Jump to content

α-Methylphenylalanine

From Wikipedia, the free encyclopedia
(Redirected from ΑMePhe)
α-Methylphenylalanine
Clinical data
Other namesα-MePhe; α-Me-Phe; α-Methyl-Phe; AMPA; α-Methyl-L-Phenylalanine
Drug classTyrosine hydroxylase inhibitor; Phenylalanine hydroxylase inhibitor; Catecholamine depleting agent; Catecholamine releasing agent
Identifiers
  • (2S)-2-amino-2-methyl-3-phenylpropanoic acid
CAS Number
PubChem CID
ChemSpider
UNII
ChEBI
ChEMBL
CompTox Dashboard (EPA)
Chemical and physical data
FormulaC10H13NO2
Molar mass179.219 g·mol−1
3D model (JSmol)
  • C[C@](CC1=CC=CC=C1)(C(=O)O)N
  • InChI=1S/C10H13NO2/c1-10(11,9(12)13)7-8-5-3-2-4-6-8/h2-6H,7,11H2,1H3,(H,12,13)/t10-/m0/s1
  • Key:HYOWVAAEQCNGLE-JTQLQIEISA-N

α-Methylphenylalanine (α-MePhe or AMPA) is an artificial amino acid and a phenethylamine and amphetamine derivative.[1] It is the α-methylated analogue of phenylalanine, the precursor of the catecholamine neurotransmitters, and the amino acid analogue of amphetamine (α-methylphenethylamine), a psychostimulant and monoamine releasing agent.[1]

α-MePhe is a tyrosine hydroxylase inhibitor, thereby preventing the transformation of tyrosine into L-DOPA, and results in depletion of the catecholamine neurotransmitters.[2] It is also an inhibitor of phenylalanine hydroxylase, and in conjunction with phenylalanine administration, induces hyperphenylalaninemia analogous to that in phenylketonuria in animals.[3][4][5][6][7] The drug is known to produce metaraminol (3,β-dihydroxyamphetamine), a catecholamine releasing agent, as an active metabolite in animals, and this metabolite contributes to its effects.[2][8]

α-MePhe is a substrate of the L-type amino acid transporter 1 (LAT1), which transports it across the blood–brain barrier into the central nervous system.[9][10]

See also

[edit]

References

[edit]
  1. ^ a b "alpha-methyl-L-phenylalanine". PubChem. Retrieved 8 October 2024.
  2. ^ a b Torchiana ML, Porter CC, Stone CA, Hanson HM (May 1970). "Some biochemical and pharmacological actions of α-methylphenylalanine". Biochem Pharmacol. 19 (5): 1601–1614. doi:10.1016/0006-2952(70)90148-6. PMID 4998458.
  3. ^ Wyse AT, Dos Santos TM, Seminotti B, Leipnitz G (June 2021). "Insights from Animal Models on the Pathophysiology of Hyperphenylalaninemia: Role of Mitochondrial Dysfunction, Oxidative Stress and Inflammation". Mol Neurobiol. 58 (6): 2897–2909. doi:10.1007/s12035-021-02304-1. PMID 33550493.
  4. ^ Alexander SP, Fabbro D, Kelly E, Mathie A, Peters JA, Veale EL, Armstrong JF, Faccenda E, Harding SD, Pawson AJ, Sharman JL, Southan C, Davies JA (December 2019). "THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Enzymes". Br J Pharmacol. 176 Suppl 1 (Suppl 1): S297–S396. doi:10.1111/bph.14752. PMC 6844577. PMID 31710714.
  5. ^ Benevenga NJ, Steele RD (1984). "Adverse effects of excessive consumption of amino acids". Annu Rev Nutr. 4: 157–181. doi:10.1146/annurev.nu.04.070184.001105. PMID 6235826.
  6. ^ Greengard O, Yoss MS, Del Valle JA (June 1976). "Alpha-methylphenylalanine, a new inducer of chronic hyperphenylalaninemia in sucling rats". Science. 192 (4243): 1007–1008. doi:10.1126/science.944951. PMID 944951.
  7. ^ Huether G, Neuhoff V (1981). "Use of alpha-methylphenylalanine for studies of brain development in experimental phenylketonuria". J Inherit Metab Dis. 4 (2): 67–68. doi:10.1007/BF02263594. PMID 6790851.
  8. ^ Bollinger FW (April 1971). "Resolution of DL-alpha-methylphenylalanine". J Med Chem. 14 (4): 373–375. doi:10.1021/jm00286a028. PMID 5553758.
  9. ^ Zhang J, Xu Y, Li D, Fu L, Zhang X, Bao Y, Zheng L (2020). "Review of the Correlation of LAT1 With Diseases: Mechanism and Treatment". Front Chem. 8: 564809. doi:10.3389/fchem.2020.564809. PMC 7606929. PMID 33195053.
  10. ^ Chen S, Jin C, Ohgaki R, Xu M, Okanishi H, Kanai Y (February 2024). "Structure-activity characteristics of phenylalanine analogs selectively transported by L-type amino acid transporter 1 (LAT1)". Sci Rep. 14 (1): 4651. doi:10.1038/s41598-024-55252-w. PMC 10897196. PMID 38409393.