Pediomyoidea.

Australogale[312]

Gen. et sp. nov

Valid

Engelman, Anaya & Croft

Laventan (Serravallian)

Honda Group

 Bolivia

A member of Sparassodonta.
Type species A. leptognathus.
Announced in 2018; final published article in 2020.

Copedelphys superstes[313]

Sp. nov

Valid

Korth et al.

Whitneyan

Brule Formation

 United States
( North Dakota)

A member of the family Herpetotheriidae.

Eomakhaira[314]

Gen. et sp. nov

Valid

Engelman et al.

Early Oligocene

Abanico Formation

 Chile

A Thylacosmilinae Sparassodonta.
Type species is E. molossus.

Glasbius piceanus[311]

Sp. nov

Valid

Cohen, Davis & Cifelli

Late Cretaceous (Edmontonian)

Williams Fork Formation

 United States
( Colorado)

A member of Marsupialiformes belonging to the group Pediomyoidea. Originally described as a species of Glasbius; subsequently made the type species of the separate genus Heleocola.[315]

Hypodolops[309]

Gen. et sp. nov

Valid

Chornogubsky

Eocene

Huancache
Tufolitas Laguna del Hunco

 Argentina

A Polydolopidae Polydolopimorphia.
Type species is H. sapoensis.

Lekaneleo[316]

Gen. et comb. nov

Valid

Gillespie, Archer & Hand

OligoceneMiocene

Riversleigh

 Australia

A marsupial lion;
A new genus for "Priscileo" roskellyae Gillespie (1997)

Mukupirna[317]

Gen. et sp. nov

Valid

Beck et al.

Late Oligocene

Namba Formation

 Australia

A member of Vombatoidea.
Type species is M. nambensis.

Pujatodon[318]

Gen. et sp. nov

Valid

Goin et al.

Eocene (Ypresian)

La Meseta Formation

Antarctica
(Seymour Island)

A probable Polydolopimorphia.
Type species P. ektopos.
Announced in 2018; final article version published in 2020.

Scalaria[311]

Gen. et 2 sp. nov

Junior homonym

Cohen, Davis & Cifelli

Late Cretaceous (Turonian)

Straight Cliffs Formation

 United States
( Utah)

An aquiladelphid Pediomyoidea.
Genus includes new species S. martini and S. aquilana.
"Scalaria" is preoccupied by Scalaria Lamarck (1801). The replacement name Scalaridelphys was coined in 2021.[319]

Metatherian research

[edit]
  • Two isolated teeth of stagodontid metatherians are described from the Cenomanian of France by Vullo et al. (2020), representing the first reported occurrence of stagodontids in Europe.[320]
  • A study on the anatomy of the skull of Andinodelphys cochabambensis, and on the phylogenetic relationships of this species, is published by de Muizon & Ladevèze (2020).[321]
  • A study comparing the anatomy of the skull and teeth of Thylacosmilus atrox and placental saber-toothed carnivores is published by Janis et al. (2020), who question the interpretation of T. atrox as having a similar type of predatory behavior to placental saber-tooths, and consider it unlikely that T. atrox used its canines to dispatch its prey.[322]
  • A study on the anatomy of the petrosal and inner ear of Peratherium elegans and Amphiperatherium elegans, and on its implications for the knowledge of the phylogenetic relationships of herpetotheriids and peradectids, is published online by Ladevèze, Selva & de Muizon (2020).[323]
  • A study on the anatomy of the teeth of Groeberia, and on the phylogenetic affinities of this genus, is published by Zimicz & Goin (2020).[324]
  • A study on the relationship between variation in skull and mandibular shape of extant and extinct macropodiforms and ecological factors such as diet, locomotion and body mass, and on the implications of this relationship for the knowledge of the feeding ecology of the fossil macropodiforms from the Riversleigh World Heritage Area, is published online by Butler et al. (2020).[325]
  • A study on the morphology of the humeri of fossil kangaroos belonging to the subfamily Sthenurinae and of Protemnodon, evaluating its implications for the knowledge of the mode of locomotion in these marsupials, is published online by Janis et al. (2020).[326]
  • The hypothesis that marsupial forelimbs are restricted by long-term developmental constraints resulting from their reproductive strategy, is challenged in a paper to be published by Martin-Serra and Benson (2020).[327]

Allotheria

[edit]

Euharamiyida

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Cryoharamiya[328]

Gen. et sp. nov

Valid

Averianov et al.

Early Cretaceous

Batylykh Formation

 Russia
( Sakha)

An euharamiyidan of uncertain phylogenetic placement.
Type species is C. tarda.

Gondwanatheria

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Adalatherium[329][330][331][332][333][334][335][336]

Gen. et sp. nov

Valid

Krause, Hoffmann, Wible & Rougier in Krause et al.

Late Cretaceous (Maastrichtian)

Maevarano Formation

 Madagascar

A Gondwanatherian.
The type species is A. hui.

Magallanodon[337]

Gen. et sp. nov

Valid

Goin et al.

Late Cretaceous (late Campanian to early Maastrichtian)

Chorrillo Formation[338]
Dorotea Formation

 Argentina[338] Chile

A Gondwanatherian, possibly a Ferugliotheriidae.
The type species is M. baikashkenke.

Multituberculata

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Bructerodon[339]

Gen. et sp. nov

In press

Martin et al.

Early Cretaceous (BarremianAptian)

 Germany

A pinheirodontid multituberculate. Genus includes new species B. alatus.

Cheruscodon[339]

Gen. et sp. nov

In press

Martin et al.

Early Cretaceous (Barremian–Aptian)

 Germany

An eobaatarid multituberculate.
Type species C. balvensis.

Dolichoprion[340]

Gen. et sp. nov

Valid

Kusuhashi, Wang & Jin

Early Cretaceous

Fuxin Formation

 China

An eobaatarid multituberculate.
Type species D. lii.
Announced in 2019; the final article version was published in 2020.

Filikomys[341]

Gen. et comb. nov

In press

Weaver et al.

Late Cretaceous

Belly River Group
Judith River Formation
Kaiparowits Formation
Two Medicine Formation

 Canada
( Alberta)
 United States
( Montana
 Utah
 Wyoming)

A ptilodontoid multituberculate.
Type species is F. primaevus (Lambe, 1902)
Possibly also including "Mesodma" minor Eaton (2002).

Sinobaatar pani[342]

Sp. nov

Valid

Mao et al.

Early Cretaceous (Aptian)

Jiufotang Formation

 China

An eobaatarid multituberculate.

Tagaria[343]

Gen. et sp. nov

Valid

Averianov et al.

Middle Jurassic (Bathonian)

Itat Formation

 Russia
( Krasnoyarsk Krai)

A member of Multituberculata.
Genus includes new species T. antiqua.

Tashtykia[343]

Gen. et sp. nov

Valid

Averianov et al.

Middle Jurassic (Bathonian)

Itat Formation

 Russia
 Krasnoyarsk Krai

A multituberculate.
The type species is T. primaeva.

Multituberculate research

[edit]

Other mammals

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Amblotherium megistodon[345]

Sp. nov

Valid

Foster, Pagnac & Hunt-Foster

Late Jurassic

Morrison Formation

 United States
( Wyoming)

A member of the family Dryolestidae.

Fuxinoconodon[346]

Gen. et sp. nov

Valid

Kusuhashi et al.

Early Cretaceous (AptianAlbian)

Fuxin Formation

 China

A gobiconodontid eutriconodontan.
The type species is F. changi.
Announced in 2019; the final article version was published in 2020.

Kryoparvus[347]

Gen. et sp. nov

Valid

Rich et al.

Early Cretaceous (late Barremian to early Aptian)

 Australia

A possible Ausktribosphenidae?.
Type species is K. gerriti.

Origolestes[348]

Gen. et sp. nov

Mao et al.

Early Cretaceous (Aptian)

Yixian Formation

 China

A zhangheotheriid.
Type species O. lii. Announced in 2019; the final article version was published in 2020.

Stirtodon[349]

Gen. et sp. nov

Valid

Rich, Flannery & Vickers-Rich

Early Cretaceous (Albian)

Griman Creek Formation

 Australia

A monotreme.
The type species is S. elizabethae.

Sundrius[350]

Gen. et sp. nov

In press

Rich et al.

Early Cretaceous (Albian)

Eumeralla Formation

 Australia

A possible monotreme.
The type species is S. ziegleri.

Triconodon averianovi[351]

Sp. nov

valid

Jäger, Cifelli & Martin

Early Cretaceous (Berriasian)

Lulworth Formation

 United Kingdom

A triconodonid Eutriconodontan

Miscellaneous mammalian research

[edit]
  • A study on the phylogenetic relationships of Mesozoic mammals, aiming to determine the morphological character complexes with a high potential to introduce phylogenetic error, is published by Celik & Phillips (2020).[352]
  • A study on maximum lifespans and blood flow rates of Morganucodon and Kuehneotherium, evaluating their implications for the knowledge of basal and maximum metabolic rates in these taxa, is published by Newham et al. (2020);[353] their conclusions are subsequently contested by Meiri & Levin (2022).[354][355]
  • A study on the jaw morphology, jaw movement and occlusion in Priacodon, and on its implications for the knowledge of the occlusal mode and likely diet of triconodontids in general, is published by Jäger, Cifelli & Martin (2020).[356]

General research

[edit]
  • A study on the phylogenetic relationships of the haramiyidans and on the consistency between the known morphology and age of Juramaia and other mammaliaforms from the Yanliao Biota, as indicated by Bayesian tip-dated phylogenetic methods, is published by King & Beck (2020).[357]
  • A study on the community-level response of North American mammals to Paleocene–Eocene Thermal Maximum is published by Fraser & Lyons (2020).[358]
  • A study aiming to determine resource and habitat use, niche occupation and trophic interactions of mammals living during the Great American Interchange, as indicated by carbon and oxygen stable isotope compositions of tooth enamel of fossil mammals from the late Miocene to the late Pleistocene of the Pampean region of Argentina, is published by Domingo et al. (2020).[359]
  • A study on predator richness in mammalian communities from the Miocene Santa Cruz Formation (Argentina), aiming to determine whether the mammalian predator guild from this area was impoverished prior to the Great American Interchange, is published by Rodríguez-Gómez et al. (2020).[360]
  • A study on the causes of the asymmetrical character of the Great American Biotic Interchange, with an increasing dominance of mammals of North American origin in South America during the Pleistocene, is published by Carrillo et al. (2020), who argue that the asymmetry was caused by higher extinction of mammals with South American origin, which in turn reduced the diversity of South American taxa that dispersed into North America.[361]
  • A study on environmental changes in Southeast Asia from the Early Pleistocene to the Holocene, based on stable isotope data from Southeast Asian mammals, and on their impact on the evolution of mammals (including hominins), is published by Louys & Roberts (2020).[362]
  • A study on changes of mammalian extinction rates over the past 126,000 years, aiming to determine whether, and to what extent, species extinctions during this time period can be attributed to anthropogenic or to climatic factors, is published by Andermann et al. (2020).[363]

References

[edit]
  1. ^ Gregory James Smith; Larisa R. G. DeSantis (2020). "Extinction of North American Cuvieronius (Mammalia: Proboscidea: Gomphotheriidae) driven by dietary resource competition with sympatric mammoths and mastodons". Paleobiology. 46 (1): 41–57. Bibcode:2020Pbio...46...41S. doi:10.1017/pab.2020.7. S2CID 212725861.
  2. ^ Patricia A. Groenewald; Judith Sealy; Deano Stynder; Kathlyn M. Smith (2020). "Dietary resource partitioning among three coeval proboscidean taxa (Anancus capensis, Mammuthus subplanifrons, Loxodonta cookei) from the South African Early Pliocene locality of Langebaanweg E Quarry". Palaeogeography, Palaeoclimatology, Palaeoecology. 543: Article 109606. Bibcode:2020PPP...54309606G. doi:10.1016/j.palaeo.2020.109606. S2CID 213999549.
  3. ^ Shi-Qi Wang; Xiao-Xiao Zhang; Chun-Xiao Li (2020). "Reappraisal of Serridentinus gobiensis Osborn & Granger and Miomastodon tongxinensis Chen: the validity of Miomastodon". Vertebrata PalAsiatica. 58 (2): 134–158. doi:10.19615/j.cnki.1000-3118.200310.
  4. ^ Emil Karpinski; Dirk Hackenberger; Grant Zazula; Chris Widga; Ana T. Duggan; G. Brian Golding; Melanie Kuch; Jennifer Klunk; Christopher N. Jass; Pam Groves; Patrick Druckenmiller; Blaine W. Schubert; Joaquin Arroyo-Cabrales; William F. Simpson; John W. Hoganson; Daniel C. Fisher; Simon Y. W. Ho; Ross D. E. MacPhee; Hendrik N. Poinar (2020). "American mastodon mitochondrial genomes suggest multiple dispersal events in response to Pleistocene climate oscillations". Nature Communications. 11 (1): Article number 4048. Bibcode:2020NatCo..11.4048K. doi:10.1038/s41467-020-17893-z. PMC 7463256. PMID 32873779.
  5. ^ Fernando A. Perini; Ednair Rodrigues Nascimento; Mario Alberto Cozzuol (2020). "A new species of Trichechus Linnaeus, 1758 (Sirenia, Trichechidae), from the upper Pleistocene of southwestern Amazonia, and the evolution of Amazonian manatees". Journal of Vertebrate Paleontology. 39 (5): e1697882. Bibcode:2019JVPal..39E7882P. doi:10.1080/02724634.2019.1697882. S2CID 212816367.
  6. ^ Díaz-Berenguer, E.; Houssaye, A.; Badiola, A.; Canudo, J. (2020). "The hind limbs of Sobrarbesiren cardieli (Eocene, Northeastern Spain) and new insights into the locomotion capabilities of the quadrupedal sirenians". Journal of Mammalian Evolution. 27 (4): 649–675. doi:10.1007/s10914-019-09482-9. S2CID 201838854.
  7. ^ Carone, G.; Rizzo, R. (2020). "A new record of fossil sirenians from the Miocene of Sardinia (Italy)". Bollettino della Società Paleontologica Italiana. 59 (2): 113–124.
  8. ^ Emmanuel Gheerbrant; Fatima Khaldoune; Arnaud Schmitt; Rodolphe Tabuce (2020). "Earliest embrithopod mammals (Afrotheria, Tethytheria) from the early Eocene of Morocco: anatomy, systematics and phylogenetic significance" (PDF). Journal of Mammalian Evolution. 28 (2): 245–283. doi:10.1007/s10914-020-09509-6. S2CID 221235223.
  9. ^ Emmanuel Gheerbrant; Arnaud Schmitt; Guillaume Billet (2020). "Petrosal and bony labyrinth morphology of the stem paenungulate mammal (Paenungulatomorpha) Ocepeia daouiensis from the Paleocene of Morocco" (PDF). Journal of Anatomy. 240 (4): 595–611. doi:10.1111/joa.13255. PMC 8930808. PMID 32735727. S2CID 220907872.
  10. ^ Terry Harrison; Yingqi Zhang; Guangbiao Wei; Chengkai Sun; Yuan Wang; Jinyi Liu; Haowen Tong; Baiting Huang; Fan Xu (2020). "A new genus of pliopithecoid from the late Early Miocene of China and its implications for understanding the paleozoogeography of the Pliopithecoidea". Journal of Human Evolution. 145: Article 102838. doi:10.1016/j.jhevol.2020.102838. PMID 32659499. S2CID 220522230.
  11. ^ Christopher C. Gilbert; Alejandra Ortiz; Kelsey D. Pugh; Christopher J. Campisano; Biren A. Patel; Ningthoujam Premjit Singh; John G. Fleagle; Rajeev Patnaik (2020). "New Middle Miocene Ape (Primates: Hylobatidae) from Ramnagar, India fills major gaps in the hominoid fossil record". Proceedings of the Royal Society B: Biological Sciences. 287 (1934): Article ID 20201655. doi:10.1098/rspb.2020.1655. PMC 7542791. PMID 32900315.
  12. ^ Xueping Ji; Terry Harrison; Yingqi Zhang; Yun Wu; Chunxia Zhang; Jinming Hu; Dongdong Wu; Yemao Hou; Song Li; Guofu Wang; Zhenzhen Wang (2022). "The earliest hylobatid from the Late Miocene of China". Journal of Human Evolution. 171. 103251. doi:10.1016/j.jhevol.2022.103251. PMID 36113226. S2CID 252243877.
  13. ^ K. Christopher Beard; Grégoire Métais; Faruk Ocakoğlu; Alexis Licht (2020). "An omomyid primate from the Pontide microcontinent of north-central Anatolia: Implications for sweepstakes dispersal of terrestrial mammals during the Eocene" (PDF). Geobios. 66–67: 143–152. doi:10.1016/j.geobios.2020.06.008. S2CID 225376430.
  14. ^ Erik R. Seiffert; Marcelo F. Tejedor; John G. Fleagle; Nelson M. Novo; Fanny M. Cornejo; Mariano Bond; Dorien de Vries; Kenneth E. Campbell Jr. (2020). "A parapithecid stem anthropoid of African origin in the Paleogene of South America". Science. 368 (6487): 194–197. Bibcode:2020Sci...368..194S. doi:10.1126/science.aba1135. PMID 32273470. S2CID 215550773.
  15. ^ G. Sansalone; K. Allen; J. A. Ledogar; S. Ledogar; D. R. Mitchell; A. Profico; S. Castiglione; M. Melchionna; C. Serio; A. Mondanaro; P. Raia; S. Wroe (2020). "Variation in the strength of allometry drives rates of evolution in primate brain shape". Proceedings of the Royal Society B: Biological Sciences. 287 (1930): Article ID 20200807. doi:10.1098/rspb.2020.0807. PMC 7423483. PMID 32635870. S2CID 220383897.
  16. ^ Judit Marigó; Raef Minwer-Barakat; Salvador Moyà-Solà; Doug M. Boyer (2020). "First navicular remains of a European adapiform (Anchomomys frontanyensis) from the Middle Eocene of the Eastern Pyrenees (Catalonia, Spain): implications for early primate locomotor behavior and navicular evolution". Journal of Human Evolution. 139: Article 102708. doi:10.1016/j.jhevol.2019.102708. PMID 31972428. S2CID 210881958.
  17. ^ Laurie R. Godfrey; Karen E. Samonds; Justin W. Baldwin; Michael R. Sutherland; Jason M. Kamilar; Kristen L. Allfisher (2020). "Mid-Cenozoic climate change, extinction, and faunal turnover in Madagascar, and their bearing on the evolution of lemurs". BMC Evolutionary Biology. 20 (1): 97. Bibcode:2020BMCEE..20...97G. doi:10.1186/s12862-020-01628-1. PMC 7414565. PMID 32770933.
  18. ^ Arianna Harrington; Gabriel Yapuncich; Doug Boyer (2020). "The digital endocast of Necrolemur antiquus". Palæovertebrata. 43 (2): e1. doi:10.18563/pv.43.2.e1. S2CID 225467071.
  19. ^ J.-J. Jaeger; C. Sein; D. L. Gebo; Y. Chaimanee; M. T. Nyein; T. Z. Oo; M. M. Aung; K. Suraprasit; M. Rugbumrung; V. Lazzari; A. N. Soe; O. Chavasseau (2020). "Amphipithecine primates are stem anthropoids: cranial and postcranial evidence". Proceedings of the Royal Society B: Biological Sciences. 287 (1938): Article ID 20202129. doi:10.1098/rspb.2020.2129. PMC 7735260. PMID 33171091. S2CID 226291136.
  20. ^ Thomas A. Püschel; Jordi Marcé-Nogué; Justin Gladman; Biren A. Patel; Sergio Almécija; William I. Sellers (2020). "Getting its feet on the ground: elucidating Paralouatta's semi-terrestriality using the virtual morpho-functional toolbox". Frontiers in Earth Science. 8: Article 79. Bibcode:2020FrEaS...8...79P. doi:10.3389/feart.2020.00079. S2CID 214624896.
  21. ^ Nina G. Jablonski; Xueping Ji; Jay Kelley; Lawrence J. Flynn; Chenglong Deng; Denise F. Su (2020). "Mesopithecus pentelicus from Zhaotong, China, the easternmost representative of a widespread Miocene cercopithecoid species". Journal of Human Evolution. 146: Article 102851. doi:10.1016/j.jhevol.2020.102851. PMID 32771770. S2CID 221092899.
  22. ^ Alessandro Urciuoli; Clément Zanolli; Amélie Beaudet; Jean Dumoncel; Frédéric Santos; Salvador Moyà-Solà; David M. Alba (2020). "The evolution of the vestibular apparatus in apes and humans". eLife. 9: e51261. doi:10.7554/eLife.51261. PMC 7054002. PMID 32122463.
  23. ^ Marta Pina; Daniel DeMiguel; Francesc Puigvert; Jordi Marcé-Nogué; Salvador Moyà-Solà (2020). "Knee function through finite element analysis and the role of Miocene hominoids in our understanding of the origin of antipronograde behaviours: the Pierolapithecus catalaunicus patella as a case study" (PDF). Palaeontology. 63 (3): 459–475. Bibcode:2020Palgy..63..459P. doi:10.1111/pala.12466. S2CID 214461121.
  24. ^ Scott A. Williams; Thomas C. Prang; Marc R. Meyer; Gabrielle A. Russo; Liza J. Shapiro (2020). "Reevaluating bipedalism in Danuvius". Nature. 586 (7827): E1–E3. Bibcode:2020Natur.586E...1W. doi:10.1038/s41586-020-2736-4. PMID 32999479. S2CID 222146537.
  25. ^ Madelaine Böhme; Nikolai Spassov; Jeremy M. DeSilva; David R. Begun (2020). "Reply to: Reevaluating bipedalism in Danuvius". Nature. 586 (7827): E4–E5. Bibcode:2020Natur.586E...4B. doi:10.1038/s41586-020-2737-3. PMID 32999478. S2CID 222156516.
  26. ^ Jeremy E. Martin; Théo Tacail; José Braga; Thure E. Cerling; Vincent Balter (2020). "Calcium isotopic ecology of Turkana Basin hominins". Nature Communications. 11 (1): Article number 3587. Bibcode:2020NatCo..11.3587M. doi:10.1038/s41467-020-17427-7. PMC 7367883. PMID 32681008.
  27. ^ Adam van Casteren; David S. Strait; Michael V. Swain; Shaji Michael; Lidia A. Thai; Swapna M. Philip; Sreeja Saji; Khaled Al-Fadhalah; Abdulwahab S. Almusallam; Ali Shekeban; W. Scott McGraw; Erin E. Kane; Barth W. Wright; Peter W. Lucas (2020). "Hard plant tissues do not contribute meaningfully to dental microwear: evolutionary implications". Scientific Reports. 10 (1): Article number 582. Bibcode:2020NatSR..10..582V. doi:10.1038/s41598-019-57403-w. PMC 6969033. PMID 31953510.
  28. ^ Jordi Marcé-Nogué; Thomas A. Püschel; Alexander Daasch; Thomas M. Kaiser (2020). "Broad-scale morpho-functional traits of the mandible suggest no hard food adaptation in the hominin lineage". Scientific Reports. 10 (1): Article number 6793. Bibcode:2020NatSR..10.6793M. doi:10.1038/s41598-020-63739-5. PMC 7176708. PMID 32322020.
  29. ^ Christopher J. Dunmore; Matthew M. Skinner; Ameline Bardo; Lee R. Berger; Jean-Jacques Hublin; Dieter H. Pahr; Antonio Rosas; Nicholas B. Stephens; Tracy L. Kivell (2020). "The position of Australopithecus sediba within fossil hominin hand use diversity" (PDF). Nature Ecology & Evolution. 4 (7): 911–918. Bibcode:2020NatEE...4..911D. doi:10.1038/s41559-020-1207-5. PMID 32424278. S2CID 218682525.
  30. ^ Ian J. Wallace; M. Loring Burgess; Biren A. Patel (2020). "Phalangeal curvature in a chimpanzee raised like a human: Implications for inferring arboreality in fossil hominins". Proceedings of the National Academy of Sciences of the United States of America. 117 (21): 11223–11225. Bibcode:2020PNAS..11711223W. doi:10.1073/pnas.2004371117. PMC 7260939. PMID 32393625.
  31. ^ Marina Melchionna; Antonio Profico; Silvia Castiglione; Gabriele Sansalone; Carmela Serio; Alessandro Mondanaro; Mirko Di Febbraro; Lorenzo Rook; Luca Pandolfi; Fabio Di Vincenzo; Giorgio Manzi; Pasquale Raia (2020). "From smart apes to human brain boxes. A uniquely derived brain shape in late hominins clade". Frontiers in Earth Science. 8: Article 273. Bibcode:2020FrEaS...8..273M. doi:10.3389/feart.2020.00273. hdl:2158/1205947. S2CID 220497743.
  32. ^ Andy I. R. Herries; Jesse M. Martin; A. B. Leece; Justin W. Adams; Giovanni Boschian; Renaud Joannes-Boyau; Tara R. Edwards; Tom Mallett; Jason Massey; Ashleigh Murszewski; Simon Neubauer; Robyn Pickering; David S. Strait; Brian J. Armstrong; Stephanie Baker; Matthew V. Caruana; Tim Denham; John Hellstrom; Jacopo Moggi-Cecchi; Simon Mokobane; Paul Penzo-Kajewski; Douglass S. Rovinsky; Gary T. Schwartz; Rhiannon C. Stammers; Coen Wilson; Jon Woodhead; Colin Menter (2020). "Contemporaneity of Australopithecus, Paranthropus, and early Homo erectus in South Africa". Science. 368 (6486): eaaw7293. doi:10.1126/science.aaw7293. hdl:11568/1040368. PMID 32241925. S2CID 214763272.
  33. ^ Leoni Georgiou; Christopher J. Dunmore; Ameline Bardo; Laura T. Buck; Jean-Jacques Hublin; Dieter H. Pahr; Dominic Stratford; Alexander Synek; Tracy L. Kivell; Matthew M. Skinner (2020). "Evidence for habitual climbing in a Pleistocene hominin in South Africa". Proceedings of the National Academy of Sciences of the United States of America. 117 (15): 8416–8423. Bibcode:2020PNAS..117.8416G. doi:10.1073/pnas.1914481117. PMC 7165455. PMID 32229560.
  34. ^ Martin Haeusler; Nicole M. Webb; Viktoria A. Krenn; Cinzia Fornai (2020). "Locomotor and taxonomic diversity of Sterkfontein hominins not supported by current trabecular evidence of the femoral head". Proceedings of the National Academy of Sciences of the United States of America. 117 (46): 28568–28569. Bibcode:2020PNAS..11728568H. doi:10.1073/pnas.2014033117. PMC 7682559. PMID 33082222.
  35. ^ Matthew M. Skinner; Leoni Georgiou; Dominic Stratford; Christopher J. Dunmore; Ameline Bardo; Laura T. Buck; Jean-Jacques Hublin; Dieter H. Pahr; Alexander Synek; Tracy L. Kivell (2020). "Reply to Haeusler et al.: Internal structure of the femur provides robust evidence for locomotor and taxonomic diversity at Sterkfontein". Proceedings of the National Academy of Sciences of the United States of America. 117 (46): 28570–28571. Bibcode:2020PNAS..11728570S. doi:10.1073/pnas.2016647117. PMC 7682416. PMID 33082221.
  36. ^ Jonathan G. Wynn; Zeresenay Alemseged; René Bobe; Frederick Grine; Enquye W. Negash; Matt Sponheimer (2020). "Isotopic evidence for the timing of the dietary shift toward C4 foods in eastern African Paranthropus". Proceedings of the National Academy of Sciences of the United States of America. 117 (36): 21978–21984. Bibcode:2020PNAS..11721978W. doi:10.1073/pnas.2006221117. PMC 7486737. PMID 32839330.
  37. ^ Marine Cazenave; Christopher Dean; Clément Zanolli; Anna C. Oettlé; Jakobus Hoffman; Mirriam Tawane; Francis Thackeray; Roberto Macchiarelli (2020). "Reassessment of the TM 1517 odonto-postcranial assemblage from Kromdraai B, South Africa, and the maturational pattern of Paranthropus robustus". American Journal of Physical Anthropology. 172 (4): 714–722. doi:10.1002/ajpa.24082. hdl:2263/78550. PMID 32449177. S2CID 218874251.
  38. ^ Christopher Dean; Clément Zanolli; Adeline Le Cabec; Mirriam Tawane; Jan Garrevoet; Arnaud Mazurier; Roberto Macchiarelli (2020). "Growth and development of the third permanent molar in Paranthropus robustus from Swartkrans, South Africa". Scientific Reports. 10 (1): Article number 19053. doi:10.1038/s41598-020-76032-2. PMC 7642444. PMID 33149180.
  39. ^ Jesse M. Martin; A. B. Leece; Simon Neubauer; Stephanie E. Baker; Carrie S. Mongle; Giovanni Boschian; Gary T. Schwartz; Amanda L. Smith; Justin A. Ledogar; David S. Strait; Andy I. R. Herries (2020). "Drimolen cranium DNH 155 documents microevolution in an early hominin species". Nature Ecology & Evolution. 5 (1): 38–45. Bibcode:2020NatEE...5...38M. doi:10.1038/s41559-020-01319-6. PMID 33168991. S2CID 226296091.
  40. ^ Yoel Rak; William H. Kimbel; Jacopo Moggi-Cecchi; Charles A. Lockwood; Colin Menter (2020). "The DNH 7 skull of Australopithecus robustus from Drimolen (Main Quarry), South Africa". Journal of Human Evolution. 151: Article 102913. doi:10.1016/j.jhevol.2020.102913. PMID 33388495. S2CID 230484145.
  41. ^ B.G. Richmond; D.J. Green; M.R. Lague; H. Chirchir; A.K. Behrensmeyer; R. Bobe; M.K. Bamford; N.L. Griffin; P. Gunz; E. Mbua; S.R. Merritt; B. Pobiner; P. Kiura; M. Kibunjia; J.W.K. Harris; D.R. Braun (2020). "The upper limb of Paranthropus boisei from Ileret, Kenya". Journal of Human Evolution. 141: Article 102727. doi:10.1016/j.jhevol.2019.102727. PMID 32078931. S2CID 211233056.
  42. ^ Ellison J. McNutt; Jeremy M. DeSilva (2020). "Evidence for an elongated Achilles tendon in Australopithecus". The Anatomical Record. 303 (9): 2382–2391. doi:10.1002/ar.24387. PMID 32134211. S2CID 212417872.
  43. ^ Amélie Beaudet; Ronald J. Clarke; Jason L. Heaton; Travis R. Pickering; Kristian J. Carlson; Robin H. Crompton; Tea Jashashvili; Laurent Bruxelles; Kudakwashe Jakata; Lunga Bam; Luc Van Hoorebeke; Kathleen Kuman; Dominic Stratford (2020). "The atlas of StW 573 and the late emergence of human-like head mobility and brain metabolism". Scientific Reports. 10 (1): Article number 4285. Bibcode:2020NatSR..10.4285B. doi:10.1038/s41598-020-60837-2. PMC 7075956. PMID 32179760.
  44. ^ Philipp Gunz; Simon Neubauer; Dean Falk; Paul Tafforeau; Adeline Le Cabec; Tanya M. Smith; William H. Kimbel; Fred Spoor; Zeresenay Alemseged (2020). "Australopithecus afarensis endocasts suggest ape-like brain organization and prolonged brain growth". Science Advances. 6 (14): eaaz4729. Bibcode:2020SciA....6.4729G. doi:10.1126/sciadv.aaz4729. PMC 7112758. PMID 32270044.
  45. ^ Katsuhiro Sano; Yonas Beyene; Shigehiro Katoh; Daisuke Koyabu; Hideki Endo; Tomohiko Sasaki; Berhane Asfaw; Gen Suwa (2020). "A 1.4-million-year-old bone handaxe from Konso, Ethiopia, shows advanced tool technology in the early Acheulean". Proceedings of the National Academy of Sciences of the United States of America. 117 (31): 18393–18400. Bibcode:2020PNAS..11718393S. doi:10.1073/pnas.2006370117. PMC 7414090. PMID 32661154.
  46. ^ Ran Barkai (2020). "Lower Paleolithic bone handaxes and chopsticks: Tools and symbols?". Proceedings of the National Academy of Sciences of the United States of America. 117 (49): 30892–30893. Bibcode:2020PNAS..11730892B. doi:10.1073/pnas.2016482117. PMC 7733816. PMID 33109717.
  47. ^ Gen Suwa; Berhane Asfaw; Katsuhiro Sano; Yonas Beyene (2020). "Reply to Barkai: Implications of the Konso bone handaxe". Proceedings of the National Academy of Sciences of the United States of America. 117 (49): 30894–30895. Bibcode:2020PNAS..11730894S. doi:10.1073/pnas.2018084117. PMC 7733793. PMID 33109716.
  48. ^ Debra R. Bolter; Marina C. Elliott; John Hawks; Lee R. Berger (2020). "Immature remains and the first partial skeleton of a juvenile Homo naledi, a late Middle Pleistocene hominin from South Africa". PLOS ONE. 15 (4): e0230440. Bibcode:2020PLoSO..1530440B. doi:10.1371/journal.pone.0230440. PMC 7112188. PMID 32236122.
  49. ^ Debra R. Bolter; Noel Cameron (2020). "Utilizing auxology to understand ontogeny of extinct hominins: A case study on Homo naledi". American Journal of Physical Anthropology. 173 (2): 368–380. doi:10.1002/ajpa.24088. PMID 32537780. S2CID 219700775.
  50. ^ Thomas W. Davies; Lucas K. Delezene; Philipp Gunz; Jean-Jacques Hublin; Lee R. Berger; Agness Gidna; Matthew M. Skinner (2020). "Distinct mandibular premolar crown morphology in Homo naledi and its implications for the evolution of Homo species in southern Africa". Scientific Reports. 10 (1): Article number 13196. Bibcode:2020NatSR..1013196D. doi:10.1038/s41598-020-69993-x. PMC 7413389. PMID 32764597.
  51. ^ Shuji Matsu'ura; Megumi Kondo; Tohru Danhara; Shuhei Sakata; Hideki Iwano; Takafumi Hirata; Iwan Kurniawan; Erick Setiyabudi; Yoshihiro Takeshita; Masayuki Hyodo; Ikuko Kitaba; Masafumi Sudo; Yugo Danhara; Fachroel Aziz (2020). "Age control of the first appearance datum for Javanese Homo erectus in the Sangiran area". Science. 367 (6474): 210–214. Bibcode:2020Sci...367..210M. doi:10.1126/science.aau8556. PMID 31919224. S2CID 210131393.
  52. ^ Sileshi Semaw; Michael J. Rogers; Scott W. Simpson; Naomi E. Levin; Jay Quade; Nelia Dunbar; William C. McIntosh; Isabel Cáceres; Gary E. Stinchcomb; Ralph L. Holloway; Francis H. Brown; Robert F. Butler; Dietrich Stout; Melanie Everett (2020). "Co-occurrence of Acheulian and Oldowan artifacts with Homo erectus cranial fossils from Gona, Afar, Ethiopia". Science Advances. 6 (10): eaaw4694. Bibcode:2020SciA....6.4694S. doi:10.1126/sciadv.aaw4694. PMC 7056306. PMID 32181331.
  53. ^ Markus Bastir; Daniel García-Martínez; Nicole Torres-Tamayo; Carlos A. Palancar; Benoît Beyer; Alon Barash; Chiara Villa; Juan Alberto Sanchis-Gimeno; Alberto Riesco-López; Shahed Nalla; Isabel Torres-Sánchez; Francisco García-Río; Ella Been; Asier Gómez-Olivencia; Martin Haeusler; Scott A. Williams; Fred Spoor (2020). "Rib cage anatomy in Homo erectus suggests a recent evolutionary origin of modern human body shape" (PDF). Nature Ecology & Evolution. 4 (9): 1178–1187. Bibcode:2020NatEE...4.1178B. doi:10.1038/s41559-020-1240-4. PMID 32632258. S2CID 220376116.
  54. ^ Xinzhi Wu (2020). Middle Pleistocene Human Skull from Dali, China. Palaeontologia Sinica. Vol. 201. pp. 1–216. ISBN 978-7030663962.
  55. ^ Frido Welker; Jazmín Ramos-Madrigal; Petra Gutenbrunner; Meaghan Mackie; Shivani Tiwary; Rosa Rakownikow Jersie-Christensen; Cristina Chiva; Marc R. Dickinson; Martin Kuhlwilm; Marc de Manuel; Pere Gelabert; María Martinón-Torres; Ann Margvelashvili; Juan Luis Arsuaga; Eudald Carbonell; Tomas Marques-Bonet; Kirsty Penkman; Eduard Sabidó; Jürgen Cox; Jesper V. Olsen; David Lordkipanidze; Fernando Racimo; Carles Lalueza-Fox; José María Bermúdez de Castro; Eske Willerslev; Enrico Cappellini (2020). "The dental proteome of Homo antecessor". Nature. 580 (7802): 235–238. Bibcode:2020Natur.580..235W. doi:10.1038/s41586-020-2153-8. PMC 7582224. PMID 32269345. S2CID 214736611.
  56. ^ Mario Modesto-Mata; M. Christopher Dean; Rodrigo S. Lacruz; Timothy G. Bromage; Cecilia García-Campos; Marina Martínez de Pinillos; Laura Martín-Francés; María Martinón-Torres; Eudald Carbonell; Juan Luis Arsuaga; José María Bermúdez de Castro (2020). "Short and long period growth markers of enamel formation distinguish European Pleistocene hominins". Scientific Reports. 10 (1): Article number 4665. Bibcode:2020NatSR..10.4665M. doi:10.1038/s41598-020-61659-y. PMC 7069994. PMID 32170098.
  57. ^ Antonis Bartsiokas; Juan-Luis Arsuaga (2020). "Hibernation in hominins from Atapuerca, Spain half a million years ago". L'Anthropologie. 124 (5): Article 102797. doi:10.1016/j.anthro.2020.102797. S2CID 229399008.
  58. ^ Rainer Grün; Alistair Pike; Frank McDermott; Stephen Eggins; Graham Mortimer; Maxime Aubert; Lesley Kinsley; Renaud Joannes-Boyau; Michael Rumsey; Christiane Denys; James Brink; Tara Clark; Chris Stringer (2020). "Dating the skull from Broken Hill, Zambia, and its position in human evolution". Nature. 580 (7803): 372–375. Bibcode:2020Natur.580..372G. doi:10.1038/s41586-020-2165-4. PMID 32296179. S2CID 214736650.
  59. ^ Alan R. Rogers; Nathan S. Harris; Alan A. Achenbach (2020). "Neanderthal-Denisovan ancestors interbred with a distantly related hominin". Science Advances. 6 (8): eaay5483. Bibcode:2020SciA....6.5483R. doi:10.1126/sciadv.aay5483. PMC 7032934. PMID 32128408.
  60. ^ Martin Petr; Mateja Hajdinjak; Qiaomei Fu; Elena Essel; Hélène Rougier; Isabelle Crevecoeur; Patrick Semal; Liubov V. Golovanova; Vladimir B. Doronichev; Carles Lalueza-Fox; Marco de la Rasilla; Antonio Rosas; Michael V. Shunkov; Maxim B. Kozlikin; Anatoli P. Derevianko; Benjamin Vernot; Matthias Meyer; Janet Kelso (2020). "The evolutionary history of Neanderthal and Denisovan Y chromosomes" (PDF). Science. 369 (6511): 1653–1656. Bibcode:2020Sci...369.1653P. doi:10.1126/science.abb6460. hdl:21.11116/0000-0007-11C2-A. PMID 32973032. S2CID 221882937.
  61. ^ Dongju Zhang; Huan Xia; Fahu Chen; Bo Li; Viviane Slon; Ting Cheng; Ruowei Yang; Zenobia Jacobs; Qingyan Dai; Diyendo Massilani; Xuke Shen; Jian Wang; Xiaotian Feng; Peng Cao; Melinda A. Yang; Juanting Yao; Jishuai Yang; David B. Madsen; Yuanyuan Han; Wanjing Ping; Feng Liu; Charles Perreault; Xiaoshan Chen; Matthias Meyer; Janet Kelso; Svante Pääbo; Qiaomei Fu (2020). "Denisovan DNA in Late Pleistocene sediments from Baishiya Karst Cave on the Tibetan Plateau". Science. 370 (6516): 584–587. doi:10.1126/science.abb6320. PMID 33122381. S2CID 225956074.
  62. ^ Alessia Nava; Federico Lugli; Matteo Romandini; Federica Badino; David Evans; Angela H. Helbling; Gregorio Oxilia; Simona Arrighi; Eugenio Bortolini; Davide Delpiano; Rossella Duches; Carla Figus; Alessandra Livraghi; Giulia Marciani; Sara Silvestrini; Anna Cipriani; Tommaso Giovanardi; Roberta Pini; Claudio Tuniz; Federico Bernardini; Irene Dori; Alfredo Coppa; Emanuela Cristiani; Christopher Dean; Luca Bondioli; Marco Peresani; Wolfgang Müller; Stefano Benazzi (2020). "Early life of Neanderthals". Proceedings of the National Academy of Sciences of the United States of America. 117 (46): 28719–28726. Bibcode:2020PNAS..11728719N. doi:10.1073/pnas.2011765117. PMC 7682388. PMID 33139541.
  63. ^ Paola Villa; Sylvain Soriano; Luca Pollarolo; Carlo Smriglio; Mario Gaeta; Massimo D'Orazio; Jacopo Conforti; Carlo Tozzi (2020). "Neandertals on the beach: Use of marine resources at Grotta dei Moscerini (Latium, Italy)". PLOS ONE. 15 (1): e0226690. Bibcode:2020PLoSO..1526690V. doi:10.1371/journal.pone.0226690. PMC 6961883. PMID 31940356.
  64. ^ J. Zilhão; D. E. Angelucci; M. Araújo Igreja; L. J. Arnold; E. Badal; P. Callapez; J. L. Cardoso; F. d'Errico; J. Daura; M. Demuro; M. Deschamps; C. Dupont; S. Gabriel; D. L. Hoffmann; P. Legoinha; H. Matias; A. M. Monge Soares; M. Nabais; P. Portela; A. Queffelec; F. Rodrigues; P. Souto (2020). "Last Interglacial Iberian Neandertals as fisher-hunter-gatherers". Science. 367 (6485): eaaz7943. doi:10.1126/science.aaz7943. hdl:2445/207289. PMID 32217702. S2CID 214671143.
  65. ^ Kseniya A. Kolobova; Richard G. Roberts; Victor P. Chabai; Zenobia Jacobs; Maciej T. Krajcarz; Alena V. Shalagina; Andrey I. Krivoshapkin; Bo Li; Thorsten Uthmeier; Sergey V. Markin; Mike W. Morley; Kieran O'Gorman; Natalia A. Rudaya; Sahra Talamo; Bence Viola; Anatoly P. Derevianko (2020). "Archaeological evidence for two separate dispersals of Neanderthals into southern Siberia". Proceedings of the National Academy of Sciences of the United States of America. 117 (6): 2879–2885. Bibcode:2020PNAS..117.2879K. doi:10.1073/pnas.1918047117. PMC 7022189. PMID 31988114.
  66. ^ Fabrizio Mafessoni; Steffi Grote; Cesare de Filippo; Viviane Slon; Kseniya A. Kolobova; Bence Viola; Sergey V. Markin; Manjusha Chintalapati; Stephane Peyrégne; Laurits Skov; Pontus Skoglund; Andrey I. Krivoshapkin; Anatoly P. Derevianko; Matthias Meyer; Janet Kelso; Benjamin Peter; Kay Prüfer; Svante Pääbo (2020). "A high-coverage Neandertal genome from Chagyrskaya Cave". Proceedings of the National Academy of Sciences of the United States of America. 117 (26): 15132–15136. Bibcode:2020PNAS..11715132M. doi:10.1073/pnas.2004944117. PMC 7334501. PMID 32546518.
  67. ^ B. L. Hardy; M.-H. Moncel; C. Kerfant; M. Lebon; L. Bellot-Gurlet; N. Mélard (2020). "Direct evidence of Neanderthal fibre technology and its cognitive and behavioral implications". Scientific Reports. 10 (1): Article number 4889. Bibcode:2020NatSR..10.4889H. doi:10.1038/s41598-020-61839-w. PMC 7145842. PMID 32273518.
  68. ^ Daniel García-Martínez; Markus Bastir; Asier Gómez-Olivencia; Bruno Maureille; Liubov Golovanova; Vladimir Doronichev; Takeru Akazawa; Osamu Kondo; Hajime Ishida; Dominic Gascho; Christoph P. E. Zollikofer; Marcia Ponce de León; Yann Heuzé (2020). "Early development of the Neanderthal ribcage reveals a different body shape at birth compared to modern humans". Science Advances. 6 (41): eabb4377. Bibcode:2020SciA....6.4377G. doi:10.1126/sciadv.abb4377. PMC 7541074. PMID 33028520.
  69. ^ Mayowa T. Adegboyega; Peter A. Stamos; Jean-Jacques Hublin; Timothy D. Weaver (2020). "Virtual reconstruction of the Kebara 2 Neanderthal pelvis". Journal of Human Evolution. 151: Article 102922. doi:10.1016/j.jhevol.2020.102922. PMID 33360685. S2CID 229689024.
  70. ^ Andrea Columbu; Veronica Chiarini; Christoph Spötl; Stefano Benazzi; John Hellstrom; Hai Cheng; Jo De Waele (2020). "Speleothem record attests to stable environmental conditions during Neanderthal–modern human turnover in southern Italy". Nature Ecology & Evolution. 4 (9): 1188–1195. Bibcode:2020NatEE...4.1188C. doi:10.1038/s41559-020-1243-1. hdl:11585/764986. PMID 32632262. S2CID 220375005.
  71. ^ John C. Willman; Raquel Hernando; Marie Matu; Isabelle Crevecoeur (2020). "Biocultural diversity in Late Pleistocene/Early Holocene Africa: Olduvai Hominid 1 (Tanzania) biological affinity and intentional body modification" (PDF). American Journal of Physical Anthropology. 172 (4): 664–681. doi:10.1002/ajpa.24007. PMID 31944279. S2CID 210331198.
  72. ^ Richard Potts; René Dommain; Jessica W. Moerman; Anna K. Behrensmeyer; Alan L. Deino; Simon Riedl; Emily J. Beverly; Erik T. Brown; Daniel Deocampo; Rahab Kinyanjui; Rachel Lupien; R. Bernhart Owen; Nathan Rabideaux; James M. Russell; Mona Stockhecke; Peter deMenocal; J. Tyler Faith; Yannick Garcin; Anders Noren; Jennifer J. Scott; David Western; Jordon Bright; Jennifer B. Clark; Andrew S. Cohen; C. Brehnin Keller; John King; Naomi E. Levin; Kristina Brady Shannon; Veronica Muiruri; Robin W. Renaut; Stephen M. Rucina; Kevin Uno (2020). "Increased ecological resource variability during a critical transition in hominin evolution". Science Advances. 6 (43): eabc8975. Bibcode:2020SciA....6.8975P. doi:10.1126/sciadv.abc8975. PMC 7577727. PMID 33087353.
  73. ^ Kevin G. Hatala; William E. H. Harcourt-Smith; Adam D. Gordon; Brian W. Zimmer; Brian G. Richmond; Briana L. Pobiner; David J. Green; Adam Metallo; Vince Rossi; Cynthia M. Liutkus-Pierce (2020). "Snapshots of human anatomy, locomotion, and behavior from Late Pleistocene footprints at Engare Sero, Tanzania". Scientific Reports. 10 (1): Article number 7740. Bibcode:2020NatSR..10.7740H. doi:10.1038/s41598-020-64095-0. PMC 7224389. PMID 32409726.
  74. ^ Lyn Wadley; Irene Esteban; Paloma de la Peña; Marine Wojcieszak; Dominic Stratford; Sandra Lennox; Francesco d'Errico; Daniela Eugenia Rosso; François Orange; Lucinda Backwell; Christine Sievers (2020). "Fire and grass-bedding construction 200 thousand years ago at Border Cave, South Africa". Science. 369 (6505): 863–866. Bibcode:2020Sci...369..863W. doi:10.1126/science.abc7239. PMID 32792402. S2CID 221113832.
  75. ^ Kristian Tylén; Riccardo Fusaroli; Sergio Rojo; Katrin Heimann; Nicolas Fay; Niels N. Johannsen; Felix Riede; Marlize Lombard (2020). "The evolution of early symbolic behavior in Homo sapiens". Proceedings of the National Academy of Sciences of the United States of America. 117 (9): 4578–4584. Bibcode:2020PNAS..117.4578T. doi:10.1073/pnas.1910880117. PMC 7060673. PMID 32071236.
  76. ^ Jean-Jacques Hublin; Nikolay Sirakov; Vera Aldeias; Shara Bailey; Edouard Bard; Vincent Delvigne; Elena Endarova; Yoann Fagault; Helen Fewlass; Mateja Hajdinjak; Bernd Kromer; Ivaylo Krumov; João Marreiros; Naomi L. Martisius; Lindsey Paskulin; Virginie Sinet-Mathiot; Matthias Meyer; Svante Pääbo; Vasil Popov; Zeljko Rezek; Svoboda Sirakova; Matthew M. Skinner; Geoff M. Smith; Rosen Spasov; Sahra Talamo; Thibaut Tuna; Lukas Wacker; Frido Welker; Arndt Wilcke; Nikolay Zahariev; Shannon P. McPherron; Tsenka Tsanova (2020). "Initial Upper Palaeolithic Homo sapiens from Bacho Kiro Cave, Bulgaria" (PDF). Nature. 581 (7808): 299–302. Bibcode:2020Natur.581..299H. doi:10.1038/s41586-020-2259-z. PMID 32433609. S2CID 218592678.
  77. ^ Helen Fewlass; Sahra Talamo; Lukas Wacker; Bernd Kromer; Thibaut Tuna; Yoann Fagault; Edouard Bard; Shannon P. McPherron; Vera Aldeias; Raquel Maria; Naomi L. Martisius; Lindsay Paskulin; Zeljko Rezek; Virginie Sinet-Mathiot; Svoboda Sirakova; Geoffrey M. Smith; Rosen Spasov; Frido Welker; Nikolay Sirakov; Tsenka Tsanova; Jean-Jacques Hublin (2020). "A 14C chronology for the Middle to Upper Palaeolithic transition at Bacho Kiro Cave, Bulgaria". Nature Ecology & Evolution. 4 (6): 794–801. Bibcode:2020NatEE...4..794F. doi:10.1038/s41559-020-1136-3. hdl:11585/770560. PMID 32393865. S2CID 218593433.
  78. ^ Maria Teschler-Nicola; Daniel Fernandes; Marc Händel; Thomas Einwögerer; Ulrich Simon; Christine Neugebauer-Maresch; Stefan Tangl; Patrick Heimel; Toni Dobsak; Anika Retzmann; Thomas Prohaska; Johanna Irrgeher; Douglas J. Kennett; Iñigo Olalde; David Reich; Ron Pinhasi (2020). "Ancient DNA reveals monozygotic newborn twins from the Upper Palaeolithic". Communications Biology. 3 (1): Article number 650. doi:10.1038/s42003-020-01372-8. PMC 7648643. PMID 33159107. S2CID 226274540.
  79. ^ Diyendo Massilani; Laurits Skov; Mateja Hajdinjak; Byambaa Gunchinsuren; Damdinsuren Tseveendorj; Seonbok Yi; Jungeun Lee; Sarah Nagel; Birgit Nickel; Thibaut Devièse; Tom Higham; Matthias Meyer; Janet Kelso; Benjamin M. Peter; Svante Pääbo (2020). "Denisovan ancestry and population history of early East Asians". Science. 370 (6516): 579–583. doi:10.1126/science.abc1166. PMID 33122380. S2CID 225957149.
  80. ^ Yousuke Kaifu; Tien-Hsia Kuo; Yoshimi Kubota; Sen Jan (2020). "Palaeolithic voyage for invisible islands beyond the horizon". Scientific Reports. 10 (1): Article number 19785. Bibcode:2020NatSR..1019785K. doi:10.1038/s41598-020-76831-7. PMC 7714783. PMID 33273531.
  81. ^ Patrick Roberts; Julien Louys; Jana Zech; Ceri Shipton; Shimona Kealy; Sofia Samper Carro; Stuart Hawkins; Clara Boulanger; Sara Marzo; Bianca Fiedler; Nicole Boivin; Mahirta; Ken Aplin; Sue OʼConnor (2020). "Isotopic evidence for initial coastal colonization and subsequent diversification in the human occupation of Wallacea". Nature Communications. 11 (1): Article number 2068. Bibcode:2020NatCo..11.2068R. doi:10.1038/s41467-020-15969-4. PMC 7190613. PMID 32350284.
  82. ^ Luc Bordes; Elspeth Hayes; Richard Fullagar; Tom Deméré (2020). "Raman and optical microscopy of bone micro-residues on cobbles from the Cerutti mastodon site". Journal of Archaeological Science: Reports. 34, Part B: Article 102656. Bibcode:2020JArSR..34j2656B. doi:10.1016/j.jasrep.2020.102656. S2CID 229435292.
  83. ^ Lisa-Marie Shillito; Helen L. Whelton; John C. Blong; Dennis L. Jenkins; Thomas J. Connolly; Ian D. Bull (2020). "Pre-Clovis occupation of the Americas identified by human fecal biomarkers in coprolites from Paisley Caves, Oregon". Science Advances. 6 (29): eaba6404. Bibcode:2020SciA....6.6404S. doi:10.1126/sciadv.aba6404. PMC 7363456. PMID 32743069.
  84. ^ Lorena Becerra-Valdivia; Thomas Higham (2020). "The timing and effect of the earliest human arrivals in North America". Nature. 584 (7819): 93–97. Bibcode:2020Natur.584...93B. doi:10.1038/s41586-020-2491-6. PMID 32699413. S2CID 220715918.
  85. ^ Ciprian F. Ardelean; Lorena Becerra-Valdivia; Mikkel Winther Pedersen; Jean-Luc Schwenninger; Charles G. Oviatt; Juan I. Macías-Quintero; Joaquin Arroyo-Cabrales; Martin Sikora; Yam Zul E. Ocampo-Díaz; Igor I. Rubio-Cisneros; Jennifer G. Watling; Vanda B. de Medeiros; Paulo E. De Oliveira; Luis Barba-Pingarón; Agustín Ortiz-Butrón; Jorge Blancas-Vázquez; Irán Rivera-González; Corina Solís-Rosales; María Rodríguez-Ceja; Devlin A. Gandy; Zamara Navarro-Gutierrez; Jesús J. De La Rosa-Díaz; Vladimir Huerta-Arellano; Marco B. Marroquín-Fernández; L. Martin Martínez-Riojas; Alejandro López-Jiménez; Thomas Higham; Eske Willerslev (2020). "Evidence of human occupation in Mexico around the Last Glacial Maximum". Nature. 584 (7819): 87–92. Bibcode:2020Natur.584...87A. doi:10.1038/s41586-020-2509-0. PMID 32699412. S2CID 220697089.
  86. ^ Michael R. Waters; Thomas W. Stafford, Jr.; David L. Carlson (2020). "The age of Clovis—13,050 to 12,750 cal yr B.P." Science Advances. 6 (43): eaaz0455. Bibcode:2020SciA....6..455W. doi:10.1126/sciadv.aaz0455. PMC 7577710. PMID 33087355.
  87. ^ Randall Haas; James Watson; Tammy Buonasera; John Southon; Jennifer C. Chen; Sarah Noe; Kevin Smith; Carlos Viviano Llave; Jelmer Eerkens; Glendon Parker (2020). "Female hunters of the early Americas". Science Advances. 6 (45): eabd0310. Bibcode:2020SciA....6..310H. doi:10.1126/sciadv.abd0310. PMC 7673694. PMID 33148651. S2CID 226261247.
  88. ^ Valentin Nesin; Oleksandr Kovalchuk (2020). "A new late Miocene Anomalomys species from western Ukraine with implications for the diversity and evolution of anomalomyid rodents in Eastern Europe". Historical Biology: An International Journal of Paleobiology. 33 (9): 1809–1816. doi:10.1080/08912963.2020.1742711. S2CID 216171665.
  89. ^ a b c d e f g h i j k l William W. Korth; Donald G. Kron (2020). "Rodents (Mammalia) from the Troublesome Formation, Late Oligocene to Miocene (Middle Arikareean–Early Clarendonian) of Colorado". Annals of Carnegie Museum. 86 (4): 295–360. doi:10.2992/007.086.0401. S2CID 235473659.
  90. ^ Lutz Christian Maul; Rivka Rabinovich; Rebecca Biton (2020). "At the southern fringe: extant and fossil water voles of the genus Arvicola (Rodentia, Cricetidae, Arvicolinae) from Israel, with the description of a new species". Historical Biology: An International Journal of Paleobiology. 33 (11): 2773–2793. doi:10.1080/08912963.2020.1827240. S2CID 226336186.
  91. ^ Simone B. das Neves; Ulyses F. J. Pardiñas; Patrícia Hadler; Elver L. Mayer; Ana M. Ribeiro (2020). "A new fossil cricetid (Rodentia, Sigmodontinae) from northeastern Brazil with remarks on small mammal extinctions in the tropical Quaternary". Journal of Mammalogy. 101 (4): 1133–1147. doi:10.1093/jmammal/gyaa066. S2CID 222001530.
  92. ^ Laurent Marivaux; Jorge Vélez-Juarbe; Gilles Merzeraud; François Pujos; Lázaro W. Viñola López; Myriam Boivin; Hernán Santos-Mercado; Eduardo J. Cruz; Alexandra Grajales; James Padilla; Kevin I. Vélez-Rosado; Mélody Philippon; Jean-Len Léticée; Philippe Münch; Pierre-Olivier Antoine (2020). "Early Oligocene chinchilloid caviomorphs from Puerto Rico and the initial rodent colonization of the West Indies". Proceedings of the Royal Society B: Biological Sciences. 287 (1920): Article ID 20192806. doi:10.1098/rspb.2019.2806. PMC 7031660. PMID 32075529.
  93. ^ Jonathan J. M. Calede; Joshua X. Samuels (2020). "A new species of Ceratogaulus from Nebraska and the evolution of nasal horns in Mylagaulidae (Mammalia, Rodentia, Aplodontioidea)". Journal of Systematic Palaeontology. 18 (17): 1395–1414. Bibcode:2020JSPal..18.1395C. doi:10.1080/14772019.2020.1765889. S2CID 219902187.
  94. ^ János Hír; Vlad Codrea; Jérôme Prieto (2020). "Two new early Sarmatian s. str. (latest middle Miocene) rodent faunas from the Carpathian Basin". Palaeobiodiversity and Palaeoenvironments. 100 (3): 849–902. Bibcode:2020PdPe..100..849H. doi:10.1007/s12549-019-00399-y. S2CID 134949080.
  95. ^ Nahuel A. De Santi; Diego H. Verzi; A. Itatí Olivares; Pedro Piñero; Cecilia C.Morgan; Matías E. Medina; Diego E. Rivero; Eduardo P. Tonni (2020). "A new peculiar species of the subterranean rodent Ctenomys (Rodentia, Ctenomyidae) from the Holocene of central Argentina". Journal of South American Earth Sciences. 100: Article 102499. Bibcode:2020JSAES.10002499D. doi:10.1016/j.jsames.2020.102499. S2CID 213216992.
  96. ^ Chao Qin; Yuan Wang; Sizhao Liu; Yayun Song; Changzhu Jin (2020). "First discovery of fossil Episiphneus (Myospalacinae, Rodentia) from Northeast China". Quaternary International. 591: 59–69. doi:10.1016/j.quaint.2020.05.040. S2CID 225739042.
  97. ^ Pedro Piñero; Jordi Agustí; Hamid Haddoumi; Kamal El Hammouti; M. Gema Chacón; Robert Sala-Ramos (2020). "Golunda aouraghei, sp. nov., the last representative of the genus Golunda in Africa". Journal of Vertebrate Paleontology. 39 (6): e1742726. doi:10.1080/02724634.2019.1742726. S2CID 219919657.
  98. ^ Elizabeth Ortiz-Caballero; Eduardo Jiménez-Hidalgo; Victor M. Bravo-Cuevas (2020). "A new species of the gopher Gregorymys (Rodentia, Geomyidae) from the early Oligocene (Arikareean 1) of southern Mexico". Journal of Paleontology. 94 (6): 1191–1201. Bibcode:2020JPal...94.1191O. doi:10.1017/jpa.2020.64. S2CID 222231771.
  99. ^ a b c d Jonathan J.M. Calede; Donald L. Rasmussen (2020). "New gophers (Rodentia: Geomyidae) from the Cabbage Patch beds of Montana (Renova Formation) and the phylogenetic relationships within Entoptychinae". Annals of Carnegie Museum. 86 (2): 107–167. doi:10.2992/007.086.0202. S2CID 225460232.
  100. ^ Robert A. Martin; Pablo Pelaez-Comopomanes; Christophe Ronez; Franck Barbiere; Thomas S. Kelly; Everett H. Lindsay; Jon A. Baskin; Nicholas J. Czaplewski; Ulyses F. Pardisinas (2020). "A new genus of cricetid rodent (Rodentia: Cricetidae) from the Clarendonian (late Miocene) of North America and a consideration of sigmodontine origins". Paludicola. 12 (4): 298–329.
  101. ^ Thomas S. Kelly; Robert A. Martin; Christophe Ronez (2020). "New records of cricetid rodents from the medial Clarendonian (middle Miocene) Esmeralda Formation, Fish Lake Valley, Nevada". Paludicola. 13 (1): 1–32.
  102. ^ Ban-Yue Wang; Zhan-Xiang Qiu; Lü-Zhou Li (2020). "A Late Miocene Huerzelerimys (Rodentia: Muridae) skull from Hezheng, Gansu, China". Vertebrata PalAsiatica. 58 (2): 120–133. doi:10.19615/j.cnki.1000-3118.200319.
  103. ^ Ban-Yue Wang; Zhan-Xiang Qiu (2020). "New Hystrix (Hystricidae, Rodentia) from the Neogene of Linxia Basin, Gansu, China". Vertebrata PalAsiatica. 58 (3): 204–220. doi:10.19615/j.cnki.1000-3118.200514.
  104. ^ Andrés Solórzano; Alfonso Encinas; Alejandro Kramarz; Gabriel Carrasco; Germán Montoya-Sanhueza; René Bobe (2020). "Late early Miocene caviomorph rodents from Laguna del Laja (~37° S), Cura-Mallín Formation, south-central Chile". Journal of South American Earth Sciences. 102: Article 102658. Bibcode:2020JSAES.10202658S. doi:10.1016/j.jsames.2020.102658. S2CID 219783349.
  105. ^ a b Martin Pickford (2020). "Two new rodents (Rodentia, Mammalia) from the late middle Eocene of Eocliff, Namibia" (PDF). Communications of the Geological Survey of Namibia. 22: 21–46.
  106. ^ Pedro Piñero; Diego H. Verzi (2020). "A new early Pliocene murine rodent from the Iberian Peninsula and its biostratigraphic implications". Acta Palaeontologica Polonica. 65 (4): 719–731. doi:10.4202/app.00755.2020. S2CID 229378522.
  107. ^ a b William W. Korth (2020). "New material of fossil rodents (Mammalia) from the Eocene (Bridgerian-Uintan) Washakie Formation, southcentral Wyoming". Proceedings of the Biological Society of Washington. 133 (1): 18–34. doi:10.2988/19-00011. S2CID 219442645.
  108. ^ a b Donald Lofgren; Debra Hanneman; Jackson Bibbens; Liam Gerken; Frank Hu; Anthony Runkel; Isabella Kong; Andrew Tarakji; Aspen Helgeson; Isabel Gerard; Rouqi Li; Sihan Li; Zhihan Ji (2020). "Eocene and Oligocene mammals from the Gravelly Range of southwest Montana". Paludicola. 12 (4): 263–297.
  109. ^ William W. Korth (2020). "A new sciuravid rodent (Mammalia) from the early Eocene (Bridgerian) and the sciuravid-eomyid transition". Annals of Carnegie Museum. 86 (2): 197–205. doi:10.2992/007.086.0204. S2CID 221348410.
  110. ^ Mikhail P. Tiunov; Dmitryi O. Gimranov (2020). "The first fossil Petaurista (Mammalia: Sciuridae) from the Russian Far East and its paleogeographic significance". Palaeoworld. 29 (1): 176–181. doi:10.1016/j.palwor.2019.05.007. hdl:10995/92658. S2CID 189990679.
  111. ^ Qian Li (2020). "New late Eocene cylindrodontid rodents from the Erlian Basin (Nei Mongol, China)". Palaeobiodiversity and Palaeoenvironments. 100 (4): 1083–1094. Bibcode:2020PdPe..100.1083L. doi:10.1007/s12549-020-00424-5. S2CID 220325004.
  112. ^ Qiang Li; Xinying Zhou; Xijun Ni; Bihong Fu; Tao Deng (2020). "Latest Middle Miocene fauna and flora from Kumkol Basin of northern Qinghai-Xizang Plateau and paleoenvironment". Science China Earth Sciences. 63 (2): 188–201. Bibcode:2020ScChD..63..188L. doi:10.1007/s11430-019-9521-8. S2CID 207990767.
  113. ^ William W. Korth (2020). "The Eocene ischyromyid rodent Thisbemys from the Washakie Formation, Wyoming (early Eocene, late Bridgerian) with comments on the systematics of the genus". Journal of Paleontology. 94 (6): 1180–1190. Bibcode:2020JPal...94.1180K. doi:10.1017/jpa.2020.37. S2CID 222231682.
  114. ^ Yoshiki Tanabe; Mayu Onodera; Masato Nakatsukasa; Yutaka Kunimatsu; Hideo Nakaya (2020). "A new cane rat (Rodentia, Thryonomyidae) from the Upper Miocene Nakali Formation, northern Kenya". The Journal of the Geological Society of Japan. 126 (4): 167–181. doi:10.5575/geosoc.2020.0002. S2CID 226088823.
  115. ^ Jonathan Cramb; Scott A. Hocknull; Gilbert J. Price (2020). "Fossil Uromys (Rodentia: Murinae) from central Queensland, with a description of a new Middle Pleistocene species". Records of the Australian Museum. 72 (5): 175–191. doi:10.3853/j.2201-4349.72.2020.1731. S2CID 229456663.
  116. ^ Felipe Busker; María Teresa Dozo; Ignacio María Soto (2020). "New remains of Cephalomys arcidens (Rodentia, Caviomorpha) and a redefinition of the enigmatic Cephalomyidae". Journal of Systematic Palaeontology. 18 (19): 1589–1629. Bibcode:2020JSPal..18.1589B. doi:10.1080/14772019.2020.1796833. S2CID 225308634.
  117. ^ José D. Ferreira; Francisco R. Negri; Marcelo R. Sánchez-Villagra; Leonardo Kerber (2020). "Small within the largest: brain size and anatomy of the extinct Neoepiblema acreensis, a giant rodent from the Neotropics". Biology Letters. 16 (2): Article ID 20190914. doi:10.1098/rsbl.2019.0914. PMC 7058952. S2CID 211228166.
  118. ^ María E. Arnaudo; Michelle Arnal; Eric G. Ekdale (2020). "The auditory region of a caviomorph rodent (Hystricognathi) from the early Miocene of Patagonia (South America) and evolutionary considerations". Journal of Vertebrate Paleontology. 40 (2): e1777557. Bibcode:2020JVPal..40E7557A. doi:10.1080/02724634.2020.1777557. S2CID 222210286.
  119. ^ Raj Bhagat; Ornella C. Bertrand; Mary T. Silcox (2020). "Evolution of arboreality and fossoriality in squirrels and aplodontid rodents: Insights from the semicircular canals of fossil rodents". Journal of Anatomy. 238 (1): 96–112. doi:10.1111/joa.13296. PMC 7754939. PMID 32812227.
  120. ^ Aime H. Rankin; Robert J. Emry; Robert J. Asher (2020). "Anatomical sciuromorphy in "protrogomorph" rodents". Palaeontologia Electronica. 23 (2): Article number 23(2):a25. doi:10.26879/1049. S2CID 219508626.
  121. ^ Kristen A. Prufrock; Christopher B. Ruff; Kenneth D. Rose (2020). "Locomotor behavior and body mass of Paramys delicatus (Ischyromyidae, Rodentia) and commentary on other early North American paramyines". Journal of Mammalian Evolution. 28 (2): 435–456. doi:10.1007/s10914-020-09523-8. S2CID 228806542.
  122. ^ Jesse J. Hennekam; Victoria L. Herridge; Loïc Costeur; Carolina Di Patti; Philip G. Cox (2020). "Virtual cranial reconstruction of the endemic gigantic dormouse Leithia melitensis (Rodentia, Gliridae) from Poggio Schinaldo, Sicily". Open Quaternary. 6 (1): Article 7. doi:10.5334/oq.79. S2CID 221868671.
  123. ^ Jesse J. Hennekam; Roger B. J. Benson; Victoria L. Herridge; Nathan Jeffery; Enric Torres-Roig; Josep Antoni Alcover; Philip G. Cox (2020). "Morphological divergence in giant fossil dormice" (PDF). Proceedings of the Royal Society B: Biological Sciences. 287 (1938): Article ID 20202085. doi:10.1098/rspb.2020.2085. PMC 7735280. PMID 33143584. S2CID 226238418.
  124. ^ Tessa Plint; Fred J. Longstaffe; Ashley Ballantyne; Alice Telka; Natalia Rybczynski (2020). "Evolution of woodcutting behaviour in Early Pliocene beaver driven by consumption of woody plants". Scientific Reports. 10 (1): Article number 13111. Bibcode:2020NatSR..1013111P. doi:10.1038/s41598-020-70164-1. PMC 7403313. PMID 32753594.
  125. ^ Georgios Xenikoudakis; Mayeesha Ahmed; Jacob Colt Harris; Rachel Wadleigh; Johanna L.A. Paijmans; Stefanie Hartmann; Axel Barlow; Heather Lerner; Michael Hofreiter (2020). "Ancient DNA reveals twenty million years of aquatic life in beavers". Current Biology. 30 (3): R110–R111. Bibcode:2020CBio...30.R110X. doi:10.1016/j.cub.2019.12.041. PMID 32017876. S2CID 211019241.
  126. ^ Christophe Ronez; Robert A. Martin; Ulyses F. J. Pardiñas (2020). "Morphological revision of Copemys loxodon, type species of the Miocene cricetid Copemys (Mammalia, Rodentia): a key to understanding the history of New World cricetids". Journal of Vertebrate Paleontology. 40 (2): e1772273. Bibcode:2020JVPal..40E2273R. doi:10.1080/02724634.2020.1772273. S2CID 222210657.
  127. ^ Christophe Ronez; Jorge Brito; Rainer Hutterer; Robert A. Martin; Ulyses F. J. Pardiñas (2020). "Tribal allocation and biogeographical significance of one of the largest sigmodontine rodent, the extinct Galápagos Megaoryzomys (Cricetidae)". Historical Biology: An International Journal of Paleobiology. 33 (9): 1920–1932. doi:10.1080/08912963.2020.1752202. S2CID 219054139.
  128. ^ Justyna J. Miszkiewicz; Julien Louys; Robin M. D. Beck; Patrick Mahoney; Ken Aplin; Sue O'Connor (2020). "Island rule and bone metabolism in fossil murines from Timor" (PDF). Biological Journal of the Linnean Society. 129 (3): 570–586. doi:10.1093/biolinnean/blz197.
  129. ^ Sevket Sen (2020). "Lagomorphs (Mammalia) from the early Pliocene of Dorkovo, Bulgaria". Fossil Imprint. 76 (1): 99–117. doi:10.37520/fi.2020.007. S2CID 229224889.
  130. ^ K. Christopher Beard; Matthew F. Jones; Nicholas A. Thurber; Oscar Sanisidro (2020). "Systematics and paleobiology of Chiromyoides (Mammalia, Plesiadapidae) from the upper Paleocene of western North America and western Europe". Journal of Vertebrate Paleontology. 39 (6): e1730389. doi:10.1080/02724634.2019.1730389. S2CID 219070956.
  131. ^ Mikhail P. Tiunov; Alexander E. Gusev (2020). "A new extinct ochotonid genus from the late Pleistocene of the Russian Far East". Palaeoworld. 30 (3): 562–572. doi:10.1016/j.palwor.2020.08.003.
  132. ^ Sergi López-Torres; Ornella C. Bertrand; Madlen M. Lang; Mary T. Silcox; Łucja Fostowicz-Frelik (2020). "Cranial endocast of the stem lagomorph Megalagus and brain structure of basal Euarchontoglires". Proceedings of the Royal Society B: Biological Sciences. 287 (1929): Article ID 20200665. doi:10.1098/rspb.2020.0665. PMC 7329053. PMID 32576117.
  133. ^ Alexey V. Lopatin; Alexander O. Averianov (2020). "Arnebolagus, the oldest eulagomorph, and phylogenetic relationships within the Eocene Eulagomorpha new clade (Mammalia, Duplicidentata)". Journal of Paleontology. 95 (2): 394–405. doi:10.1017/jpa.2020.94. S2CID 229501491.
  134. ^ Blanca Moncunill-Solé (2020). "Eco-evolutionary adaptations of ochotonids (Mammalia: Lagomorpha) to islands: new insights into Late Miocene pikas from the Gargano palaeo-archipelago (Italy)". Biological Journal of the Linnean Society. 132 (2): 400–413. doi:10.1093/biolinnean/blaa157.
  135. ^ Keegan R. Selig; Eric J. Sargis; Stephen G.B. Chester; Mary T. Silcox (2020). "Using three-dimensional geometric morphometric and dental topographic analyses to infer the systematics and paleoecology of fossil treeshrews (Mammalia, Scandentia)". Journal of Paleontology. 94 (6): 1202–1212. Bibcode:2020JPal...94.1202S. doi:10.1017/jpa.2020.36. S2CID 222231667.
  136. ^ Mary T. Silcox; Gregg F. Gunnell; Jonathan I. Bloch (2020). "Cranial anatomy of Microsyops annectens (Microsyopidae, Euarchonta, Mammalia) from the middle Eocene of Northwestern Wyoming". Journal of Paleontology. 94 (5): 979–1006. Bibcode:2020JPal...94..979S. doi:10.1017/jpa.2020.24. S2CID 219746231.
  137. ^ Daniel Barasoain; Rodrigo L. Tomassini; Alfredo E. Zurita; Claudia I. Montalvo; Mariella Superina (2020). "A new fairy armadillo (Cingulata, Chlamyphorinae) from the upper Miocene of Argentina: first fossil record of the most enigmatic Xenarthra". Journal of Vertebrate Paleontology. 39 (5): e1716778. doi:10.1080/02724634.2019.1716778. S2CID 215756214.
  138. ^ Daniel Barasoain; Rodrigo L. Tomassini; Alfredo E. Zurita; Claudia I. Montalvo; Mariella Superina (2020). "Chlamydophractus, new name for Chlamyphractus Barasoain et al., 2020 (Xenarthra, Chlamyphorinae), non Chlamyphractus Castellanos, 1940 (Xenarthra, Glyptodontidae)". Journal of Vertebrate Paleontology. 40 (2): e1774890. Bibcode:2020JVPal..40E4890B. doi:10.1080/02724634.2020.1774890. S2CID 222210984.
  139. ^ Francisco Cuadrelli; Alfredo E. Zurita; Pablo Toriño; Ángel R. Miño-Boilini; Daniel Perea; Carlos A. Luna; David D. Gillette; Omar Medina (2020). "A new species of glyptodontine (Mammalia, Xenarthra, Glyptodontidae) from the Quaternary of the Eastern Cordillera, Bolivia: phylogeny and palaeobiogeography". Journal of Systematic Palaeontology. 18 (18): 1543–1566. Bibcode:2020JSPal..18.1543C. doi:10.1080/14772019.2020.1784300. S2CID 221064742.
  140. ^ Luciano Brambilla; Paula Lopez; Horacio Parent (2020). "A new species of Panochthus (Xenarthra, Glyptodontidae) from the late Pleistocene of Argentina". Journal of South American Earth Sciences. 104: Article 102871. Bibcode:2020JSAES.10402871B. doi:10.1016/j.jsames.2020.102871. S2CID 225006050.
  141. ^ Daniel Barasoain; Víctor H. Contreras; Rodrigo L. Tomassini; Alfredo E. Zurita (2020). "A new pygmy armadillo (Cingulata, Euphractinae) from the late Miocene of Andean Argentina reveals an unexpected evolutionary history of the singular Prozaedyus lineage". Journal of South American Earth Sciences. 100: Article 102589. Bibcode:2020JSAES.10002589B. doi:10.1016/j.jsames.2020.102589. S2CID 216325272.
  142. ^ Nascimento, C. S. I.; Moura, J. F.; Robbi, B.; Fernandes, M. A. (2020). "Lesions in osteoderms of pampatheres (Mammalia, Xenarthra, Cingulata) possibly caused by fleas". Acta Tropica. 211 (105614): 105614. doi:10.1016/j.actatropica.2020.105614. PMID 32621936. S2CID 220348383.
  143. ^ Ascanio D. Rincón; H. Gregory McDonald (2020). "Reexaminación de las relaciones de Pseudoprepotherium Hoffstetter, 1961, con los perezosos terrestres Mylodontidos del Mioceno del Norte de América del Sur". Revista Geológica de América Central. 63.
  144. ^ Ascanio D. Rincón; Ana L. Valerio; César Laurito (2020). "Primer registro fósil de un Megatheriidae-Megatheriinae para el Hemphilliano (Mioceno Tardío) de San Gerardo de Limoncito, Formación Curré, Costa Rica". Revista Geológica de América Central. 62: 1–24. doi:10.15517/rgac.v62i0.41278 (inactive 1 November 2024).{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link)
  145. ^ Sarah R. Stinnesbeck; Wolfgang Stinnesbeck; Eberhard Frey; Jerónimo Avilés Olguín; Arturo González González (2020). "Xibalbaonyx exinferis n. sp. (Megalonychidae), a new Pleistocene ground sloth from the Yucatán Peninsula, Mexico". Historical Biology: An International Journal of Paleobiology. 33 (10): 1952–1963. doi:10.1080/08912963.2020.1754817. S2CID 219425309.
  146. ^ Timothy J. Gaudin; Susan Tuckniss; Alberto Boscaini; François Pujos; Gerardo De Iuliis (2020). "Cranial osteology and taxonomy of Pronothrotherium (Xenarthra, Folivora, Nothrotheriidae) from the late Miocene–early Pliocene of Catamarca Province (Argentina)". Publicación Electrónica de la Asociación Paleontológica Argentina. 20 (2): 55–82. doi:10.5710/PEAPA.04.09.2020.320. hdl:11336/138433. S2CID 229275601.
  147. ^ Fernando H. de S. Barbosa; Kleberson de O. Porpino; Bruce M. Rothschild; Rafael C. da Silva; Domenico Capone (2020). "First cancer in an extinct Quaternary non-human mammal". Historical Biology: An International Journal of Paleobiology. 33 (11): 2878–2882. doi:10.1080/08912963.2020.1833001. S2CID 228997075.
  148. ^ Emily L. Lindsey; Erick X. Lopez Reyes; Gordon E. Matzke; Karin A. Rice; H. Gregory McDonald (2020). "A monodominant late-Pleistocene megafauna locality from Santa Elena, Ecuador: Insight on the biology and behavior of giant ground sloths". Palaeogeography, Palaeoclimatology, Palaeoecology. 544: Article 109599. Bibcode:2020PPP...54409599L. doi:10.1016/j.palaeo.2020.109599. S2CID 213408786.
  149. ^ Sarah R. Stinnesbeck; Eberhard Frey; Jerónimo Avilés Olguín; Arturo González González; Adriana Velázquez Morlet; Wolfgang Stinnesbeck (2020). "Life and death of the ground sloth Xibalbaonyx oviceps from the Yucatán Peninsula, Mexico". Historical Biology: An International Journal of Paleobiology. 33 (11): 2610–2626. doi:10.1080/08912963.2020.1819998. S2CID 224987707.
  150. ^ Alberto Boscaini; Dawid A. Iurino; Bernardino Mamani Quispe; Rubén Andrade Flores; Raffaele Sardella; François Pujos; Timothy J. Gaudin (2020). "Cranial anatomy and paleoneurology of the extinct sloth Catonyx tarijensis (Xenarthra, Mylodontidae) from the late Pleistocene of Oruro, southwestern Bolivia". Frontiers in Ecology and Evolution. 8: Article 69. doi:10.3389/fevo.2020.00069. hdl:2434/959871. S2CID 214807287.
  151. ^ Gastón L. Nieto; J. Augusto Haro; H. Gregory McDonald; Ángel R. Miño-Boilini; Adan A. Tauber; Jerónimo M. Krapovickas; Maximiliano N. Fabianelli; Federico M. Rosas (2020). "The skeleton of the manus of Scelidotherium (Xenarthra, Mylodontidae) specimens from the Pleistocene of the Province of Córdoba, Argentina, and its systematic implications". Journal of Mammalian Evolution. 28 (2): 221–243. doi:10.1007/s10914-020-09520-x. S2CID 226319627.
  152. ^ Rodrigo L. Tomassini; Claudia I. Montalvo; Mariana C. Garrone; Laura Domingo; Jorge Ferigolo; Laura E. Cruz; Dánae Sanz-Pérez; Yolanda Fernández-Jalvo; Ignacio A. Cerda (2020). "Gregariousness in the giant sloth Lestodon (Xenarthra): multi-proxy approach of a bonebed from the Last Maximum Glacial of Argentine Pampas". Scientific Reports. 10 (1): Article number 10955. Bibcode:2020NatSR..1010955T. doi:10.1038/s41598-020-67863-0. PMC 7331707. PMID 32616813.
  153. ^ Gerardo De Iuliis; Alberto Boscaini; François Pujos; Robert K. McAfee; Cástor Cartelle; Leonard J. S. Tsuji; Lorenzo Rook (2020). "On the status of the giant mylodontine sloth Glossotherium wegneri (Spillmann, 1931) (Xenarthra, Folivora) from the late Pleistocene of Ecuador". Comptes Rendus Palevol. 19 (12): 215–232. doi:10.5852/cr-palevol2020v19a12. hdl:2158/1222861. S2CID 231662042.
  154. ^ Varela, Luciano; Tambusso, P. Sebastián; Fariña, Richard A. (2020). "Unexpected inhibitory cascade in the molariforms of sloths (Folivora, Xenarthra): a case study in xenarthrans honouring Gerhard Storch's open-mindedness". Fossil Imprint. 76 (1): 1–16. doi:10.37520/fi.2020.002. hdl:20.500.12008/32355. ISSN 2533-4069. S2CID 229221581.
  155. ^ Sarah N. Davis; Christopher R. Torres; Grace M. Musser; James V. Proffitt; Nicholas M.A. Crouch; Ernest L. Lundelius; Matthew C. Lamanna; Julia A. Clarke (2020). "New mammalian and avian records from the late Eocene La Meseta and Submeseta formations of Seymour Island, Antarctica". PeerJ. 8: e8268. doi:10.7717/peerj.8268. PMC 6955110. PMID 31942255.
  156. ^ Vicente D. Crespo; Paloma Sevilla; Plini Montoya; Francisco J. Ruiz-Sánchez (2020). "A relict tropical forest bat assemblage from the early Miocene of the Ribesalbes-Alcora Basin (Castelló, Spain)". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 111 (4): 247–258. Bibcode:2020EESTR.111..247C. doi:10.1017/S1755691020000122. S2CID 228836933.
  157. ^ Kyle N. Armstrong; Ken Aplin; Masaharu Motokawa (2020). "A new species of extinct False Vampire Bat (Megadermatidae: Macroderma) from the Kimberley Region of Western Australia". Records of the Australian Museum. 72 (5): 161–174. doi:10.3853/j.2201-4349.72.2020.1732. S2CID 229393042.
  158. ^ a b c d e Gregg F. Gunnell; Fredrick K. Manthi (2020). "Pliocene bats (Chiroptera) from Kanapoi, Turkana Basin, Kenya". Journal of Human Evolution. 140: Article 102440. Bibcode:2020JHumE.14002440G. doi:10.1016/j.jhevol.2018.01.001. PMID 29628118. S2CID 206143059.
  159. ^ Nicholas J. Czaplewski; Ascanio D. Rincón (2020). "A giant vampire bat (Phyllostomidae, Desmodontinae) from the Pliocene-Pleistocene El Breal de Orocual asphaltic deposits (tar pits), Venezuela". Historical Biology: An International Journal of Paleobiology. 33 (10): 2438–2443. doi:10.1080/08912963.2020.1800684. S2CID 225351868.
  160. ^ Marcos D. Ercoli; Alicia Álvarez; S. Rocío Moyano; Dionisios Youlatos; Adriana M. Candela (2020). "Tracing the paleobiology of Paedotherium and Tremacyllus (Pachyrukhinae, Notoungulata), the latest sciuromorph South American native ungulates – part I: snout and masticatory apparatus". Journal of Mammalian Evolution. 28 (2): 377–409. doi:10.1007/s10914-020-09516-7. S2CID 225340842.
  161. ^ Marcos D. Ercoli; Alicia Álvarez; Dionisios Youlatos; S. Rocío Moyano; Adriana M. Candela (2020). "Tracing the paleobiology of Paedotherium and Tremacyllus (Pachyrukhinae, Notoungulata), the latest sciuromorph South American native ungulates – part II: orbital, auditory, and occipito-cervical regions". Journal of Mammalian Evolution. 28 (2): 411–433. doi:10.1007/s10914-020-09518-5. hdl:11336/171631. S2CID 224937422.
  162. ^ Ana Natalia Zimicz; Mercedes Fernández; Mariano Bond; Laura Chornogubsky; Michelle Arnal; Magalí Cárdenas; Juan Carlos Fernicola (2020). "Archaeogaia macachaae gen. et sp. nov., one of the oldest Notoungulata Roth, 1903 from the early-middle Paleocene Mealla Formation (Central Andes, Argentina) with insights into the Paleocene-Eocene south American biochronology". Journal of South American Earth Sciences. 103: Article 102772. Bibcode:2020JSAES.10302772Z. doi:10.1016/j.jsames.2020.102772. S2CID 224862237.
  163. ^ Darin Andrew Croft; Federico Anaya (2020). "A new typothere notoungulate (Mammalia: Interatheriidae), from the Miocene Nazareno Formation of southern Bolivia". Ameghiniana. 57 (2): 189–208. doi:10.5710/AMGH.11.01.2020.3271. S2CID 218764359.
  164. ^ Guillermo Marcos López; Javier Nicolas Gelfo; Nicolás Ezequiel Bauzá; Mariano Bond; Marcelo Fabián Tejedor (2020). "Biochron and diversity of Archaeopithecidae (Mammalia, Notoungulata) and a new genus and species from the Eocene of Patagonia, Argentina". Ameghiniana. 57 (2): 103–116. doi:10.5710/AMGH.18.01.2020.3291. S2CID 214155791.
  165. ^ Simon J. Ring; Hervé Bocherens; Oliver Wings; Márton Rabi (2020). "Divergent mammalian body size in a stable Eocene greenhouse climate". Scientific Reports. 10 (1): Article number 3987. Bibcode:2020NatSR..10.3987R. doi:10.1038/s41598-020-60379-7. PMC 7055232. PMID 32132560.
  166. ^ Yan-Xin Gong; Yuan-Qing Wang; Fang-Yuan Mao; Bin Bai; Qian Li; Hai-Bing Wang; Xun Jin; Jin Meng (2020). "Dietary reconstruction and palaeoecology of Eocene Lophialetidae (Mammalia: Tapiroidea) from the Erlian Basin of China: evidence from dental microwear". Historical Biology: An International Journal of Paleobiology. 33 (9): 1624–1635. doi:10.1080/08912963.2020.1722660. S2CID 214372946.
  167. ^ Xiaokang Lu; Tao Deng; Xiaoting Zheng; Fuchang Li (2020). "Sexual dimorphism and body reconstruction of a hornless rhinocerotid, Plesiaceratherium gracile, from the Early Miocene of the Shanwang Basin, Shandong, China". Frontiers in Ecology and Evolution. 8: Article 544076. doi:10.3389/fevo.2020.544076. S2CID 221839187.
  168. ^ Dawid Adam Iurino; Jacopo Conti; Beniamino Mecozzi; Raffaele Sardella (2020). "Braincase with natural endocast of a juvenile Rhinocerotinae from the late Middle Pleistocene site of Melpignano (Apulia, southern Italy)". Frontiers in Earth Science. 8: Article 94. Bibcode:2020FrEaS...8...94I. doi:10.3389/feart.2020.00094. hdl:11573/1407553. S2CID 215769508.
  169. ^ Edana Lord; Nicolas Dussex; Marcin Kierczak; David Díez-del-Molino; Oliver A. Ryder; David W.G. Stanton; M. Thomas P. Gilbert; Fátima Sánchez-Barreiro; Guojie Zhang; Mikkel-Holger S. Sinding; Eline D. Lorenzen; Eske Willerslev; Albert Protopopov; Fedor Shidlovskiy; Sergey Fedorov; Hervé Bocherens; Senthilvel K.S.S. Nathan; Benoit Goossens; Johannes van der Plicht; Yvonne L. Chan; Stefan Prost; Olga Potapova; Irina Kirillova; Adrian M. Lister; Peter D. Heintzman; Joshua D. Kapp; Beth Shapiro; Sergey Vartanyan; Anders Götherström; Love Dalén (2020). "Pre-extinction demographic stability and genomic signatures of adaptation in the woolly rhinoceros". Current Biology. 30 (19): 3871–3879.e7. Bibcode:2020CBio...30E3871L. doi:10.1016/j.cub.2020.07.046. hdl:10037/20986. PMID 32795436. S2CID 221114305.
  170. ^ Krzysztof Stefaniak; Renata Stachowicz-Rybka; Ryszard Krzysztof Borówka; Anna Hrynowiecka; Artur Sobczyk; Magdalena Moskal-del Hoyo; Adam Kotowski; Dariusz Nowakowski; Maciej T. Krajcarz; Emmanuel M.E. Billia; Davide Persico; Elena M. Burkanova; Sergey V. Leschinskiy; Eline van Asperen; Urszula Ratajczak; Andrei V. Shpansky; Małgorzata Lempart; Bartosz Wach; Monika Niska; Jan van der Made; Krzysztof Stachowicz; Joanna Lenarczyk; Jolanta Piątek; Oleksandr Kovalchuk (2020). "Browsers, grazers or mix-feeders? Study of the diet of extinct Pleistocene Eurasian forest rhinoceros Stephanorhinus kirchbergensis (Jäger, 1839) and woolly rhinoceros Coelodonta antiquitatis (Blumenbach, 1799)". Quaternary International. 605–606: 192–212. doi:10.1016/j.quaint.2020.08.039. hdl:10261/255910. S2CID 224984977.
  171. ^ Omar Cirilli; Samir Zouhri; Siham El Boughabi; Marco G. Benvenuti; Mauro Papini; Raymond Louis Bernor; Lorenzo Rook (2020). "The hipparionine horses (Perissodactyla: Mammalia) from the Late Miocene of Tizi N'Tadderht (Southern Ouarzazate Basin; Central High Atlas; Morocco)". Rivista Italiana di Paleontologia e Stratigrafia. 126 (1): 1–12. doi:10.13130/2039-4942/12716.
  172. ^ Giulio Catalano; Alessandra Modi; Gabriella Mangano; Luca Sineo; Martina Lari; Laura Bonfiglio (2020). "A mitogenome sequence of an Equus hydruntinus specimen from Late Quaternary site of San Teodoro Cave (Sicily, Italy)". Quaternary Science Reviews. 236: Article 106280. Bibcode:2020QSRv..23606280C. doi:10.1016/j.quascirev.2020.106280. S2CID 218965304.
  173. ^ Alejandro Hiram Marín-Leyva; Peter Schaaf; Gabriela Solís-Pichardo; Teodoro Hernández-Treviño; María Luisa García-Zepeda; Javier Ponce-Saavedra; Joaquín Arroyo-Cabrales; María Teresa Alberdi (2020). "Tracking origin, home range, and mobility of Late Pleistocene fossil horses from west-central Mexico". Journal of South American Earth Sciences. 105: Article 102926. doi:10.1016/j.jsames.2020.102926. S2CID 225142250.
  174. ^ Junxia Yuan; Guilian Sheng; Michaela Preick; Boyang Sun; Xindong Hou; Shungang Chen; Ulrike Helene Taron; Axel Barlow; Linying Wang; Jiaming Hu; Tao Deng; Xulong Lai; Michael Hofreiter (2020). "Mitochondrial genomes of Late Pleistocene caballine horses from China belong to a separate clade" (PDF). Quaternary Science Reviews. 250: Article 106691. Bibcode:2020QSRv..25006691Y. doi:10.1016/j.quascirev.2020.106691. S2CID 228910400.
  175. ^ Xiao-Yang Wang; Yuan-Qing Wang; Rui Zhang; Zhong-Hui Zhang; Xiao-Ling Liu; Li-Ping Ren (2020). "A new species of Amynodontopsis (Perissodactyla: Amynodontidae) from the Middle Eocene of Jiyuan, Henan, China". Vertebrata PalAsiatica. 58 (3): 188–203. doi:10.19615/j.cnki.1000-3118.200313.
  176. ^ Luca Pandolfi; Florent Rivals; Rivka Rabinovich (2020). "A new species of rhinoceros from the site of Bethlehem: "Dihoplus" bethlehemsis sp. nov. (Mammalia, Rhinocerotidae)". Quaternary International. 537: 48–60. Bibcode:2020QuInt.537...48P. doi:10.1016/j.quaint.2020.01.011. S2CID 213080180.
  177. ^ a b c d e f Bin Bai; Jin Meng; Chi Zhang; Yan-Xin Gong; Yuan-Qing Wang (2020). "The origin of Rhinocerotoidea and phylogeny of Ceratomorpha (Mammalia, Perissodactyla)". Communications Biology. 3 (1): Article number 509. doi:10.1038/s42003-020-01205-8. PMC 7490376. PMID 32929169.
  178. ^ a b Martin Pickford (2020). "Descriptive catalogue of Chalicotheriidae (Mammalia, Perissodactyla) from the early Miocene of Napak, Uganda". Geo-Pal Uganda. 15: 1–36.
  179. ^ Jérémy Tissier; Pierre-Olivier Antoine; Damien Becker (2020). "New material of Epiaceratherium and a new species of Mesaceratherium clear up the phylogeny of early Rhinocerotidae (Perissodactyla)". Royal Society Open Science. 7 (7): Article ID 200633. Bibcode:2020RSOS....700633T. doi:10.1098/rsos.200633. PMC 7428265. PMID 32874655. S2CID 220515535.
  180. ^ Marieke Paepen; Hong Li; Yan Sun; Thierry Smith (2020). "A late early to early middle Eocene mammal assemblage from Bayan Ulan (Inner Mongolia, China): implication for the reassessment of the Arshantan Asian Land Mammal Age". Geobios. 66–67: 177–191. doi:10.1016/j.geobios.2020.11.001. hdl:1854/LU-8685269. S2CID 229420087.
  181. ^ Vincent Luccisano; Jean Sudre; Fabrice Lihoreau (2020). "Revision of the Eocene artiodactyls (Mammalia, Placentalia) from Aumelas and Saint-Martin-de-Londres (Montpellier limestones, Hérault, France) questions the early European artiodactyl radiation". Journal of Systematic Palaeontology. 18 (19): 1631–1656. Bibcode:2020JSPal..18.1631L. doi:10.1080/14772019.2020.1799253. S2CID 221468663.
  182. ^ Alexandre Assemat; Mickaël J. Mourlam; Romain Weppe; Jacob Maugoust; Pierre-Olivier Antoine; Maeva Judith Orliac (2020). "The ossicular chain of Cainotheriidae (Mammalia, Artiodactyla)". Journal of Anatomy. 237 (2): 250–262. doi:10.1111/joa.13190. PMC 7369187. PMID 32255213.
  183. ^ Denis Geraads; Gilles Didier; Andrew Barr; Denne Reed; Michel Laurin (2020). "The fossil record of camelids demonstrates a late divergence between Bactrian camel and dromedary". Acta Palaeontologica Polonica. 65 (2): 251–260. doi:10.4202/app.00727.2020. S2CID 216653302.
  184. ^ Sinéad Lynch; Marcelo R. Sánchez-Villagra; Ana Balcarcel (2020). "Description of a fossil camelid from the Pleistocene of Argentina, and a cladistic analysis of the Camelinae". Swiss Journal of Palaeontology. 139 (1): Article number 5. Bibcode:2020SwJP..139....8L. doi:10.1186/s13358-020-00208-6. PMC 7590954. PMID 33133011.
  185. ^ Nicola S. Heckeberg (2020). "The systematics of the Cervidae: a total evidence approach". PeerJ. 8: e8114. doi:10.7717/peerj.8114. PMC 7034380. PMID 32110477.
  186. ^ Gertrud E. Rössner; Loïc Costeur; Torsten M. Scheyer (2020). "Antiquity and fundamental processes of the antler cycle in Cervidae (Mammalia)". The Science of Nature. 108 (1): Article number 3. doi:10.1007/s00114-020-01713-x. PMC 7744388. PMID 33326046.
  187. ^ Emmanuelle Fontoura; José Darival Ferreira; Jamile Bubadué; Ana Maria Ribeiro; Leonardo Kerber (2020). "Virtual brain endocast of Antifer (Mammalia: Cervidae), an extinct large cervid from South America". Journal of Morphology. 281 (10): 1223–1240. doi:10.1002/jmor.21243. PMID 32815595. S2CID 221200575.
  188. ^ Mugino Ozaki Kubo; Masaki Fujita (2020). "Diets of Pleistocene insular dwarf deer revealed by dental microwear texture analysis". Palaeogeography, Palaeoclimatology, Palaeoecology. 562: Article 110098. doi:10.1016/j.palaeo.2020.110098. S2CID 228940749.
  189. ^ Elnaz Parizad; Majid Mirzaie Ataabadi; Marjan Mashkour; Dimitris S. Kostopoulos (2020). "Samotherium Major, 1888 (Giraffidae) skulls from the late Miocene Maragheh fauna (Iran) and the validity of Alcicephalus Rodler & Weithofer, 1890". Comptes Rendus Palevol. 19 (9): 153–172. doi:10.5852/cr-palevol2020v19a9. S2CID 228082825.
  190. ^ Yikun Li; Qiang Li; Xijun Ni; Shiqi Wang; Manuela Aiglstorfer; Tao Deng (2020). "The oldest known bovid from China and reappraisal of the Chinese 'Eotragus '". Papers in Palaeontology. 7 (2): 913–929. doi:10.1002/spp2.1319. S2CID 225692007.
  191. ^ Josephina Hartung; Thomas Lechner; Madelaine Böhme (2020). "New cranial material of Miotragocerus monacensis (Mammalia: Bovidae) from the late Miocene hominid locality Hammerschmiede (Germany)". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 298 (3): 269–284. doi:10.1127/njgpa/2020/0948. S2CID 229409794.
  192. ^ Innessa A. Vislobokova; Alexey V. Lopatin; Konstantin K. Tarasenko; Reinhard Ziegler (2020). "An unexpected record of an extinct water buffalo Bubalus murrensis (Berckhemer, 1927) in the last glacial in Europe and its implication for dispersal pattern of this species". Quaternary International. 574: 127–136. doi:10.1016/j.quaint.2020.12.020. S2CID 230559949.
  193. ^ Janina Rannikko; Hari Adhikari; Aleksis Karme; Indre Žliobaitė; Mikael Fortelius (2020). "The case of the grass-eating suids in the Plio-Pleistocene Turkana Basin: 3D dental topography in relation to diet in extant and fossil pigs". Journal of Morphology. 281 (3): 348–364. doi:10.1002/jmor.21103. PMID 31998996. S2CID 210950714.
  194. ^ Helder Gomes Rodrigues; Fabrice Lihoreau; Maëva Orliac; Jean-Renaud Boisserie (2020). "Characters from the deciduous dentition and its interest for phylogenetic reconstruction in Hippopotamoidea (Cetartiodactyla: Mammalia)". Zoological Journal of the Linnean Society. 193 (2): 413–431. doi:10.1093/zoolinnean/zlaa147.
  195. ^ Nuria Melisa Morales-García; Laura K. Säilä; Christine M. Janis (2020). "The Neogene savannas of North America: a retrospective analysis on artiodactyl faunas". Frontiers in Earth Science. 8: Article 191. Bibcode:2020FrEaS...8..191M. doi:10.3389/feart.2020.00191. hdl:1983/0a0d952c-9577-476f-8426-347ce96a3dde. S2CID 219310833.
  196. ^ I. A. Vislobokova; K. K. Tarasenko; A. V. Lopatin (2020). "The new subspecies of the European water buffalo (Artiodactyla, Bovidae) from the Upper Pleistocene of the Russian Plain". Paleontological Journal. 54 (6): 662–670. Bibcode:2020PalJ...54..662V. doi:10.1134/S0031030120060118. S2CID 227131999.
  197. ^ Roman Croitor (2020). "A new form of wapiti Cervus canadensis Erxleben, 1777 (Cervidae, Mammalia) from the Late Pleistocene of France" (PDF). Palaeoworld. 29 (4): 789–806. doi:10.1016/j.palwor.2019.12.001. S2CID 213500978.
  198. ^ Stéphane Ducrocq (2020). "Taxonomic revision of Anthracokeryx thailandicus Ducrocq, 1999 (Anthracotheriidae, Microbunodontinae) from the Upper Eocene of Thailand". Vertebrata PalAsiatica. 58 (4): 293–304. doi:10.19615/j.cnki.1000-3118.200618.
  199. ^ Benjamin J. Burger; Lea Ann Jolley (2020). "A new large body helohyid (Artiodactyla) form the Bridgerian middle Eocene Washakie Formation of southern Wyoming". Paludicola. 12 (4): 175–184.
  200. ^ Mohd Waqas; Rajendra Singh Rana (2020). "New Raoellidae (Artiodactyla) from the Subathu Group (Middle Eocene), Rajouri District, Jammu and Kashmir, India and their significance". Himalayan Geology. 41 (2): 171–182.
  201. ^ Takehisa Tsubamoto; Yutaka Kunimatsu; Tetsuya Sakai; Mototaka Saneyoshi; Daisuke Shimizu; Naoki Morimoto; Hideo Nakaya; Naoto Handa; Yoshiki Tanabe; Fredrick Kyalo Manthi; Masato Nakatsukasa (2020). "A new species of Nyanzachoerus (Mammalia, Artiodactyla, Suidae, Tetraconodontinae) from the Upper Miocene Nakali Formation, Kenya". Paleontological Research. 24 (1): 41–63. doi:10.2517/2019PR004. S2CID 209522946.
  202. ^ Romain Weppe; Cécile Blondel; Monique Vianey-Liaud; Thierry Pélissié; Maëva Judith Orliac (2020). "A new Cainotherioidea (Mammalia, Artiodactyla) from Palembert (Quercy, SW France): Phylogenetic relationships and evolutionary history of the dental pattern of Cainotheriidae". Palaeontologia Electronica. 23 (3): Article number 23(3):a54. doi:10.26879/1081. S2CID 229490410.
  203. ^ a b Stéphane Ducrocq; Aung Naing Soe; Olivier Chavasseau; Chit Sein; Yaowalak Chaimanee; Vincent Lazzari; Jean-Jacques Jaeger (2020). "New basal ruminants from the Eocene of the Pondaung Formation, Myanmar". Journal of Vertebrate Paleontology. 39 (6): e1722682. doi:10.1080/02724634.2019.1722682. S2CID 216324257.
  204. ^ Roman Croitor; Denis Zakharov; Vladislav Mararescul (2020). "Deer from the Early Pliocene Prioziornoe, Kuchurgan River Valley (Moldova, Eastern Europe)". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 297 (3): 325–367. doi:10.1127/njgpa/2020/0931. S2CID 225314735.
  205. ^ Martin Pickford; Tanju Kaya; Erhan Tarhan; Derya Erylmaz; Serdar Mayda (2020). "Small early Miocene listriodont suid (Artiodactyla: Mammalia) from Sabuncubeli (Manisa, SW Anatolia), Turkey". Fossil Imprint. 76 (2): 325–337. doi:10.37520/fi.2020.026. S2CID 241128896.
  206. ^ Dimitris S. Kostopoulos; Ayla Sevim Erol; Serdar Mayda; Alper Yener Yavuz; Erhan Tarhan (2020). "Qurliqnoria (Bovidae, Mammalia) from the Upper Miocene of Çorakyerler (Central Anatolia, Turkey) and its biogeographic implications". Palaeoworld. 29 (3): 629–635. doi:10.1016/j.palwor.2019.10.003. S2CID 210277571.
  207. ^ Ellen J. Coombs; Julien Clavel; Travis Park; Morgan Churchill; Anjali Goswami (2020). "Wonky whales: the evolution of cranial asymmetry in cetaceans". BMC Biology. 18 (1): Article number 86. doi:10.1186/s12915-020-00805-4. PMC 7350770. PMID 32646447.
  208. ^ L. M. Gavazzi; L. N. Cooper; F. E. Fish; S. T. Hussain; J. G. M. Thewissen (2020). "Carpal morphology and function in the earliest cetaceans". Journal of Vertebrate Paleontology. 40 (5): e1833019. Bibcode:2020JVPal..40E3019G. doi:10.1080/02724634.2020.1833019. S2CID 228808589.
  209. ^ Atzcalli E. Hernández Cisneros; Jorge Velez-Juarbe (2020). "Palaeobiogeography of the North Pacific toothed mysticetes (Cetacea, Aetiocetidae): a key to Oligocene cetacean distributional patterns". Palaeontology. 64 (1): 51–61. doi:10.1111/pala.12507. S2CID 225111695.
  210. ^ Svitozar Davydenko; Thomas Mörs; Pavel Gol'din (2020). "A small whale reveals diversity of the Eocene cetacean fauna of Antarctica". Antarctic Science. 33 (1): 81–88. doi:10.1017/S0954102020000516. S2CID 232081169.
  211. ^ Robert W. Boessenecker; Morgan Churchill; Emily A. Buchholtz; Brian L. Beatty; Jonathan H. Geisler (2020). "Convergent evolution of swimming adaptations in modern whales revealed by a large macrophagous dolphin from the Oligocene of South Carolina". Current Biology. 30 (16): 3267–3273.e2. Bibcode:2020CBio...30E3267B. doi:10.1016/j.cub.2020.06.012. PMID 32649912. S2CID 220435400.
  212. ^ Guillaume Duboys de Lavigerie; Mark Bosselaers; Stijn Goolaerts; Travis Park; Olivier Lambert; Felix G. Marx (2020). "New Pliocene right whale from Belgium informs balaenid phylogeny and function". Journal of Systematic Palaeontology. 18 (14): 1141–1166. Bibcode:2020JSPal..18.1141D. doi:10.1080/14772019.2020.1746422. S2CID 219081516.
  213. ^ Michelangelo Bisconti; Dirk K. Munsterman; René H.B. Fraaije; Mark E.J. Bosselaers; Klaas Post (2020). "A new species of rorqual whale (Cetacea, Mysticeti, Balaenopteridae) from the Late Miocene of the Southern North Sea Basin and the role of the North Atlantic in the paleobiogeography of Archaebalaenoptera". PeerJ. 8: e8315. doi:10.7717/peerj.8315. PMC 6964694. PMID 31976176.
  214. ^ Yoshihiro Tanaka; Hitoshi Furusawa; Masaichi Kimura (2020). "A new member of fossil balaenid (Mysticeti, Cetacea) from the early Pliocene of Hokkaido, Japan". Royal Society Open Science. 7 (4): Article ID 192182. Bibcode:2020RSOS....792182T. doi:10.1098/rsos.192182. PMC 7211833. PMID 32431893.
  215. ^ Michelangelo Bisconti; Piero Damarco; Selina Mao; Marco Pavia; Giorgio Carnevale (2020). "The earliest baleen whale from the Mediterranean: large-scale implications of an early Miocene thalassotherian mysticete from Piedmont, Italy". Papers in Palaeontology. 7 (2): 1147–1166. doi:10.1002/spp2.1336. S2CID 225373484.
  216. ^ Florencia Paolucci; Marta S. Fernández; Mónica R. Buono; José I. Cuitiño (2020). "'Aulophyseter' rionegrensis (Cetacea: Odontoceti: Physeteroidea) from the Miocene of Patagonia (Argentina): a reappraisal". Zoological Journal of the Linnean Society. 192 (4): 1293–1322. doi:10.1093/zoolinnean/zlaa137.
  217. ^ Mariana Viglino; C. Maximiliano Gaetán; José I. Cuitiño; Mónica R. Buono (2020). "First Toothless Platanistoid from the Early Miocene of Patagonia: the Golden Age of Diversification of the Odontoceti". Journal of Mammalian Evolution. 28 (2): 337–358. doi:10.1007/s10914-020-09505-w. S2CID 220293795.
  218. ^ a b Giovanni Bianucci; Christian de Muizon; Mario Urbina; Olivier Lambert (2020). "Extensive diversity and disparity of the early Miocene platanistoids (Cetacea, Odontoceti) in the southeastern Pacific (Chilcatay Formation, Peru)". Life. 10 (3): Article 27. Bibcode:2020Life...10...27B. doi:10.3390/life10030027. PMC 7151620. PMID 32197480.
  219. ^ Michelangelo Bisconti; Piero Damarco; Marco Pavia; Barbara Sorce; Giorgio Carnevale (2021). "Marzanoptera tersillae, a new balaenopterid genus and species from the Pliocene of Piedmont, north-west Italy". Zoological Journal of the Linnean Society. 192 (4): 1253–1292. doi:10.1093/zoolinnean/zlaa131.
  220. ^ Toshiyuki Kimura; Yoshikazu Hasegawa (2020). "Norisdelphis annakaensis, a new Miocene delphinid from Japan". Journal of Vertebrate Paleontology. 40 (1): e1762628. Bibcode:2020JVPal..40E2628K. doi:10.1080/02724634.2020.1762628. S2CID 221749216.
  221. ^ Margot D. Nelson; Mark D. Uhen (2020). "A new platanistoid, Perditicetus yaconensis gen. et sp. nov. (Cetacea, Odontoceti), from the Chattian–Aquitanian Nye Formation of Oregon". Journal of Systematic Palaeontology. 18 (18): 1497–1517. Bibcode:2020JSPal..18.1497N. doi:10.1080/14772019.2020.1783379. S2CID 221059267.
  222. ^ Alberto Collareta; Olivier Lambert; Christian de Muizon; Aldo Marcelo Benites Palomino; Mario Urbina; Giovanni Bianucci (2020). "A new physeteroid from the late Miocene of Peru expands the diversity of extinct dwarf and pygmy sperm whales (Cetacea: Odontoceti: Kogiidae)". Comptes Rendus Palevol. 19 (5): 79–100. doi:10.5852/cr-palevol2020v19a5. hdl:11568/1070698. S2CID 222287604.
  223. ^ Michelangelo Bisconti; Mark E.J. Bosselaers (2020). "A new balaenopterid species from the Southern North Sea Basin informs about phylogeny and taxonomy of Burtinopsis and Protororqualus (Cetacea, Mysticeti, Balaenopteridae)". PeerJ. 8: e9570. doi:10.7717/peerj.9570. S2CID 221761050.
  224. ^ Olivier Lambert; Christian de Muizon; Mario Urbina; Giovanni Bianucci (2020). "A new longirostrine sperm whale (Cetacea, Physeteroidea) from the lower Miocene of the Pisco Basin (southern coast of Peru)". Journal of Systematic Palaeontology. 18 (20): 1707–1742. Bibcode:2020JSPal..18.1707L. doi:10.1080/14772019.2020.1805520. S2CID 221838686.
  225. ^ Olivier Lambert; Alberto Collareta; Aldo Benites-Palomino; Claudio Di Celma; Christian de Muizon; Mario Urbina; Giovanni Bianucci (2020). "A new small, mesorostrine inioid (Cetacea, Odontoceti, Delphinida) from four upper Miocene localities in the Pisco Basin, Peru". Papers in Palaeontology. 7 (2): 1043–1064. doi:10.1002/spp2.1332. hdl:11581/438244. S2CID 225495166.
  226. ^ Aldo Benites-Palomino; Jorge Vélez-Juarbe; Rodolfo Salas-Gismondi; Mario Urbina (2020). "Scaphokogia totajpe, sp. nov., a new bulky-faced pygmy sperm whale (Kogiidae) from the late Miocene of Peru". Journal of Vertebrate Paleontology. 39 (6): e1728538. doi:10.1080/02724634.2019.1728538. S2CID 219082191.
  227. ^ P. David Polly (2020). "Ecometrics and Neogene faunal turnover: the roles of cats and hindlimb morphology in the assembly of carnivoran communities in the New World". Geodiversitas. 42 (17): 257–304. doi:10.5252/geodiversitas2020v42a17. S2CID 220409534.
  228. ^ Morgane Fournier; Sandrine Ladevèze; Kévin Le Verger; Valentin Fischer; Robert P. Speijer; Floréal Solé (2020). "On the morphology of the astragalus and calcaneus of the amphicyonids (Carnivora, Mammalia) from the Paleogene of Europe: implications for the ecology of the European bear-dogs". Geodiversitas. 42 (18): 305–325. doi:10.5252/geodiversitas2020v42a18. S2CID 220714559.
  229. ^ Gema Siliceo; Jorge Morales; Mauricio Antón; Manuel J. Salesa (2020). "New fossils of Amphicyonidae (Carnivora) from the middle Miocene (MN6) site of Carpetana (Madrid, Spain)". Geodiversitas. 42 (15): 223–238. doi:10.5252/geodiversitas2020v42a15. S2CID 220043894.
  230. ^ Mairin A. Balisi; Blaire Van Valkenburgh (2020). "Iterative evolution of large-bodied hypercarnivory in canids benefits species but not clades". Communications Biology. 3 (1): Article number 461. doi:10.1038/s42003-020-01193-9. PMC 7442796. PMID 32826954. S2CID 221199758.
  231. ^ Saverio Bartolini Lucenti; Joan Madurell-Malapeira (2020). "Unraveling the fossil record of foxes: An updated review on the Plio-Pleistocene Vulpes spp. from Europe". Quaternary Science Reviews. 236: Article 106296. Bibcode:2020QSRv..23606296B. doi:10.1016/j.quascirev.2020.106296. S2CID 218947657.
  232. ^ Saverio Bartolini Lucenti; Lorenzo Rook (2020). ""Canis" ferox revisited: diet ecomorphology of some long gone (Late Miocene and Pliocene) fossil dogs". Journal of Mammalian Evolution. 28 (2): 285–306. doi:10.1007/s10914-020-09500-1. S2CID 218694252.
  233. ^ Haowen Tong; Xi Chen; Bei Zhang; Bruce Rothschild; Stuart White; Mairin Balisi; Xiaoming Wang (2020). "Hypercarnivorous teeth and healed injuries to Canis chihliensis from Early Pleistocene Nihewan beds, China, support social hunting for ancestral wolves". PeerJ. 8: e9858. doi:10.7717/peerj.9858. PMC 7485486. PMID 33194358.
  234. ^ Deanna Flores; Emma I. Eldridge; Erin E. Elminowski; Edwin Dickinson; Adam Hartstone-Rose (2020). "The howl of Rancho La Brea: Comparative anatomy of modern and fossil canid hyoid bones". Journal of Morphology. 281 (6): 646–652. doi:10.1002/jmor.21130. PMID 32302429. S2CID 215809590.
  235. ^ a b Saverio Bartolini Lucenti; Maia Bukhsianidze; Bienvenido Martínez-Navarro; David Lordkipanidze (2020). "The wolf from Dmanisi and Augmented Reality: review, implications and opportunities". Frontiers in Earth Science. 8: Article 131. Bibcode:2020FrEaS...8..131B. doi:10.3389/feart.2020.00131. hdl:2158/1205943. S2CID 216337804.
  236. ^ Dan Lu; Yangheshan Yang; Qiang Li; Xijun Ni (2020). "A late Pleistocene fossil from Northeastern China is the first record of the dire wolf (Carnivora: Canis dirus) in Eurasia". Quaternary International. 591: 87–92. doi:10.1016/j.quaint.2020.09.054. S2CID 224877090.
  237. ^ Jazmín Ramos-Madrigal; Mikkel-Holger S. Sinding; Christian Carøe; Sarah S.T. Mak; Jonas Niemann; José A. Samaniego Castruita; Sergey Fedorov; Alexander Kandyba; Mietje Germonpré; Hervé Bocherens; Tatiana R. Feuerborn; Vladimir V. Pitulko; Elena Y. Pavlova; Pavel A. Nikolskiy; Aleksei K. Kasparov; Varvara V. Ivanova; Greger Larson; Laurent A.F. Frantz; Eske Willerslev; Morten Meldgaard; Bent Petersen; Thomas Sicheritz-Ponten; Lutz Bachmann; Øystein Wiig; Anders J. Hansen; M. Thomas P. Gilbert; Shyam Gopalakrishnan (2020). "Genomes of Pleistocene Siberian wolves uncover multiple extinct wolf lineages". Current Biology. 31 (1): 198–206.e8. doi:10.1016/j.cub.2020.10.002. PMC 7809626. PMID 33125870. S2CID 225990843.
  238. ^ Julie Meachen; Matthew J. Wooller; Benjamin D. Barst; Juliette Funck; Carley Crann; Jess Heath; Molly Cassatt-Johnstone; Beth Shapiro; Elizabeth Hall; Susan Hewitson; Grant Zazula (2020). "A mummified Pleistocene gray wolf pup". Current Biology. 30 (24): R1467–R1468. Bibcode:2020CBio...30R1467M. doi:10.1016/j.cub.2020.11.011. PMID 33352124. S2CID 229346357.
  239. ^ Francesco Boschin; Federico Bernardini; Elena Pilli; Stefania Vai; Clément Zanolli; Antonio Tagliacozzo; Rosario Fico; Mariaelena Fedi; Julien Corny; Diego Dreossi; Martina Lari; Alessandra Modi; Chiara Vergata; Claudio Tuniz; Adriana Moroni; Paolo Boscato; David Caramelli; Annamaria Ronchitelli (2020). "The first evidence for Late Pleistocene dogs in Italy". Scientific Reports. 10 (1): Article number 13313. Bibcode:2020NatSR..1013313B. doi:10.1038/s41598-020-69940-w. PMC 7414845. PMID 32770100.
  240. ^ Mikkel-Holger S. Sinding; Shyam Gopalakrishnan; Jazmín Ramos-Madrigal; Marc de Manuel; Vladimir V. Pitulko; Lukas Kuderna; Tatiana R. Feuerborn; Laurent A. F. Frantz; Filipe G. Vieira; Jonas Niemann; Jose A. Samaniego Castruita; Christian Carøe; Emilie U. Andersen-Ranberg; Peter D. Jordan; Elena Y. Pavlova; Pavel A. Nikolskiy; Aleksei K. Kasparov; Varvara V. Ivanova; Eske Willerslev; Pontus Skoglund; Merete Fredholm; Sanne Eline Wennerberg; Mads Peter Heide-Jørgensen; Rune Dietz; Christian Sonne; Morten Meldgaard; Love Dalén; Greger Larson; Bent Petersen; Thomas Sicheritz-Pontén; Lutz Bachmann; Øystein Wiig; Tomas Marques-Bonet; Anders J. Hansen; M. Thomas P. Gilbert (2020). "Arctic-adapted dogs emerged at the Pleistocene–Holocene transition". Science. 368 (6498): 1495–1499. Bibcode:2020Sci...368.1495S. doi:10.1126/science.aaz8599. PMC 7116267. PMID 32587022. S2CID 220072941.
  241. ^ Anders Bergström; Laurent Frantz; Ryan Schmidt; Erik Ersmark; Ophelie Lebrasseur; Linus Girdland-Flink; Audrey T. Lin; Jan Storå; Karl-Göran Sjögren; David Anthony; Ekaterina Antipina; Sarieh Amiri; Guy Bar-Oz; Vladimir I. Bazaliiskii; Jelena Bulatović; Dorcas Brown; Alberto Carmagnini; Tom Davy; Sergey Fedorov; Ivana Fiore; Deirdre Fulton; Mietje Germonpré; James Haile; Evan K. Irving-Pease; Alexandra Jamieson; Luc Janssens; Irina Kirillova; Liora Kolska Horwitz; Julka Kuzmanovic-Cvetković; Yaroslav Kuzmin; Robert J. Losey; Daria Ložnjak Dizdar; Marjan Mashkour; Mario Novak; Vedat Onar; David Orton; Maja Pasarić; Miljana Radivojević; Dragana Rajković; Benjamin Roberts; Hannah Ryan; Mikhail Sablin; Fedor Shidlovskiy; Ivana Stojanović; Antonio Tagliacozzo; Katerina Trantalidou; Inga Ullén; Aritza Villaluenga; Paula Wapnish; Keith Dobney; Anders Götherström; Anna Linderholm; Love Dalén; Ron Pinhasi; Greger Larson; Pontus Skoglund (2020). "Origins and genetic legacy of prehistoric dogs". Science. 370 (6516): 557–564. doi:10.1126/science.aba9572. PMC 7116352. PMID 33122379. S2CID 225956269.
  242. ^ Michael Morlo; Katharina Bastl; Jörg Habersetzer; Thomas Engel; Bastian Lischewsky; Herbert Lutz; Axel von Berg; Renate Rabenstein; Doris Nagel (2020). "The apex of amphicyonid hypercarnivory: solving the riddle of Agnotherium antiquum Kaup, 1833 (Mammalia, Carnivora)". Journal of Vertebrate Paleontology. 39 (5): e1705848. doi:10.1080/02724634.2019.1705848. S2CID 214431583.
  243. ^ Alexis M. Mychajliw; Torben C. Rick; Nihan D. Dagtas; Jon M. Erlandson; Brendan J. Culleton; Douglas J. Kennett; Michael Buckley; Courtney A. Hofman (2020). "Biogeographic problem-solving reveals the Late Pleistocene translocation of a short-faced bear to the California Channel Islands". Scientific Reports. 10 (1): Article number 15172. doi:10.1038/s41598-020-71572-z. PMC 7494929. PMID 32938967.
  244. ^ Alejandro Pérez-Ramos; Z. Jack Tseng; Aurora Grandal-D'Anglade; Gernot Rabeder; Francisco J. Pastor; Borja Figueirido (2020). "Biomechanical simulations reveal a trade-off between adaptation to glacial climate and dietary niche versatility in European cave bears". Science Advances. 6 (14): eaay9462. Bibcode:2020SciA....6.9462P. doi:10.1126/sciadv.aay9462. PMC 7112751. PMID 32270039.
  245. ^ Yuichi I. Naito; Ioana N. Meleg; Marius Robu; Marius Vlaicu; Dorothée G. Drucker; Christoph Wißing; Michael Hofreiter; Axel Barlow; Hervé Bocherens (2020). "Heavy reliance on plants for Romanian cave bears evidenced by amino acid nitrogen isotope analysis". Scientific Reports. 10 (1): Article number 6612. Bibcode:2020NatSR..10.6612N. doi:10.1038/s41598-020-62990-0. PMC 7170912. PMID 32313007.
  246. ^ Alejandro Pérez-Ramos; Alejandro Romero; Ernesto Rodriguez; Borja Figueirido (2020). "Three-dimensional dental topography and feeding ecology in the extinct cave bear". Biology Letters. 16 (12): Article ID 20200792. doi:10.1098/rsbl.2020.0792. PMC 7775984. PMID 33353522.
  247. ^ Alberto Valenciano; Romala Govender (2020). "New insights into the giant mustelids (Mammalia, Carnivora, Mustelidae) from Langebaanweg fossil site (West Coast Fossil Park, South Africa, early Pliocene)". PeerJ. 8: e9221. doi:10.7717/peerj.9221. PMC 7271888. PMID 32547866.
  248. ^ Alberto Valenciano; Romala Govender (2020). "New Fossils of Mellivora Benfieldi (Mammalia, Carnivora, Mustelidae) from Langebaanweg, 'E' Quarry (South Africa, Early Pliocene): Re-Evaluation of the African Neogene Mellivorines". Journal of Vertebrate Paleontology. 40 (4): e1817754. Bibcode:2020JVPal..40E7754V. doi:10.1080/02724634.2020.1817754. S2CID 227249176.
  249. ^ Ryan S. Paterson; Natalia Rybczynski; Naoki Kohno; Hillary C. Maddin (2020). "A total evidence phylogenetic analysis of pinniped phylogeny and the possibility of parallel evolution within a monophyletic framework". Frontiers in Ecology and Evolution. 7: Article 457. doi:10.3389/fevo.2019.00457. S2CID 210181600.
  250. ^ James P. Rule; Justin W. Adams; Erich M. G. Fitzgerald (2020). "Colonization of the ancient southern oceans by small-sized Phocidae: new evidence from Australia". Zoological Journal of the Linnean Society. 191 (4): 1160–1180. doi:10.1093/zoolinnean/zlaa075.
  251. ^ James P. Rule; David P. Hocking; Erich M. G. Fitzgerald (2020). "Pliocene monachine seal (Pinnipedia: Phocidae) from Australia constrains timing of pinniped turnover in the Southern Hemisphere". Journal of Vertebrate Paleontology. 39 (6): e1734015. doi:10.1080/02724634.2019.1734015. S2CID 216244087.
  252. ^ Sophie A. Miller; Paul Z. Barrett; Win N.F. McLaughlin; Samantha S.B. Hopkins (2020). "Endemism and migration in the Kochkor Basin? Identification and description of Adcrocuta eximia (Mammalia: Carnivora: Hyaenidae) and c.f. Paramachaerodus (Mammalia: Carnivora: Felidae) fossils at the Miocene locality of Ortok, Kyrgyzstan". Palaeontologia Electronica. 23 (3): Article number 23(3):a45. doi:10.26879/1033. S2CID 221991602.
  253. ^ Michael V. Westbury; Stefanie Hartmann; Axel Barlow; Michaela Preick; Bogdan Ridush; Doris Nagel; Thomas Rathgeber; Reinhard Ziegler; Gennady Baryshnikov; Guilian Sheng; Arne Ludwig; Ingrid Wiesel; Love Dalen; Faysal Bibi; Lars Werdelin; Rasmus Heller; Michael Hofreiter (2020). "Hyena paleogenomes reveal a complex evolutionary history of cross-continental gene flow between spotted and cave hyena". Science Advances. 6 (11): eaay0456. Bibcode:2020SciA....6..456W. doi:10.1126/sciadv.aay0456. PMC 7069707. PMID 32201717.
  254. ^ Denis Geraads; Nikolaï Spassov (2020). "A skull of Machairodus Kaup, 1833 (Felidae, Mammalia) from the late Miocene of Hadjidimovo (Bulgaria), and its place in the evolution of the genus". Geodiversitas. 42 (9): 123–137. doi:10.5252/geodiversitas2020v42a9. S2CID 216071589.
  255. ^ Ross Barnett; Michael V. Westbury; Marcela Sandoval-Velasco; Filipe Garrett Vieira; Sungwon Jeon; Grant Zazula; Michael D. Martin; Simon Y.W. Ho; Niklas Mather; Shyam Gopalakrishnan; Jazmín Ramos-Madrigal; Marc de Manuel; M. Lisandra Zepeda-Mendoza; Agostinho Antunes; Aldo Carmona Baez; Binia De Cahsan; Greger Larson; Stephen J. O'Brien; Eduardo Eizirik; Warren E. Johnson; Klaus-Peter Koepfli; Andreas Wilting; Jörns Fickel; Love Dalén; Eline D. Lorenzen; Tomas Marques-Bonet; Anders J. Hansen; Guojie Zhang; Jong Bhak; Nobuyuki Yamaguchi; M. Thomas P. Gilbert (2020). "Genomic adaptations and evolutionary history of the extinct scimitar-toothed cat, Homotherium latidens". Current Biology. 30 (24): 5018–5025.e5. Bibcode:2020CBio...30E5018B. doi:10.1016/j.cub.2020.09.051. PMC 7762822. PMID 33065008. S2CID 222414891.
  256. ^ Aldo Manzuetti; Daniel Perea; Washington Jones; Martín Ubilla; Andrés Rinderknecht (2020). "An extremely large saber-tooth cat skull from Uruguay (late Pleistocene–early Holocene, Dolores Formation): body size and paleobiological implications". Alcheringa: An Australasian Journal of Palaeontology. 44 (2): 332–339. Bibcode:2020Alch...44..332M. doi:10.1080/03115518.2019.1701080. S2CID 216505747.
  257. ^ Qigao Jiangzuo; Jinyi Liu (2020). "First record of the Eurasian jaguar in southern Asia and a review of dental differences between pantherine cats". Journal of Quaternary Science. 35 (6): 817–830. Bibcode:2020JQS....35..817J. doi:10.1002/jqs.3222. S2CID 219914902.
  258. ^ David W. G. Stanton; Federica Alberti; Valery Plotnikov; Semyon Androsov; Semyon Grigoriev; Sergey Fedorov; Pavel Kosintsev; Doris Nagel; Sergey Vartanyan; Ian Barnes; Ross Barnett; Erik Ersmark; Doris Döppes; Mietje Germonpré; Michael Hofreiter; Wilfried Rosendahl; Pontus Skoglund; Love Dalén (2020). "Early Pleistocene origin and extensive intra-species diversity of the extinct cave lion". Scientific Reports. 10 (1): Article number 12621. Bibcode:2020NatSR..1012621S. doi:10.1038/s41598-020-69474-1. PMC 7387438. PMID 32724178.
  259. ^ Marc de Manuel; Ross Barnett; Marcela Sandoval-Velasco; Nobuyuki Yamaguchi; Filipe Garrett Vieira; M. Lisandra Zepeda Mendoza; Shiping Liu; Michael D. Martin; Mikkel-Holger S. Sinding; Sarah S. T. Mak; Christian Carøe; Shanlin Liu; Chunxue Guo; Jiao Zheng; Grant Zazula; Gennady Baryshnikov; Eduardo Eizirik; Klaus-Peter Koepfli; Warren E. Johnson; Agostinho Antunes; Thomas Sicheritz-Ponten; Shyam Gopalakrishnan; Greger Larson; Huanming Yang; Stephen J. O'Brien; Anders J. Hansen; Guojie Zhang; Tomas Marques-Bonet; M. Thomas P. Gilbert (2020). "The evolutionary history of extinct and living lions". Proceedings of the National Academy of Sciences of the United States of America. 117 (20): 10927–10934. Bibcode:2020PNAS..11710927D. doi:10.1073/pnas.1919423117. PMC 7245068. PMID 32366643.
  260. ^ Qigao Jiangzuo; John J. Flynn (2020). "A new species of Agriotherium from North America, and implications for understanding transformations in the metaconid-entoconid complex of bears". Journal of Mammalian Evolution. 27 (4): 775–787. doi:10.1007/s10914-019-09480-x. S2CID 201064589.
  261. ^ Qigao Jiangzuo; John J. Flynn (2020). "The earliest ursine bear demonstrates the origin of plant-dominated omnivory in Carnivora". iScience. 23 (6): Article 101235. Bibcode:2020iSci...23j1235J. doi:10.1016/j.isci.2020.101235. PMC 7303987. PMID 32559731.
  262. ^ Alberto Valenciano; Alejandro Pérez-Ramos; Juan Abella; Jorge Morales (2020). "A new hypercarnivorous mustelid (Mammalia, Carnivora, Mustelidae) from Batallones, late Miocene (MN10), Torrejón de Velasco, Madrid, Spain". Geodiversitas. 42 (8): 103–121. doi:10.5252/geodiversitas2020v42a8. S2CID 215724691.
  263. ^ Paul Z. Barrett; Leonard Finkelman; Genevieve Perdue; Win N. F. McLaughlin; Dana M. Reuter; Samantha S. B. Hopkins (2020). "Small carnivoran fauna of the Mascall Formation, Crooked River Basin, central Oregon". Journal of Vertebrate Paleontology. 39 (5): e1717506. doi:10.1080/02724634.2019.1717506. S2CID 215756135.
  264. ^ Robert M. Hunt Jr; Daniel A. Yatkola (2020). "A new species of the amphicyonid carnivore Cynelos Jourdan, 1862 from the early Miocene of North America". Geodiversitas. 42 (5): 57–67. doi:10.5252/geodiversitas2020v42a5. S2CID 212688503.
  265. ^ Kévin Le Verger; Floréal Solé; Sandrine Ladevèze (2020). "Description of a new species of Cynodictis Bravard & Pomel, 1850 (Carnivora, Mammalia) from the Quercy Phosphorites with comments on the use of skull morphology for phylogenetics". Geodiversitas. 42 (16): 239–255. doi:10.5252/geodiversitas2020v42a16. S2CID 220281575.
  266. ^ M. Kellum Tate-Jones; Carlos M. Peredo; Christopher D. Marshall; Samantha S. B. Hopkins (2020). "The dawn of Desmatophocidae: a new species of basal desmatophocid seal (Mammalia, Carnivora) from the Miocene of Oregon, U.S.A.". Journal of Vertebrate Paleontology. 40 (4): e1789867. Bibcode:2020JVPal..40E9867T. doi:10.1080/02724634.2020.1789867. S2CID 224935328.
  267. ^ James P. Rule; Justin W. Adams; Felix G. Marx; Alistair R. Evans; Alan J. D. Tennyson; R. Paul Scofield; Erich M. G. Fitzgerald (2020). "First monk seal from the Southern Hemisphere rewrites the evolutionary history of true seals". Proceedings of the Royal Society B: Biological Sciences. 287 (1938): Article ID 20202318. doi:10.1098/rspb.2020.2318. PMC 7735288. PMID 33171079. S2CID 226291115.
  268. ^ Damián Ruiz-Ramoni; Francisco Juan Prevosti; Saverio Bartolini Lucenti; Marisol Montellano-Ballesteros; Ana Luisa Carreño (2020). "The Pliocene canid Cerdocyon avius was not the type of fox that we thought". Journal of Vertebrate Paleontology. 40 (2): e1774889. Bibcode:2020JVPal..40E4889R. doi:10.1080/02724634.2020.1774889. S2CID 222214868.
  269. ^ Anthony R. Friscia; Mathew Macharwas; Samuel Muteti; Francis Ndiritu; D. Tab Rasmussen (2020). "A transitional mammalian carnivore community from the Paleogene–Neogene boundary in northern Kenya". Journal of Vertebrate Paleontology. 40 (5): e1833895. Bibcode:2020JVPal..40E3895F. doi:10.1080/02724634.2020.1833895. S2CID 228844419.
  270. ^ a b c d Camille Grohé; Louis De Bonis; Yaowalak Chaimanee; Olivier Chavasseau; Mana Rugbumrung; Chotima Yamee; Kantapon Suraprasit; Corentin Gibert; Jérôme Surault; Cécile Blondel; Jean-Jacques Jaeger (2020). "The late middle Miocene Mae Moh Basin of northern Thailand: the richest Neogene assemblage of Carnivora from Southeast Asia and a paleobiogeographic analysis of Miocene Asian carnivorans". American Museum Novitates (3952): 1–57. doi:10.1206/3952.1. hdl:2246/7223. S2CID 219296152.
  271. ^ Qigao Jiangzuo; Dmitriy Gimranov; Jinyuan Liu; Sizhao Liu; Changzhu Jin; Jinyi Liu (2020). "A new fossil marten from Jinyuan Cave, northeastern China reveals the origin of the Holarctic marten group". Quaternary International. 591: 47–58. doi:10.1016/j.quaint.2020.10.064. S2CID 228961050.
  272. ^ Xiaoming Wang; Stuart C. White; Jian Guan (2020). "A new genus and species of sabretooth, Oriensmilus liupanensis (Barbourofelinae, Nimravidae, Carnivora), from the middle Miocene of China suggests barbourofelines are nimravids, not felids". Journal of Systematic Palaeontology. 18 (9): 783–803. Bibcode:2020JSPal..18..783W. doi:10.1080/14772019.2019.1691066. S2CID 211545222.
  273. ^ a b c Jacob N. Biewer; Jorge Velez-Juarbe; James F. Parham (2020). "Insights on the dental evolution of walruses based on new fossil specimens from California". Journal of Vertebrate Paleontology. 40 (5): e1833896. Bibcode:2020JVPal..40E3896B. doi:10.1080/02724634.2020.1833896. S2CID 228814992.
  274. ^ Sarah R. Stinnesbeck; Wolfgang Stinnesbeck; Eberhard Frey; Jerónimo Avilés Olguín; Carmen Rojas Sandoval; Adriana Velázquez Morlet; Arturo H. González (2020). "Panthera balamoides and other Pleistocene felids from the submerged caves of Tulum, Quintana Roo, Mexico". Historical Biology: An International Journal of Paleobiology. 32 (7): 930–939. Bibcode:2020HBio...32..930S. doi:10.1080/08912963.2018.1556649. S2CID 92328512.
  275. ^ James P. Rule; Justin W. Adams; Douglass S. Rovinsky; David P. Hocking; Alistair R. Evans; Erich M. G. Fitzgerald (2020). "A new large-bodied Pliocene seal with unusual cutting teeth". Royal Society Open Science. 7 (11): Article ID 201591. Bibcode:2020RSOS....701591R. doi:10.1098/rsos.201591. PMC 7735334. PMID 33391813. S2CID 226291141.
  276. ^ Yarlagadda, Tara (13 November 2020). "Unusual Teeth Reveal A New Species And A Twist On Evolution". Inverse. Retrieved 14 November 2020.
  277. ^ Jon A. Baskin (2020). "Mustelidae from Observation Quarry (early Barstovian) of Nebraska, with comments on Sheep Creek and Lower Snake Creek mustelids". Paludicola. 12 (4): 223–246.
  278. ^ Louis de Bonis (2020). "New genus of amphicyonid carnivoran (Mammalia, Carnivora, Amphicyonidae) from the phosphorites of Quercy (France)". Fossil Imprint. 76 (1): 201–208. doi:10.37520/fi.2020.013. S2CID 229196919.
  279. ^ Xiaoming Wang; Zhijie Jack Tseng; Wen-Yu Wu; Jie Ye; Jin Meng; Shundong Bi (2020). "A new species of Tungurictis Colbert, 1939 (Carnivora, Hyaenidae) from the middle Miocene of Junggar Basin, northwestern China and the early divergence of basal hyaenids in East Asia". Geodiversitas. 42 (3): 29–45. doi:10.5252/geodiversitas2020v42a3. S2CID 211533867.[permanent dead link]
  280. ^ Spencer G. Mattingly; K. Christopher Beard; Pauline M.C. Coster; Mustafa J. Salem; Yaowalak Chaimanee; Jean-Jacques Jaeger (2020). "A new carnivoraform from the early Oligocene of Libya: Oldest known record of Carnivoramorpha in Africa". Journal of African Earth Sciences. 172: Article 103994. Bibcode:2020JAfES.17203994M. doi:10.1016/j.jafrearsci.2020.103994. S2CID 225014809.
  281. ^ Jan A. van Dam; Pierre Mein; Luis Alcalá (2020). "Late Miocene Erinaceinae from the Teruel Basin (Spain)". Geobios. 61: 61–81. Bibcode:2020Geobi..61...61V. doi:10.1016/j.geobios.2020.06.002. S2CID 225545489.
  282. ^ Raef Minwer-Barakat; Antonio García-Alix; Elvira Martín-Suárez; Matthijs Freudenthal (2020). "Early Pliocene Desmaninae (Mammalia, Talpidae) from Southern Spain and the Origin of the Genus Desmana". Journal of Vertebrate Paleontology. 40 (5): e1835936. Bibcode:2020JVPal..40E5936M. doi:10.1080/02724634.2020.1835936. S2CID 228905970.
  283. ^ A. V. Lopatin (2020). "A new genus of the Brachyericinae (Erinaceidae, Erinaceomorpha) from the Lower Miocene of Mongolia". Doklady Biological Sciences. 491 (1): 67–70. doi:10.1134/S0012496620020064. PMID 32483713. S2CID 219156712.
  284. ^ Florentin Cailleux; Yaowalak Chaimanee; Jean-Jacques Jaeger; Olivier Chavasseau (2020). "New Erinaceidae (Eulipotyphla, Mammalia) from the Middle Miocene of Mae Moh, Northern Thailand" (PDF). Journal of Vertebrate Paleontology. 40 (3): e1783277. Bibcode:2020JVPal..40E3277C. doi:10.1080/02724634.2020.1783277. S2CID 224896080.
  285. ^ a b c Floréal Solé; Bernard Marandat; Fabrice Lihoreau (2020). "The hyaenodonts (Mammalia) from the French locality of Aumelas (Hérault), with possible new representatives from the late Ypresian". Geodiversitas. 42 (13): 185–214. doi:10.5252/geodiversitas2020v42a13. S2CID 219585388.
  286. ^ Andrew J. McGrath; Federico Anaya; Darin A. Croft (2020). "New proterotheriids (Litopterna, Mammalia) from the middle Miocene of Quebrada Honda, Bolivia, and trends in diversity and body size of proterotheriid and macraucheniid litopterns". Ameghiniana. 57 (2): 159–188. doi:10.5710/AMGH.03.03.2020.3268. S2CID 216236954.
  287. ^ Wighart v. Koenigswald; Jelle W. F. Reumer (2020). "The enamel microstructure of fossil and extant shrews (Soricidae and Heterosoricidae, Mammalia) and its taxonomical significance". Palaeontographica Abteilung A. 316 (1–6): 79–163. Bibcode:2020PalAA.316...79V. doi:10.1127/pala/2020/0095. S2CID 216521827.
  288. ^ a b William W. Korth (2020). "Mammals from the Blue Ash local fauna (Whitneyan, Oligocene), South Dakota. Insectivorans (Leptictida, Apatotheria, Lipotyphla)". Paludicola. 13 (1): 33–47.
  289. ^ Andrea Corona; Ana Clara Badín; Daniel Perea; Martín Ubilla; Gabriela Inés Schmidt (2020). "A new genus and species and additional reports of the native South American ungulates Proterotheriidae (Mammalia, Litopterna) in the Late Miocene of Uruguay". Journal of South American Earth Sciences. 102: Article 102646. doi:10.1016/j.jsames.2020.102646. S2CID 219425197.
  290. ^ William W. Korth; Clint A. Boyd; Jeff J. Person; Deborah Anderson (2022). "Fossil Mammals from ant mounds situated on exposures of the Big Cottonwood Creek Member of the Chadron Formation (latest Eocene-early Oligocene), Sioux County, Nebraska". Paludicola. 13 (4): 191–344.
  291. ^ Javier N. Gelfo; Daniel A. García-López; Lilian P. Bergqvist (2020). "Phylogenetic relationships and palaeobiology of a new xenungulate (Mammalia: Eutheria) from the Palaeogene of Argentina". Journal of Systematic Palaeontology. 18 (12): 993–1007. Bibcode:2020JSPal..18..993G. doi:10.1080/14772019.2020.1715496. S2CID 213052956.
  292. ^ Javier N. Gelfo; Ricardo N. Alonso; Richard H. Madden; Alfredo A. Carlini (2020). "An Eocene bunodont South American native ungulate (Didolodontidae) from the Lumbrera Formation, Salta Province, Argentina". Ameghiniana. 57 (2): 132–145. doi:10.5710/AMGH.29.11.2019.3293. S2CID 212862646.
  293. ^ Lawrence J. Flynn; Louis L. Jacobs; Yuri Kimura; Louis H. Taylor; Yukimitsu Tomida (2020). "Siwalik fossil Soricidae: a calibration point for the molecular phylogeny of Suncus". Paludicola. 12 (4): 247–258.
  294. ^ Darin A. Croft; Javier N. Gelfo; Guillermo M. López (2020). "Splendid innovation: the extinct South American native ungulates". Annual Review of Earth and Planetary Sciences. 48: 259–290. Bibcode:2020AREPS..48..259C. doi:10.1146/annurev-earth-072619-060126. S2CID 213737574.
  295. ^ Bárbara Vera; Mariagabriella Fornasiero; Letizia del Favero (2020). "New data on Carodnia feruglioi (Carodniidae, Xenungulata) from the early Eocene of Patagonia (Argentina)". Ameghiniana. 57 (6): 566–581. doi:10.5710/AMGH.02.08.2020.3349. S2CID 226537803.
  296. ^ Nicolás R. Chimento; Federico L. Agnolin (2020). "Phylogenetic tree of Litopterna and Perissodactyla indicates a complex early history of hoofed mammals". Scientific Reports. 10 (1): Article number 13280. Bibcode:2020NatSR..1013280C. doi:10.1038/s41598-020-70287-5. PMC 7413542. PMID 32764723.
  297. ^ Karoliny de Oliveira; Thaísa Araújo; Alline Rotti; Dimila Mothé; Florent Rivals; Leonardo S. Avilla (2020). "Fantastic beasts and what they ate: Revealing feeding habits and ecological niche of late Quaternary Macraucheniidae from South America". Quaternary Science Reviews. 231: Article 106178. Bibcode:2020QSRv..23106178D. doi:10.1016/j.quascirev.2020.106178. S2CID 213795563.
  298. ^ Mário André Trindade Dantas; Leonardo Souza Lobo; Camila Bernardes (2020). "Comments on "fantastic beasts and what they ate: Revealing feeding habits and ecological niche of late Quaternary Macraucheniidae from South America" by K. de oliveira, T. Araújo, A. Rotti, D. Mothé, F. Rivals, L.S. Avilla, quaternary science reviews 231 (2020) 106178". Quaternary Science Reviews. 250: Article 106662. Bibcode:2020QSRv..25006662D. doi:10.1016/j.quascirev.2020.106662.
  299. ^ Karoliny de Oliveira; Thaísa Araújo; Alline Rotti; Dimila Mothé; Florent Rivals; Leonardo S. Avilla (2020). "In defense of fantastic beasts and what they ate: A case reinforcing the importance of taxonomy for paleoecology". Quaternary Science Reviews. 250: Article 106660. Bibcode:2020QSRv..25006660D. doi:10.1016/j.quascirev.2020.106660. S2CID 228993658.
  300. ^ Kenneth D. Rose; Luke T. Holbrook; Kishor Kumar; Rajendra S. Rana; Heather E. Ahrens; Rachel H. Dunn; Annelise Folie; Katrina E. Jones; Thierry Smith (2020). "Anatomy, Relationships, and Paleobiology of Cambaytherium (Mammalia, Perissodactylamorpha, Anthracobunia) from the lower Eocene of western India". Journal of Vertebrate Paleontology. 39 (Supplement): 1–147. doi:10.1080/02724634.2020.1761370. S2CID 226263139.
  301. ^ Richard C. Fox; Craig S. Scott (2020). "Bisonalveus gracilis n. sp. (Pentacodontidae, Cimolesta): novel dental adaptations and their paleobiological implications in a small Paleocene mammal". Palaeontographica Abteilung A. 315 (1–4): 67–119. Bibcode:2020PalAA.315...67F. doi:10.1127/pala/2020/0087. S2CID 214474118.
  302. ^ Jerry J. Hooker (2020). "A mammal fauna from the Paleocene-Eocene Thermal Maximum of Croydon, London, UK". Proceedings of the Geologists' Association. 131 (5): 458–473. Bibcode:2020PrGA..131..458H. doi:10.1016/j.pgeola.2018.01.001. S2CID 134941309.
  303. ^ Jaelyn J. Eberle; Wighart von Koenigswald; David A. Eberth (2020). "Using tooth enamel microstructure to identify mammalian fossils at an Eocene Arctic forest". PLOS ONE. 15 (9): e0239073. Bibcode:2020PLoSO..1539073E. doi:10.1371/journal.pone.0239073. PMC 7511010. PMID 32966343.
  304. ^ Annalisa Berta; Agnese Lanzetti (2020). "Feeding in marine mammals: An integration of evolution and ecology through time". Palaeontologia Electronica. 23 (2): Article number 23(2):a40. doi:10.26879/951. S2CID 221505886.
  305. ^ Nicolas Bourgon; Klervia Jaouen; Anne-Marie Bacon; Klaus Peter Jochum; Elise Dufour; Philippe Duringer; Jean-Luc Ponche; Renaud Joannes-Boyau; Quentin Boesch; Pierre-Olivier Antoine; Manon Hullot; Ulrike Weis; Ellen Schulz-Kornas; Manuel Trost; Denis Fiorillo; Fabrice Demeter; Elise Patole-Edoumba; Laura L. Shackelford; Tyler E. Dunn; Alexandra Zachwieja; Somoh Duangthongchit; Thongsa Sayavonkhamdy; Phonephanh Sichanthongtip; Daovee Sihanam; Viengkeo Souksavatdy; Jean-Jacques Hublin; Thomas Tütken (2020). "Zinc isotopes in Late Pleistocene fossil teeth from a Southeast Asian cave setting preserve paleodietary information". Proceedings of the National Academy of Sciences of the United States of America. 117 (9): 4675–4681. Bibcode:2020PNAS..117.4675B. doi:10.1073/pnas.1911744117. PMC 7060694. PMID 32071235.
  306. ^ Enquye W. Negash; Zeresenay Alemseged; René Bobe; Frederick Grine; Matt Sponheimer; Jonathan G. Wynn (2020). "Dietary trends in herbivores from the Shungura Formation, southwestern Ethiopia". Proceedings of the National Academy of Sciences of the United States of America. 117 (36): 21921–21927. Bibcode:2020PNAS..11721921N. doi:10.1073/pnas.2006982117. PMC 7486712. PMID 32839326.
  307. ^ Mathew Stewart; Richard Clark-Wilson; Paul S. Breeze; Klint Janulis; Ian Candy; Simon J. Armitage; David B. Ryves; Julien Louys; Mathieu Duval; Gilbert J. Price; Patrick Cuthbertson; Marco A. Bernal; Nick A. Drake; Abdullah M. Alsharekh; Badr Zahrani; Abdulaziz Al-Omari; Patrick Roberts; Huw S. Groucutt; Michael D. Petraglia (2020). "Human footprints provide snapshot of last interglacial ecology in the Arabian interior". Science Advances. 6 (38): eaba8940. Bibcode:2020SciA....6.8940S. doi:10.1126/sciadv.aba8940. PMC 7500939. PMID 32948582.
  308. ^ Ningbo Chen; Lele Ren; Linyao Du; Jiawen Hou; Victoria E. Mullin; Duo Wu; Xueye Zhao; Chunmei Li; Jiahui Huang; Xuebin Qi; Marco Rosario Capodiferro; Alessandro Achilli; Chuzhao Lei; Fahu Chen; Bing Su; Guanghui Dong; Xiaoming Zhang (2020). "Ancient genomes reveal tropical bovid species in the Tibetan Plateau contributed to the prevalence of hunting game until the late Neolithic". Proceedings of the National Academy of Sciences of the United States of America. 117 (45): 28150–28159. Bibcode:2020PNAS..11728150C. doi:10.1073/pnas.2011696117. PMC 7668038. PMID 33077602.
  309. ^ a b c Laura Chornogubsky (2020). "Interrelationships of Polydolopidae (Mammalia: Marsupialia) from South America and Antarctica". Zoological Journal of the Linnean Society. 192 (4): 1195–1236. doi:10.1093/zoolinnean/zlaa143. hdl:11336/131166.
  310. ^ María Judith Babot; Guillermo W. Rougier; Daniel García-Lopez; Brian M. Davis (2020). "New small bunodont metatherian from the Late Eocene of the Argentinean Puna". Journal of Mammalian Evolution. 27 (3): 373–384. doi:10.1007/s10914-019-09468-7. S2CID 170078262.
  311. ^ a b c Joshua E. Cohen; Brian M. Davis; Richard L. Cifelli (2020). "Geologically oldest Pediomyoidea (Mammalia, Marsupialiformes) from the Late Cretaceous of North America, with implications for taxonomy and diet of earliest Late Cretaceous mammals". Journal of Vertebrate Paleontology. 40 (5): e1835935. Bibcode:2020JVPal..40E5935C. doi:10.1080/02724634.2020.1835935. S2CID 228856795.
  312. ^ Russell K. Engelman; Federico Anaya; Darin A. Croft (2020). "Australogale leptognathus, gen. et sp. nov., a second species of small sparassodont (Mammalia: Metatheria) from the middle Miocene locality of Quebrada Honda, Bolivia". Journal of Mammalian Evolution. 27 (1): 37–54. doi:10.1007/s10914-018-9443-z. S2CID 49473591.
  313. ^ William W. Korth; Clint A. Boyd; Robert J. Emry; Jeff J. Person (2020). "Marsupials (Mammalia, Metatheria) from the Brule Formation (Whitneyan, Oligocene) North Dakota". Journal of Paleontology. 95 (1): 193–204. doi:10.1017/jpa.2020.41. S2CID 225581853.
  314. ^ Russell K. Engelman; John J. Flynn; André R. Wyss; Darin A. Croft (2020). "Eomakhaira molossus, a new saber-toothed sparassodont (Metatheria: Thylacosmilinae) from the early Oligocene (?Tinguirirican) Cachapoal locality, Andean Main Range, Chile". American Museum Novitates (3957): 1–75. doi:10.1206/3957.1. hdl:2246/7235. S2CID 220601822.
  315. ^ Jaelyn Eberle; Joshua Cohen; John Foster; ReBecca Hunt-Foster; Andrew Heckert (2024). "A new Late Cretaceous metatherian from the Williams Fork Formation, Colorado". PLOS ONE. 19 (10). e0310948. doi:10.1371/journal.pone.0310948. PMC 11498682.
  316. ^ Anna K. Gillespie; Michael Archer; Suzanne J. Hand (2020). "Lekaneleo, a new genus of marsupial lion (Marsupialia, Thylacoleonidae) from the Oligocene–Miocene of Australia, and the craniodental morphology of L. roskellyae, comb. nov". Journal of Vertebrate Paleontology. 39 (5): e1703722. doi:10.1080/02724634.2019.1703722. S2CID 214332715.
  317. ^ Robin M. D. Beck; Julien Louys; Philippa Brewer; Michael Archer; Karen H. Black; Richard H. Tedford (2020). "A new family of diprotodontian marsupials from the latest Oligocene of Australia and the evolution of wombats, koalas, and their relatives (Vombatiformes)". Scientific Reports. 10 (1): Article number 9741. Bibcode:2020NatSR..10.9741B. doi:10.1038/s41598-020-66425-8. PMC 7316786. PMID 32587406.
  318. ^ Francisco J. Goin; Emma C. Vieytes; Javier N. Gelfo; Laura Chornogubsky; Ana N. Zimicz; Marcelo A. Reguero (2020). "New metatherian mammal from the early Eocene of Antarctica". Journal of Mammalian Evolution. 27 (1): 17–36. doi:10.1007/s10914-018-9449-6. S2CID 91932037.
  319. ^ Joshua E. Cohen; Brian M. Davis; Richard L. Cifelli (2021). "Scalaridelphys Nom. Nov. A New Replacement Name for Scalaria Cohen et al., 2020 (Marsupialiformes, Aquiladelphidae)". Journal of Vertebrate Paleontology. 40 (6): e1877721. doi:10.1080/02724634.2021.1877721. S2CID 233906635.
  320. ^ Romain Vullo; Emmanuel Gheerbrant; Simon Beurel; Michaël Swajda; Didier Néraudeau (2020). "A stagodontid mammal from the mid-Cretaceous of France confirms the Euramerican distribution of early marsupialiforms". Palaeogeography, Palaeoclimatology, Palaeoecology. 560: Article 110034. Bibcode:2020PPP...56010034V. doi:10.1016/j.palaeo.2020.110034. S2CID 224899397.
  321. ^ Christian de Muizon; Sandrine Ladevèze (2020). "Cranial anatomy of Andinodelphys cochabambensis, a stem metatherian from the early Palaeocene of Bolivia". Geodiversitas. 42 (30): 597–739. doi:10.5252/geodiversitas2020v42a30. S2CID 231578938.
  322. ^ Christine M. Janis; Borja Figueirido; Larisa DeSantis; Stephan Lautenschlager (2020). "An eye for a tooth: Thylacosmilus was not a marsupial "saber-tooth predator"". PeerJ. 8: e9346. doi:10.7717/peerj.9346. PMC 7323715. PMID 32617190.
  323. ^ Sandrine Ladevèze; Charlène Selva; Christian de Muizon (2020). "What are "opossum-like" fossils? The phylogeny of herpetotheriid and peradectid metatherians, based on new features from the petrosal anatomy" (PDF). Journal of Systematic Palaeontology. 18 (17): 1463–1479. Bibcode:2020JSPal..18.1463L. doi:10.1080/14772019.2020.1772387. S2CID 221060039.
  324. ^ Ana Natalia Zimicz; Francisco Javier Goin (2020). "A reassessment of the genus Groeberia Patterson, 1952 (Mammalia, Metatheria): functional and phylogenetic implications". Journal of Systematic Palaeontology. 18 (12): 975–992. Bibcode:2020JSPal..18..975Z. doi:10.1080/14772019.2019.1706195. S2CID 213546042.
  325. ^ Kaylene Butler; Kenny J. Travouillon; Alistair R. Evans; Laura Murphy; Gilbert J. Price; Michael Archer; Suzanne J. Hand; Vera Weisbecker (2020). "3D morphometric analysis reveals similar ecomorphs for early kangaroos (Macropodidae) and fanged kangaroos (Balbaridae) from the Riversleigh World Heritage Area, Australia". Journal of Mammalian Evolution. 28 (2): 199–219. doi:10.1007/s10914-020-09507-8. S2CID 219567824.
  326. ^ Christine M. Janis; James G. Napoli; Coral Billingham; Alberto Martín-Serra (2020). "Proximal humerus morphology indicates divergent patterns of locomotion in extinct giant kangaroos". Journal of Mammalian Evolution. 27 (4): 627–647. doi:10.1007/s10914-019-09494-5. hdl:1983/d2a6d04f-cf71-4607-8cb4-48465ccb91b7. S2CID 210670938.
  327. ^ "Developmental constraints do not influence long-term phenotypic evolution of marsupial forelimbs as revealed by interspecific disparity and integration patterns". amnat.org. Retrieved 2019-12-28.
  328. ^ Alexander O. Averianov; Thomas Martin; Alexey V. Lopatin; Pavel P. Skutschas; Rico Schellhorn; Petr N. Kolosov; Dmitry D. Vitenko (2020). "A new euharamiyidan mammaliaform from the Lower Cretaceous of Yakutia, Russia". Journal of Vertebrate Paleontology. 39 (6): e1762089. doi:10.1080/02724634.2019.1762089. S2CID 220548470.
  329. ^ David W. Krause; Simone Hoffmann; Yaoming Hu; John R. Wible; Guillermo W. Rougier; E. Christopher Kirk; Joseph R. Groenke; Raymond R. Rogers; James B. Rossie; Julia A. Schultz; Alistair R. Evans; Wighart von Koenigswald; Lydia J. Rahantarisoa (2020). "Skeleton of a Cretaceous mammal from Madagascar reflects long-term insularity". Nature. 581 (7809): 421–427. Bibcode:2020Natur.581..421K. doi:10.1038/s41586-020-2234-8. PMID 32461642. S2CID 216650606.
  330. ^ David W. Krause; Joseph R. Groenke; Simone Hoffmann; Raymond R. Rogers; Lydia J. Rahantarisoa (2020). "Introduction to Adalatherium hui (Gondwanatheria, Mammalia) from the Late Cretaceous of Madagascar". Journal of Vertebrate Paleontology. 40 (Supplement): 4–18. Bibcode:2020JVPal..40S...4K. doi:10.1080/02724634.2020.1805455. S2CID 230558297.
  331. ^ David W. Krause; Simone Hoffmann; James B. Rossie; Yaoming Hu; John R. Wible; Guillermo W. Rougier; E. Christopher Kirk; Joseph R. Groenke (2020). "Craniofacial morphology of Adalatherium hui (Mammalia, Gondwanatheria) from the Late Cretaceous of Madagascar". Journal of Vertebrate Paleontology. 40 (Supplement): 19–66. Bibcode:2020JVPal..40S..19K. doi:10.1080/02724634.2020.1808665. S2CID 230968119.
  332. ^ Simone Hoffmann; E. Christopher Kirk (2020). "Inner ear morphology of Adalatherium hui (Mammalia, Gondwanatheria) from the Late Cretaceous of Madagascar". Journal of Vertebrate Paleontology. 40 (Supplement): 67–80. Bibcode:2020JVPal..40S..67H. doi:10.1080/02724634.2020.1800719. S2CID 230968195.
  333. ^ David W. Krause; Simone Hoffmann; John R. Wible; Guillermo W. Rougier (2020). "Lower jaw morphology of Adalatherium hui (Mammalia, Gondwanatheria) from the Late Cretaceous of Madagascar". Journal of Vertebrate Paleontology. 40 (Supplement): 81–96. Bibcode:2020JVPal..40S..81K. doi:10.1080/02724634.2020.1805456. S2CID 230968653.
  334. ^ David W. Krause; Yaoming Hu; Simone Hoffmann; Joseph R. Groenke; Julia A. Schultz; Alistair R. Evans; Wighart von Koenigswald; Guillermo W. Rougier (2020). "Dental morphology of Adalatherium hui (Mammalia, Gondwanatheria) from the Late Cretaceous of Madagascar". Journal of Vertebrate Paleontology. 40 (Supplement): 97–132. Bibcode:2020JVPal..40S..97K. doi:10.1080/02724634.2020.1811292. S2CID 230968012.
  335. ^ Simone Hoffmann; Yaoming Hu; David W. Krause (2020). "Postcranial morphology of Adalatherium hui (Mammalia, Gondwanatheria) from the Late Cretaceous of Madagascar". Journal of Vertebrate Paleontology. 40 (Supplement): 133–212. Bibcode:2020JVPal..40S.133H. doi:10.1080/02724634.2020.1799818. S2CID 230968079.
  336. ^ Simone Hoffmann; Robin M. D. Beck; John R. Wible; Guillermo W. Rougier; David W. Krause (2020). "Phylogenetic placement of Adalatherium hui (Mammalia, Gondwanatheria) from the Late Cretaceous of Madagascar: implications for allotherian relationships" (PDF). Journal of Vertebrate Paleontology. 40 (Supplement): 213–234. Bibcode:2020JVPal..40S.213H. doi:10.1080/02724634.2020.1801706. S2CID 230968231.
  337. ^ Francisco J. Goin; Agustín G. Martinelli; Sergio Soto-Acuña; Emma C. Vieytes; Leslie M.E. Manríquez; Roy A. Fernández; Juan Pablo Pino; Cristine Trevisan; Jonatan Kaluza; Marcelo A. Reguero; Marcelo Leppe; Héctor Ortiz; David Rubilar-Rogers; Alexander O. Vargas (2020). "First Mesozoic mammal from Chile: the southernmost record of a Late Cretaceous gondwanatherian". Boletín del Museo Nacional de Historia Natural, Chile. 69 (1): 5–31.
  338. ^ a b Nicolás R. Chimento; Federico L. Agnolin; Takanobu Tsuihiji; Makoto Manabe; Fernando E. Novas (2020). "New record of a Mesozoic gondwanatherian mammaliaform from Southern Patagonia". The Science of Nature. 107 (6): Article number 49. Bibcode:2020SciNa.107...49C. doi:10.1007/s00114-020-01705-x. PMID 33211174. S2CID 227066248.
  339. ^ a b Thomas Martin; Alexander O. Averianov; Julia A. Schultz; Achim H. Schwermann (2020). "First multituberculate mammals from the Lower Cretaceous of Germany". Cretaceous Research. 119: Article 104699. doi:10.1016/j.cretres.2020.104699. S2CID 228843187.
  340. ^ Nao Kusuhashi; Yuan-Qing Wang; Xun Jin (2020). "A new eobaatarid multituberculate (Mammalia) from the Lower Cretaceous Fuxin Formation, Fuxin-Jinzhou Basin, Liaoning, northeastern China". Journal of Mammalian Evolution. 27 (4): 605–623. doi:10.1007/s10914-019-09481-w. S2CID 201283262.
  341. ^ Lucas N. Weaver; David J. Varricchio; Eric J. Sargis; Meng Chen; William J. Freimuth; Gregory P. Wilson Mantilla (2020). "Early mammalian social behaviour revealed by multituberculates from a dinosaur nesting site". Nature Ecology & Evolution. 5 (1): 32–37. Bibcode:2020NatEE...5...32W. doi:10.1038/s41559-020-01325-8. PMID 33139921. S2CID 226241443.
  342. ^ Fangyuan Mao; Cunyu Liu; Morgan Hill Chase; Andrew K. Smith; Jin Meng (2020). "Exploring ancestral phenotypes and evolutionary development of the mammalian middle ear based on Early Cretaceous Jehol mammals". National Science Review. 8 (5): nwaa188. doi:10.1093/nsr/nwaa188. PMC 8288399. PMID 34691634.
  343. ^ a b Alexander O. Averianov; Thomas Martin; Alexey V. Lopatin; Julia A. Schultz; Rico Schellhorn; Sergei Krasnolutskii; Pavel Skutschas; Stepan Ivantsov (2020). "Multituberculate mammals from the Middle Jurassic of Western Siberia, Russia, and the origin of Multituberculata". Papers in Palaeontology. 7 (2): 769–787. doi:10.1002/spp2.1317. S2CID 219067218.
  344. ^ Lucas N. Weaver; Gregory P. Wilson (2020). "Shape disparity in the blade-like premolars of multituberculate mammals: functional constraints and the evolution of herbivory". Journal of Mammalogy. 102 (4): 967–985. doi:10.1093/jmammal/gyaa029.
  345. ^ John R. Foster; Darrin C. Pagnac; ReBecca K. Hunt-Foster (2020). "An unusually diverse northern biota from the Morrison Formation (Upper Jurassic), Black Hills, Wyoming". Geology of the Intermountain West. 7: 29–67. doi:10.31711/giw.v7.pp29-67. S2CID 216355326.
  346. ^ Nao Kusuhashi; Yuan-Qing Wang; Chuan-Kui Li; Xun Jin (2020). "New gobiconodontid (Eutriconodonta, Mammalia) from the Lower Cretaceous Shahai and Fuxin formations, Liaoning, China". Vertebrata PalAsiatica. 58 (1): 45–66. doi:10.19615/j.cnki.1000-3118.190724.
  347. ^ Thomas H. Rich; Peter Trusler; Lesley Kool; David Pickering; Alistair Evans; Karen Siu; Anton Maksimenko; Martin Kundrat; Neil J. Gostling; Steven Morton; Patricia Vickers-Rich (2020). "A Third, Remarkably Small, Tribosphenic Mammal from the Mesozoic of Australia". In Guntupalli V.R. Prasad; Rajeev Patnaik (eds.). Biological Consequences of Plate Tectonics. Vertebrate Paleobiology and Paleoanthropology. Springer. pp. 67–75. doi:10.1007/978-3-030-49753-8_3. ISBN 978-3-030-49752-1. S2CID 229618594.
  348. ^ Fangyuan Mao; Yaoming Hu; Chuankui Li; Yuanqing Wang; Morgan Hill Chase; Andrew K. Smith; Jin Meng (2020). "Integrated hearing and chewing modules decoupled in a Cretaceous stem therian mammal". Science. 367 (6475): 305–308. Bibcode:2020Sci...367..305M. doi:10.1126/science.aay9220. PMID 31806694. S2CID 208768326.
  349. ^ Thomas H. Rich; Timothy F. Flannery; Patricia Vickers-Rich (2020). "Evidence for a Remarkably Large Toothed-Monotreme from the Early Cretaceous of Lightning Ridge, NSW, Australia". In Guntupalli V.R. Prasad; Rajeev Patnaik (eds.). Biological Consequences of Plate Tectonics. Vertebrate Paleobiology and Paleoanthropology. Springer. pp. 77–81. doi:10.1007/978-3-030-49753-8_4. ISBN 978-3-030-49752-1. S2CID 229647914.
  350. ^ Thomas H. Rich; Timothy F. Flannery; Alistair R. Evans; Matt White; Timothy Ziegler; Alanna Maguire; Stephen Poropat; Peter Trusler; Patricia Vickers-Rich (2020). "Multiple hypotheses about two mammalian upper dentitions from the Early Cretaceous of Australia". Alcheringa: An Australasian Journal of Palaeontology. 44 (4): 528–536. Bibcode:2020Alch...44..528R. doi:10.1080/03115518.2020.1829042. S2CID 230531306.
  351. ^ Kai R. K. Jäger; Richard L. Cifelli; Thomas Martin (2020). "Tooth eruption in the Early Cretaceous British mammal Triconodon and description of a new species". Papers in Palaeontology. 7 (2): 1065–1080. Bibcode:2021PPal....7.1065J. doi:10.1002/spp2.1329. S2CID 225501396.
  352. ^ Mélina A. Celik; Matthew J. Phillips (2020). "Conflict resolution for Mesozoic mammals: reconciling phylogenetic incongruence among anatomical regions". Frontiers in Genetics. 11: Article 0651. doi:10.3389/fgene.2020.00651. PMC 7381353. PMID 32774343. S2CID 220383638.
  353. ^ Elis Newham; Pamela G. Gill; Philippa Brewer; Michael J. Benton; Vincent Fernandez; Neil J. Gostling; David Haberthür; Jukka Jernvall; Tuomas Kankaanpää; Aki Kallonen; Charles Navarro; Alexandra Pacureanu; Kelly Richards; Kate Robson Brown; Philipp Schneider; Heikki Suhonen; Paul Tafforeau; Katherine A. Williams; Berit Zeller-Plumhoff; Ian J. Corfe (2020). "Reptile-like physiology in Early Jurassic stem-mammals". Nature Communications. 11 (1): Article number 5121. Bibcode:2020NatCo..11.5121N. doi:10.1038/s41467-020-18898-4. PMC 7550344. PMID 33046697.
  354. ^ Shai Meiri; Eran Levin (2022). "Revisiting life history and morphological proxies for early mammaliaform metabolic rates". Nature Communications. 13 (1). 5562. Bibcode:2022NatCo..13.5562M. doi:10.1038/s41467-022-32715-0. PMC 9508135. PMID 36151068.
  355. ^ Elis Newham; Pamela G. Gill; Michael J. Benton; Philippa Brewer; Neil J. Gostling; David Haberthür; Jukka Jernvall; Tuomas Kankaanpää; Aki Kallonen; Charles Navarro; Alexandra Pacureanu; Kelly Richards; Kate Robson Brown; Philipp Schneider; Heikki Suhonen; Paul Tafforeau; Katherine A. Williams; Berit Zeller-Plumhoff; Ian J. Corfe (2022). "Reply to: Revisiting life history and morphological proxies for early mammaliaform metabolic rates". Nature Communications. 13 (1). 5564. Bibcode:2022NatCo..13.5564N. doi:10.1038/s41467-022-32716-z. PMC 9508248. PMID 36151135.
  356. ^ Kai R. K. Jäger; Richard L. Cifelli; Thomas Martin (2020). "Molar occlusion and jaw roll in early crown mammals". Scientific Reports. 10 (1): Article number 22378. Bibcode:2020NatSR..1022378J. doi:10.1038/s41598-020-79159-4. PMC 7759581. PMID 33361774.
  357. ^ Benedict King; Robin M. D. Beck (2020). "Tip dating supports novel resolutions of controversial relationships among early mammals". Proceedings of the Royal Society B: Biological Sciences. 287 (1928): Article ID 20200943. doi:10.1098/rspb.2020.0943. PMC 7341916. PMID 32517606.
  358. ^ Danielle Fraser; S. Kathleen Lyons (2020). "Mammal community structure through the Paleocene-Eocene thermal maximum". The American Naturalist. 196 (3): 271–290. doi:10.1086/709819. PMID 32813992. S2CID 218954358.
  359. ^ Laura Domingo; Rodrigo L. Tomassini; Claudia I. Montalvo; Dánae Sanz-Pérez; María Teresa Alberdi (2020). "The Great American Biotic Interchange revisited: a new perspective from the stable isotope record of Argentine Pampas fossil mammals". Scientific Reports. 10 (1): Article number 1608. Bibcode:2020NatSR..10.1608D. doi:10.1038/s41598-020-58575-6. PMC 6994648. PMID 32005879.
  360. ^ Guillermo Rodríguez-Gómez; Guillermo H. Cassini; Paul Palmqvist; M. Susana Bargo; Néstor Toledo; Jesús A. Martín-González; Nahuel A. Muñoz; Richard F. Kay; Sergio F. Vizcaíno (2020). "Testing the hypothesis of an impoverished predator guild in the Early Miocene ecosystems of Patagonia: An analysis of meat availability and competition intensity among carnivores". Palaeogeography, Palaeoclimatology, Palaeoecology. 554: Article 109805. Bibcode:2020PPP...55409805R. doi:10.1016/j.palaeo.2020.109805. S2CID 219461779.
  361. ^ Juan D. Carrillo; Søren Faurby; Daniele Silvestro; Alexander Zizka; Carlos Jaramillo; Christine D. Bacon; Alexandre Antonelli (2020). "Disproportionate extinction of South American mammals drove the asymmetry of the Great American Biotic Interchange". Proceedings of the National Academy of Sciences of the United States of America. 117 (42): 26281–26287. Bibcode:2020PNAS..11726281C. doi:10.1073/pnas.2009397117. PMC 7585031. PMID 33020313.
  362. ^ Julien Louys; Patrick Roberts (2020). "Environmental drivers of megafauna and hominin extinction in Southeast Asia". Nature. 586 (7829): 402–406. Bibcode:2020Natur.586..402L. doi:10.1038/s41586-020-2810-y. hdl:10072/402368. PMID 33029012. S2CID 222217295.
  363. ^ Tobias Andermann; Søren Faurby; Samuel T. Turvey; Alexandre Antonelli; Daniele Silvestro (2020). "The past and future human impact on mammalian diversity". Science Advances. 6 (36): eabb2313. Bibcode:2020SciA....6.2313A. doi:10.1126/sciadv.abb2313. PMC 7473673. PMID 32917612.