Log page index: User:ProteinBoxBot/PBB_Log_Index
Protein Status Quick Log - Date: 21:49, 14 November 2007 (UTC)
[edit]
Proteins without matches (11)
[edit]
Proteins with a High Potential Match (9)
[edit]
Redirected Proteins (5)
[edit]
Manual Inspection (Page not found) (20)
[edit]
Protein Status Grid - Date: 21:49, 14 November 2007 (UTC)
[edit]
Vebose Log - Date: 21:49, 14 November 2007 (UTC)
[edit]
- INFO: Beginning work on CACNA1A... {November 14, 2007 1:20:10 PM PST}
- AMBIGUITY: Did not locate an acceptable page to update. {November 14, 2007 1:21:08 PM PST}
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{PBB_Controls
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}
<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{GNF_Protein_box
| image =
| image_source =
| PDB =
| Name = Calcium channel, voltage-dependent, P/Q type, alpha 1A subunit
| HGNCid = 1388
| Symbol = CACNA1A
| AltSymbols =; APCA; CACNL1A4; CAV2.1; EA2; FHM; HPCA; MHP; MHP1; SCA6
| OMIM = 601011
| ECnumber =
| Homologene = 56383
| MGIid = 109482
| GeneAtlas_image1 = PBB_GE_CACNA1A_214933_at_tn.png
| GeneAtlas_image2 = PBB_GE_CACNA1A_206399_x_at_tn.png
| GeneAtlas_image3 = PBB_GE_CACNA1A_210770_s_at_tn.png
| Function = {{GNF_GO|id=GO:0005216 |text = ion channel activity}} {{GNF_GO|id=GO:0005245 |text = voltage-gated calcium channel activity}} {{GNF_GO|id=GO:0005509 |text = calcium ion binding}} {{GNF_GO|id=GO:0005515 |text = protein binding}} {{GNF_GO|id=GO:0019905 |text = syntaxin binding}}
| Component = {{GNF_GO|id=GO:0005634 |text = nucleus}} {{GNF_GO|id=GO:0005737 |text = cytoplasm}} {{GNF_GO|id=GO:0005886 |text = plasma membrane}} {{GNF_GO|id=GO:0005891 |text = voltage-gated calcium channel complex}} {{GNF_GO|id=GO:0016020 |text = membrane}} {{GNF_GO|id=GO:0016021 |text = integral to membrane}} {{GNF_GO|id=GO:0042995 |text = cell projection}}
| Process = {{GNF_GO|id=GO:0006811 |text = ion transport}} {{GNF_GO|id=GO:0006816 |text = calcium ion transport}} {{GNF_GO|id=GO:0007204 |text = elevation of cytosolic calcium ion concentration}} {{GNF_GO|id=GO:0007268 |text = synaptic transmission}} {{GNF_GO|id=GO:0007399 |text = nervous system development}} {{GNF_GO|id=GO:0008219 |text = cell death}}
| Orthologs = {{GNF_Ortholog_box
| Hs_EntrezGene = 773
| Hs_Ensembl = ENSG00000141837
| Hs_RefseqProtein = NP_000059
| Hs_RefseqmRNA = NM_000068
| Hs_GenLoc_db =
| Hs_GenLoc_chr = 19
| Hs_GenLoc_start = 13179088
| Hs_GenLoc_end = 13478038
| Hs_Uniprot = O00555
| Mm_EntrezGene = 12286
| Mm_Ensembl = ENSMUSG00000034656
| Mm_RefseqmRNA = XM_986985
| Mm_RefseqProtein = XP_992079
| Mm_GenLoc_db =
| Mm_GenLoc_chr = 8
| Mm_GenLoc_start = 87305750
| Mm_GenLoc_end = 87530351
| Mm_Uniprot = Q2TPN3
}}
}}
'''Calcium channel, voltage-dependent, P/Q type, alpha 1A subunit''', also known as '''CACNA1A''', is a human [[gene]].
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{PBB_Summary
| section_title =
| summary_text = Voltage-dependent calcium channels mediate the entry of calcium ions into excitable cells, and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, and gene expression. Calcium channels are multisubunit complexes composed of alpha-1, beta, alpha-2/delta, and gamma subunits. The channel activity is directed by the pore-forming alpha-1 subunit, whereas, the others act as auxiliary subunits regulating this activity. The distinctive properties of the calcium channel types are related primarily to the expression of a variety of alpha-1 isoforms, alpha-1A, B, C, D, E, and S. This gene encodes the alpha-1A subunit, which is predominantly expressed in neuronal tissue. Mutations in this gene are associated with 2 neurologic disorders, familial hemiplegic migraine and episodic ataxia 2. This gene also exhibits polymorphic variation due to (CAG)n-repeats. Multiple transcript variants have been described, however, the full-length nature of not all is known. In one set of transcript variants, the (CAG)n-repeats occur in the 3' UTR, and are not associated with any disease. But in another set of variants, an insertion extends the coding region to include the (CAG)n-repeats which encode a polyglutamine tract. Expansion of the (CAG)n-repeats from the normal 4-16 to 21-28 in the coding region is associated with spinocerebellar ataxia 6.<ref>{{cite web | title = Entrez Gene: CACNA1A calcium channel, voltage-dependent, P/Q type, alpha 1A subunit| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=773| accessdate = }}</ref>
}}
==References==
{{reflist}}
==Further reading==
{{refbegin | 2}}
{{PBB_Further_reading
| citations =
*{{cite journal | author=Terwindt G, Kors E, Haan J, ''et al.'' |title=Mutation analysis of the CACNA1A calcium channel subunit gene in 27 patients with sporadic hemiplegic migraine. |journal=Arch. Neurol. |volume=59 |issue= 6 |pages= 1016-8 |year= 2002 |pmid= 12056940 |doi= }}
*{{cite journal | author=Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J |title=International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. |journal=Pharmacol. Rev. |volume=57 |issue= 4 |pages= 411-25 |year= 2006 |pmid= 16382099 |doi= 10.1124/pr.57.4.5 }}
*{{cite journal | author=Perez-Reyes E, Castellano A, Kim HS, ''et al.'' |title=Cloning and expression of a cardiac/brain beta subunit of the L-type calcium channel. |journal=J. Biol. Chem. |volume=267 |issue= 3 |pages= 1792-7 |year= 1992 |pmid= 1370480 |doi= }}
*{{cite journal | author=Barry EL, Viglione MP, Kim YI, Froehner SC |title=Expression and antibody inhibition of P-type calcium channels in human small-cell lung carcinoma cells. |journal=J. Neurosci. |volume=15 |issue= 1 Pt 1 |pages= 274-83 |year= 1995 |pmid= 7823133 |doi= }}
*{{cite journal | author=Joutel A, Bousser MG, Biousse V, ''et al.'' |title=A gene for familial hemiplegic migraine maps to chromosome 19. |journal=Nat. Genet. |volume=5 |issue= 1 |pages= 40-5 |year= 1993 |pmid= 8220421 |doi= 10.1038/ng0993-40 }}
*{{cite journal | author=Margolis RL, Breschel TS, Li SH, ''et al.'' |title=Characterization of cDNA clones containing CCA trinucleotide repeats derived from human brain. |journal=Somat. Cell Mol. Genet. |volume=21 |issue= 4 |pages= 279-84 |year= 1996 |pmid= 8525433 |doi= }}
*{{cite journal | author=Rettig J, Sheng ZH, Kim DK, ''et al.'' |title=Isoform-specific interaction of the alpha1A subunits of brain Ca2+ channels with the presynaptic proteins syntaxin and SNAP-25. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=93 |issue= 14 |pages= 7363-8 |year= 1996 |pmid= 8692999 |doi= }}
*{{cite journal | author=Diriong S, Lory P, Williams ME, ''et al.'' |title=Chromosomal localization of the human genes for alpha 1A, alpha 1B, and alpha 1E voltage-dependent Ca2+ channel subunits. |journal=Genomics |volume=30 |issue= 3 |pages= 605-9 |year= 1997 |pmid= 8825650 |doi= 10.1006/geno.1995.1284 }}
*{{cite journal | author=Ophoff RA, Terwindt GM, Vergouwe MN, ''et al.'' |title=Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. |journal=Cell |volume=87 |issue= 3 |pages= 543-52 |year= 1996 |pmid= 8898206 |doi= }}
*{{cite journal | author=Zhuchenko O, Bailey J, Bonnen P, ''et al.'' |title=Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha 1A-voltage-dependent calcium channel. |journal=Nat. Genet. |volume=15 |issue= 1 |pages= 62-9 |year= 1997 |pmid= 8988170 |doi= 10.1038/ng0197-62 }}
*{{cite journal | author=De Waard M, Liu H, Walker D, ''et al.'' |title=Direct binding of G-protein betagamma complex to voltage-dependent calcium channels. |journal=Nature |volume=385 |issue= 6615 |pages= 446-50 |year= 1997 |pmid= 9009193 |doi= 10.1038/385446a0 }}
*{{cite journal | author=Qin N, Platano D, Olcese R, ''et al.'' |title=Direct interaction of gbetagamma with a C-terminal gbetagamma-binding domain of the Ca2+ channel alpha1 subunit is responsible for channel inhibition by G protein-coupled receptors. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=94 |issue= 16 |pages= 8866-71 |year= 1997 |pmid= 9238069 |doi= }}
*{{cite journal | author=Riess O, Schöls L, Bottger H, ''et al.'' |title=SCA6 is caused by moderate CAG expansion in the alpha1A-voltage-dependent calcium channel gene. |journal=Hum. Mol. Genet. |volume=6 |issue= 8 |pages= 1289-93 |year= 1997 |pmid= 9259275 |doi= }}
*{{cite journal | author=Jodice C, Mantuano E, Veneziano L, ''et al.'' |title=Episodic ataxia type 2 (EA2) and spinocerebellar ataxia type 6 (SCA6) due to CAG repeat expansion in the CACNA1A gene on chromosome 19p. |journal=Hum. Mol. Genet. |volume=6 |issue= 11 |pages= 1973-8 |year= 1998 |pmid= 9302278 |doi= }}
*{{cite journal | author=Charvin N, L'evêque C, Walker D, ''et al.'' |title=Direct interaction of the calcium sensor protein synaptotagmin I with a cytoplasmic domain of the alpha1A subunit of the P/Q-type calcium channel. |journal=EMBO J. |volume=16 |issue= 15 |pages= 4591-6 |year= 1997 |pmid= 9303303 |doi= 10.1093/emboj/16.15.4591 }}
*{{cite journal | author=Ishikawa K, Tanaka H, Saito M, ''et al.'' |title=Japanese families with autosomal dominant pure cerebellar ataxia map to chromosome 19p13.1-p13.2 and are strongly associated with mild CAG expansions in the spinocerebellar ataxia type 6 gene in chromosome 19p13.1. |journal=Am. J. Hum. Genet. |volume=61 |issue= 2 |pages= 336-46 |year= 1997 |pmid= 9311738 |doi= }}
*{{cite journal | author=Walker D, Bichet D, Campbell KP, De Waard M |title=A beta 4 isoform-specific interaction site in the carboxyl-terminal region of the voltage-dependent Ca2+ channel alpha 1A subunit. |journal=J. Biol. Chem. |volume=273 |issue= 4 |pages= 2361-7 |year= 1998 |pmid= 9442082 |doi= }}
*{{cite journal | author=Yue Q, Jen JC, Thwe MM, ''et al.'' |title=De novo mutation in CACNA1A caused acetazolamide-responsive episodic ataxia. |journal=Am. J. Med. Genet. |volume=77 |issue= 4 |pages= 298-301 |year= 1998 |pmid= 9600739 |doi= }}
*{{cite journal | author=Hans M, Urrutia A, Deal C, ''et al.'' |title=Structural elements in domain IV that influence biophysical and pharmacological properties of human alpha1A-containing high-voltage-activated calcium channels. |journal=Biophys. J. |volume=76 |issue= 3 |pages= 1384-400 |year= 1999 |pmid= 10049321 |doi= }}
*{{cite journal | author=Walker D, Bichet D, Geib S, ''et al.'' |title=A new beta subtype-specific interaction in alpha1A subunit controls P/Q-type Ca2+ channel activation. |journal=J. Biol. Chem. |volume=274 |issue= 18 |pages= 12383-90 |year= 1999 |pmid= 10212211 |doi= }}
}}
{{refend}}
{{protein-stub}}
- INFO: Beginning work on CAMK2A... {November 14, 2007 1:21:08 PM PST}
- SEARCH REDIRECT: Control Box Found: CAMK2A {November 14, 2007 1:21:37 PM PST}
- UPDATE PROTEIN BOX: Updating Protein Box, No errors. {November 14, 2007 1:21:38 PM PST}
- UPDATE SUMMARY: Updating Summary, No Errors. {November 14, 2007 1:21:38 PM PST}
- UPDATE CITATIONS: Updating Citations, No Errors. {November 14, 2007 1:21:38 PM PST}
- UPDATED: Updated protein page: CAMK2A {November 14, 2007 1:21:45 PM PST}
- INFO: Beginning work on CTTN... {November 14, 2007 1:21:45 PM PST}
- AMBIGUITY: Did not locate an acceptable page to update. {November 14, 2007 1:22:18 PM PST}
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{PBB_Controls
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}
<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{GNF_Protein_box
| image = PBB_Protein_CTTN_image.jpg
| image_source = [[Protein_Data_Bank|PDB]] rendering based on 1x69.
| PDB = {{PDB2|1x69}}, {{PDB2|2d1x}}
| Name = Cortactin
| HGNCid = 3338
| Symbol = CTTN
| AltSymbols =; EMS1; FLJ34459
| OMIM = 164765
| ECnumber =
| Homologene = 3834
| MGIid = 99695
| GeneAtlas_image1 = PBB_GE_CTTN_201059_at_tn.png
| GeneAtlas_image2 = PBB_GE_CTTN_214074_s_at_tn.png
| Function = {{GNF_GO|id=GO:0005515 |text = protein binding}}
| Component = {{GNF_GO|id=GO:0001726 |text = ruffle}} {{GNF_GO|id=GO:0005625 |text = soluble fraction}} {{GNF_GO|id=GO:0005737 |text = cytoplasm}} {{GNF_GO|id=GO:0005856 |text = cytoskeleton}} {{GNF_GO|id=GO:0005938 |text = cell cortex}} {{GNF_GO|id=GO:0030027 |text = lamellipodium}}
| Process =
| Orthologs = {{GNF_Ortholog_box
| Hs_EntrezGene = 2017
| Hs_Ensembl = ENSG00000085733
| Hs_RefseqProtein = NP_005222
| Hs_RefseqmRNA = NM_005231
| Hs_GenLoc_db =
| Hs_GenLoc_chr = 11
| Hs_GenLoc_start = 69922292
| Hs_GenLoc_end = 69960337
| Hs_Uniprot = Q14247
| Mm_EntrezGene = 13043
| Mm_Ensembl = ENSMUSG00000031078
| Mm_RefseqmRNA = NM_007803
| Mm_RefseqProtein = NP_031829
| Mm_GenLoc_db =
| Mm_GenLoc_chr = 7
| Mm_GenLoc_start = 144245125
| Mm_GenLoc_end = 144280399
| Mm_Uniprot = Q3UGC2
}}
}}
'''Cortactin''', also known as '''CTTN''', is a human [[gene]].
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{PBB_Summary
| section_title =
| summary_text = This gene is overexpressed in breast cancer and squamous cell carcinomas of the head and neck. The encoded protein is localized in the cytoplasm and in areas of the cell-substratum contacts. This gene has two roles: (1) regulating the interactions between components of adherens-type junctions and (2) organizing the cytoskeleton and cell adhesion structures of epithelia and carcinoma cells. During apoptosis, the encoded protein is degraded in a caspase-dependent manner. The aberrant regulation of this gene contributes to tumor cell invasion and metastasis. Two splice variants that encode different isoforms have been identified for this gene.<ref>{{cite web | title = Entrez Gene: CTTN cortactin| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=2017| accessdate = }}</ref>
}}
==References==
{{reflist}}
==Further reading==
{{refbegin | 2}}
{{PBB_Further_reading
| citations =
*{{cite journal | author=Weed SA, Parsons JT |title=Cortactin: coupling membrane dynamics to cortical actin assembly. |journal=Oncogene |volume=20 |issue= 44 |pages= 6418-34 |year= 2001 |pmid= 11607842 |doi= 10.1038/sj.onc.1204783 }}
*{{cite journal | author=Buday L, Downward J |title=Roles of cortactin in tumor pathogenesis. |journal=Biochim. Biophys. Acta |volume=1775 |issue= 2 |pages= 263-73 |year= 2007 |pmid= 17292556 |doi= 10.1016/j.bbcan.2006.12.002 }}
*{{cite journal | author=Schuuring E, Verhoeven E, Mooi WJ, Michalides RJ |title=Identification and cloning of two overexpressed genes, U21B31/PRAD1 and EMS1, within the amplified chromosome 11q13 region in human carcinomas. |journal=Oncogene |volume=7 |issue= 2 |pages= 355-61 |year= 1992 |pmid= 1532244 |doi= }}
*{{cite journal | author=Wu H, Parsons JT |title=Cortactin, an 80/85-kilodalton pp60src substrate, is a filamentous actin-binding protein enriched in the cell cortex. |journal=J. Cell Biol. |volume=120 |issue= 6 |pages= 1417-26 |year= 1993 |pmid= 7680654 |doi= }}
*{{cite journal | author=Brookes S, Lammie GA, Schuuring E, ''et al.'' |title=Amplified region of chromosome band 11q13 in breast and squamous cell carcinomas encompasses three CpG islands telomeric of FGF3, including the expressed gene EMS1. |journal=Genes Chromosomes Cancer |volume=6 |issue= 4 |pages= 222-31 |year= 1993 |pmid= 7685625 |doi= }}
*{{cite journal | author=Maruyama K, Sugano S |title=Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. |journal=Gene |volume=138 |issue= 1-2 |pages= 171-4 |year= 1994 |pmid= 8125298 |doi= }}
*{{cite journal | author=Schuuring E, Verhoeven E, Litvinov S, Michalides RJ |title=The product of the EMS1 gene, amplified and overexpressed in human carcinomas, is homologous to a v-src substrate and is located in cell-substratum contact sites. |journal=Mol. Cell. Biol. |volume=13 |issue= 5 |pages= 2891-98 |year= 1993 |pmid= 8474448 |doi= }}
*{{cite journal | author=Maruyama S, Kurosaki T, Sada K, ''et al.'' |title=Physical and functional association of cortactin with Syk in human leukemic cell line K562. |journal=J. Biol. Chem. |volume=271 |issue= 12 |pages= 6631-5 |year= 1996 |pmid= 8636079 |doi= }}
*{{cite journal | author=van Damme H, Brok H, Schuuring-Scholtes E, Schuuring E |title=The redistribution of cortactin into cell-matrix contact sites in human carcinoma cells with 11q13 amplification is associated with both overexpression and post-translational modification. |journal=J. Biol. Chem. |volume=272 |issue= 11 |pages= 7374-80 |year= 1997 |pmid= 9054437 |doi= }}
*{{cite journal | author=Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, ''et al.'' |title=Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library. |journal=Gene |volume=200 |issue= 1-2 |pages= 149-56 |year= 1997 |pmid= 9373149 |doi= }}
*{{cite journal | author=Kinnunen T, Kaksonen M, Saarinen J, ''et al.'' |title=Cortactin-Src kinase signaling pathway is involved in N-syndecan-dependent neurite outgrowth. |journal=J. Biol. Chem. |volume=273 |issue= 17 |pages= 10702-8 |year= 1998 |pmid= 9553134 |doi= }}
*{{cite journal | author=Kim L, Wong TW |title=Growth factor-dependent phosphorylation of the actin-binding protein cortactin is mediated by the cytoplasmic tyrosine kinase FER. |journal=J. Biol. Chem. |volume=273 |issue= 36 |pages= 23542-8 |year= 1998 |pmid= 9722593 |doi= }}
*{{cite journal | author=Du Y, Weed SA, Xiong WC, ''et al.'' |title=Identification of a novel cortactin SH3 domain-binding protein and its localization to growth cones of cultured neurons. |journal=Mol. Cell. Biol. |volume=18 |issue= 10 |pages= 5838-51 |year= 1998 |pmid= 9742101 |doi= }}
*{{cite journal | author=Huang C, Liu J, Haudenschild CC, Zhan X |title=The role of tyrosine phosphorylation of cortactin in the locomotion of endothelial cells. |journal=J. Biol. Chem. |volume=273 |issue= 40 |pages= 25770-6 |year= 1998 |pmid= 9748248 |doi= }}
*{{cite journal | author=Katsube T, Takahisa M, Ueda R, ''et al.'' |title=Cortactin associates with the cell-cell junction protein ZO-1 in both Drosophila and mouse. |journal=J. Biol. Chem. |volume=273 |issue= 45 |pages= 29672-7 |year= 1998 |pmid= 9792678 |doi= }}
*{{cite journal | author=Ohoka Y, Takai Y |title=Isolation and characterization of cortactin isoforms and a novel cortactin-binding protein, CBP90. |journal=Genes Cells |volume=3 |issue= 9 |pages= 603-12 |year= 1998 |pmid= 9813110 |doi= }}
*{{cite journal | author=Schuuring E, van Damme H, Schuuring-Scholtes E, ''et al.'' |title=Characterization of the EMS1 gene and its product, human Cortactin. |journal=Cell Adhes. Commun. |volume=6 |issue= 2-3 |pages= 185-209 |year= 1999 |pmid= 9823470 |doi= }}
*{{cite journal | author=Campbell DH, Sutherland RL, Daly RJ |title=Signaling pathways and structural domains required for phosphorylation of EMS1/cortactin. |journal=Cancer Res. |volume=59 |issue= 20 |pages= 5376-85 |year= 1999 |pmid= 10537323 |doi= }}
*{{cite journal | author=Kapus A, Di Ciano C, Sun J, ''et al.'' |title=Cell volume-dependent phosphorylation of proteins of the cortical cytoskeleton and cell-cell contact sites. The role of Fyn and FER kinases. |journal=J. Biol. Chem. |volume=275 |issue= 41 |pages= 32289-98 |year= 2000 |pmid= 10921917 |doi= 10.1074/jbc.M003172200 }}
*{{cite journal | author=Weed SA, Karginov AV, Schafer DA, ''et al.'' |title=Cortactin localization to sites of actin assembly in lamellipodia requires interactions with F-actin and the Arp2/3 complex. |journal=J. Cell Biol. |volume=151 |issue= 1 |pages= 29-40 |year= 2000 |pmid= 11018051 |doi= }}
}}
{{refend}}
{{protein-stub}}
- INFO: Beginning work on F13A1... {November 14, 2007 1:22:18 PM PST}
- SEARCH REDIRECT: Control Box Found: F13A1 {November 14, 2007 1:22:43 PM PST}
- UPDATE PROTEIN BOX: Updating Protein Box, No errors. {November 14, 2007 1:22:44 PM PST}
- UPDATE SUMMARY: Updating Summary, No Errors. {November 14, 2007 1:22:44 PM PST}
- UPDATE CITATIONS: Updating Citations, No Errors. {November 14, 2007 1:22:44 PM PST}
- UPDATED: Updated protein page: F13A1 {November 14, 2007 1:22:51 PM PST}
- INFO: Beginning work on FOXO1A... {November 14, 2007 1:22:51 PM PST}
- SEARCH REDIRECT: Control Box Found: FOXO1A {November 14, 2007 1:23:31 PM PST}
- UPDATE PROTEIN BOX: Updating Protein Box, No errors. {November 14, 2007 1:23:34 PM PST}
- UPDATE SUMMARY: Updating Summary, No Errors. {November 14, 2007 1:23:34 PM PST}
- UPDATE CITATIONS: Updating Citations, No Errors. {November 14, 2007 1:23:34 PM PST}
- UPDATED: Updated protein page: FOXO1A {November 14, 2007 1:23:41 PM PST}
- INFO: Beginning work on FOXP3... {November 14, 2007 1:41:46 PM PST}
- AMBIGUITY: Did not locate an acceptable page to update. {November 14, 2007 1:42:39 PM PST}
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{PBB_Controls
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}
<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{GNF_Protein_box
| image =
| image_source =
| PDB =
| Name = Forkhead box P3
| HGNCid = 6106
| Symbol = FOXP3
| AltSymbols =; AIID; DIETER; IPEX; JM2; MGC141961; MGC141963; PIDX; XPID
| OMIM = 300292
| ECnumber =
| Homologene = 8516
| MGIid = 1891436
| GeneAtlas_image1 = PBB_GE_FOXP3_221333_at_tn.png
| GeneAtlas_image2 = PBB_GE_FOXP3_221334_s_at_tn.png
| Function = {{GNF_GO|id=GO:0003700 |text = transcription factor activity}} {{GNF_GO|id=GO:0005515 |text = protein binding}} {{GNF_GO|id=GO:0008270 |text = zinc ion binding}} {{GNF_GO|id=GO:0016565 |text = general transcriptional repressor activity}} {{GNF_GO|id=GO:0042803 |text = protein homodimerization activity}} {{GNF_GO|id=GO:0043565 |text = sequence-specific DNA binding}} {{GNF_GO|id=GO:0046872 |text = metal ion binding}} {{GNF_GO|id=GO:0051059 |text = NF-kappaB binding}} {{GNF_GO|id=GO:0051525 |text = NFAT protein binding}}
| Component = {{GNF_GO|id=GO:0005622 |text = intracellular}} {{GNF_GO|id=GO:0005634 |text = nucleus}} {{GNF_GO|id=GO:0043234 |text = protein complex}}
| Process = {{GNF_GO|id=GO:0002725 |text = negative regulation of T cell cytokine production}} {{GNF_GO|id=GO:0006338 |text = chromatin remodeling}} {{GNF_GO|id=GO:0006350 |text = transcription}} {{GNF_GO|id=GO:0008285 |text = negative regulation of cell proliferation}} {{GNF_GO|id=GO:0032088 |text = inhibition of NF-kappaB transcription factor}} {{GNF_GO|id=GO:0032689 |text = negative regulation of interferon-gamma production}} {{GNF_GO|id=GO:0032693 |text = negative regulation of interleukin-10 production}} {{GNF_GO|id=GO:0032703 |text = negative regulation of interleukin-2 production}} {{GNF_GO|id=GO:0032713 |text = negative regulation of interleukin-4 production}} {{GNF_GO|id=GO:0032792 |text = inhibition of CREB transcription factor}} {{GNF_GO|id=GO:0042110 |text = T cell activation}} {{GNF_GO|id=GO:0043029 |text = T cell homeostasis}} {{GNF_GO|id=GO:0045085 |text = negative regulation of interleukin-2 biosynthetic process}} {{GNF_GO|id=GO:0045892 |text = negative regulation of transcription, DNA-dependent}} {{GNF_GO|id=GO:0045941 |text = positive regulation of transcription}} {{GNF_GO|id=GO:0046007 |text = negative regulation of activated T cell proliferation}} {{GNF_GO|id=GO:0050710 |text = negative regulation of cytokine secretion}} {{GNF_GO|id=GO:0050777 |text = negative regulation of immune response}}
| Orthologs = {{GNF_Ortholog_box
| Hs_EntrezGene = 50943
| Hs_Ensembl = ENSG00000049768
| Hs_RefseqProtein = NP_054728
| Hs_RefseqmRNA = NM_014009
| Hs_GenLoc_db =
| Hs_GenLoc_chr = X
| Hs_GenLoc_start = 48993841
| Hs_GenLoc_end = 49008232
| Hs_Uniprot = Q9BZS1
| Mm_EntrezGene = 20371
| Mm_Ensembl = ENSMUSG00000039521
| Mm_RefseqmRNA = NM_054039
| Mm_RefseqProtein = NP_473380
| Mm_GenLoc_db =
| Mm_GenLoc_chr = X
| Mm_GenLoc_start = 6743278
| Mm_GenLoc_end = 6752193
| Mm_Uniprot = Q53Z59
}}
}}
'''Forkhead box P3''', also known as '''FOXP3''', is a human [[gene]].
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{PBB_Summary
| section_title =
| summary_text =
}}
==Further reading==
{{refbegin | 2}}
{{PBB_Further_reading
| citations =
*{{cite journal | author=Schmidt-Weber CB, Blaser K |title=The role of the FOXP3 transcription factor in the immune regulation of allergic asthma. |journal=Current allergy and asthma reports |volume=5 |issue= 5 |pages= 356-61 |year= 2006 |pmid= 16091206 |doi= }}
*{{cite journal | author=Li B, Samanta A, Song X, ''et al.'' |title=FOXP3 ensembles in T-cell regulation. |journal=Immunol. Rev. |volume=212 |issue= |pages= 99-113 |year= 2006 |pmid= 16903909 |doi= 10.1111/j.0105-2896.2006.00405.x }}
*{{cite journal | author=Ziegler SF |title=FOXP3: not just for regulatory T cells anymore. |journal=Eur. J. Immunol. |volume=37 |issue= 1 |pages= 21-3 |year= 2007 |pmid= 17183612 |doi= 10.1002/eji.200636929 }}
*{{cite journal | author=Zhang L, Zhao Y |title=The regulation of Foxp3 expression in regulatory CD4(+)CD25(+)T cells: multiple pathways on the road. |journal=J. Cell. Physiol. |volume=211 |issue= 3 |pages= 590-7 |year= 2007 |pmid= 17311282 |doi= 10.1002/jcp.21001 }}
*{{cite journal | author=Bacchetta R, Gambineri E, Roncarolo MG |title=Role of regulatory T cells and FOXP3 in human diseases. |journal=J. Allergy Clin. Immunol. |volume=120 |issue= 2 |pages= 227-35; quiz 236-7 |year= 2007 |pmid= 17666212 |doi= 10.1016/j.jaci.2007.06.023 }}
*{{cite journal | author=Ochs HD, Torgerson TR |title=Immune dysregulation, polyendocrinopathy, enteropathy, X-linked inheritance: model for autoaggression. |journal=Adv. Exp. Med. Biol. |volume=601 |issue= |pages= 27-36 |year= 2007 |pmid= 17712989 |doi= }}
*{{cite journal | author=Long E, Wood KJ |title=Understanding FOXP3: progress towards achieving transplantation tolerance. |journal=Transplantation |volume=84 |issue= 4 |pages= 459-61 |year= 2007 |pmid= 17713426 |doi= 10.1097/01.tp.0000275424.52998.ad }}
*{{cite journal | author=Bennett CL, Yoshioka R, Kiyosawa H, ''et al.'' |title=X-Linked syndrome of polyendocrinopathy, immune dysfunction, and diarrhea maps to Xp11.23-Xq13.3. |journal=Am. J. Hum. Genet. |volume=66 |issue= 2 |pages= 461-8 |year= 2000 |pmid= 10677306 |doi= }}
*{{cite journal | author=Hartley JL, Temple GF, Brasch MA |title=DNA cloning using in vitro site-specific recombination. |journal=Genome Res. |volume=10 |issue= 11 |pages= 1788-95 |year= 2001 |pmid= 11076863 |doi= }}
*{{cite journal | author=Chatila TA, Blaeser F, Ho N, ''et al.'' |title=JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic disregulation syndrome. |journal=J. Clin. Invest. |volume=106 |issue= 12 |pages= R75-81 |year= 2001 |pmid= 11120765 |doi= }}
*{{cite journal | author=Wildin RS, Ramsdell F, Peake J, ''et al.'' |title=X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. |journal=Nat. Genet. |volume=27 |issue= 1 |pages= 18-20 |year= 2001 |pmid= 11137992 |doi= 10.1038/83707 }}
*{{cite journal | author=Bennett CL, Christie J, Ramsdell F, ''et al.'' |title=The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. |journal=Nat. Genet. |volume=27 |issue= 1 |pages= 20-1 |year= 2001 |pmid= 11137993 |doi= 10.1038/83713 }}
*{{cite journal | author=Brunkow ME, Jeffery EW, Hjerrild KA, ''et al.'' |title=Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. |journal=Nat. Genet. |volume=27 |issue= 1 |pages= 68-73 |year= 2001 |pmid= 11138001 |doi= 10.1038/83784 }}
*{{cite journal | author=Schubert LA, Jeffery E, Zhang Y, ''et al.'' |title=Scurfin (FOXP3) acts as a repressor of transcription and regulates T cell activation. |journal=J. Biol. Chem. |volume=276 |issue= 40 |pages= 37672-9 |year= 2001 |pmid= 11483607 |doi= 10.1074/jbc.M104521200 }}
*{{cite journal | author=Kobayashi I, Shiari R, Yamada M, ''et al.'' |title=Novel mutations of FOXP3 in two Japanese patients with immune dysregulation, polyendocrinopathy, enteropathy, X linked syndrome (IPEX). |journal=J. Med. Genet. |volume=38 |issue= 12 |pages= 874-6 |year= 2002 |pmid= 11768393 |doi= }}
*{{cite journal | author=Tommasini A, Ferrari S, Moratto D, ''et al.'' |title=X-chromosome inactivation analysis in a female carrier of FOXP3 mutation. |journal=Clin. Exp. Immunol. |volume=130 |issue= 1 |pages= 127-30 |year= 2002 |pmid= 12296863 |doi= }}
*{{cite journal | author=Strausberg RL, Feingold EA, Grouse LH, ''et al.'' |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899-903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 }}
*{{cite journal | author=Bassuny WM, Ihara K, Sasaki Y, ''et al.'' |title=A functional polymorphism in the promoter/enhancer region of the FOXP3/Scurfin gene associated with type 1 diabetes. |journal=Immunogenetics |volume=55 |issue= 3 |pages= 149-56 |year= 2003 |pmid= 12750858 |doi= 10.1007/s00251-003-0559-8 }}
*{{cite journal | author=Walker MR, Kasprowicz DJ, Gersuk VH, ''et al.'' |title=Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25- T cells. |journal=J. Clin. Invest. |volume=112 |issue= 9 |pages= 1437-43 |year= 2003 |pmid= 14597769 |doi= 10.1172/JCI200319441 }}
*{{cite journal | author=Owen CJ, Jennings CE, Imrie H, ''et al.'' |title=Mutational analysis of the FOXP3 gene and evidence for genetic heterogeneity in the immunodysregulation, polyendocrinopathy, enteropathy syndrome. |journal=J. Clin. Endocrinol. Metab. |volume=88 |issue= 12 |pages= 6034-9 |year= 2004 |pmid= 14671208 |doi= }}
}}
{{refend}}
{{protein-stub}}
- INFO: Beginning work on GNAQ... {November 14, 2007 1:23:41 PM PST}
- AMBIGUITY: Did not locate an acceptable page to update. {November 14, 2007 1:24:56 PM PST}
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{PBB_Controls
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}
<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{GNF_Protein_box
| image = PBB_Protein_GNAQ_image.jpg
| image_source = [[Protein_Data_Bank|PDB]] rendering based on 2bcj.
| PDB = {{PDB2|2bcj}}
| Name = Guanine nucleotide binding protein (G protein), q polypeptide
| HGNCid = 4390
| Symbol = GNAQ
| AltSymbols =; G-ALPHA-q; GAQ
| OMIM = 600998
| ECnumber =
| Homologene = 1566
| MGIid = 95776
| GeneAtlas_image1 = PBB_GE_GNAQ_202615_at_tn.png
| GeneAtlas_image2 = PBB_GE_GNAQ_211426_x_at_tn.png
| Function = {{GNF_GO|id=GO:0000166 |text = nucleotide binding}} {{GNF_GO|id=GO:0003924 |text = GTPase activity}} {{GNF_GO|id=GO:0004871 |text = signal transducer activity}} {{GNF_GO|id=GO:0005525 |text = GTP binding}}
| Component = {{GNF_GO|id=GO:0005737 |text = cytoplasm}} {{GNF_GO|id=GO:0005834 |text = heterotrimeric G-protein complex}} {{GNF_GO|id=GO:0005886 |text = plasma membrane}}
| Process = {{GNF_GO|id=GO:0001501 |text = skeletal development}} {{GNF_GO|id=GO:0001508 |text = regulation of action potential}} {{GNF_GO|id=GO:0006471 |text = protein amino acid ADP-ribosylation}} {{GNF_GO|id=GO:0007165 |text = signal transduction}} {{GNF_GO|id=GO:0007186 |text = G-protein coupled receptor protein signaling pathway}} {{GNF_GO|id=GO:0007189 |text = G-protein signaling, adenylate cyclase activating pathway}} {{GNF_GO|id=GO:0007202 |text = phospholipase C activation}} {{GNF_GO|id=GO:0007215 |text = glutamate signaling pathway}} {{GNF_GO|id=GO:0007507 |text = heart development}} {{GNF_GO|id=GO:0007596 |text = blood coagulation}} {{GNF_GO|id=GO:0016322 |text = neuron remodeling}} {{GNF_GO|id=GO:0042733 |text = embryonic digit morphogenesis}} {{GNF_GO|id=GO:0045634 |text = regulation of melanocyte differentiation}} {{GNF_GO|id=GO:0048066 |text = pigmentation during development}}
| Orthologs = {{GNF_Ortholog_box
| Hs_EntrezGene = 2776
| Hs_Ensembl = ENSG00000156052
| Hs_RefseqProtein = NP_002063
| Hs_RefseqmRNA = NM_002072
| Hs_GenLoc_db =
| Hs_GenLoc_chr = 9
| Hs_GenLoc_start = 79520823
| Hs_GenLoc_end = 79836194
| Hs_Uniprot = P50148
| Mm_EntrezGene = 14682
| Mm_Ensembl = ENSMUSG00000024639
| Mm_RefseqmRNA = NM_008139
| Mm_RefseqProtein = NP_032165
| Mm_GenLoc_db =
| Mm_GenLoc_chr = 19
| Mm_GenLoc_start = 16199850
| Mm_GenLoc_end = 16454472
| Mm_Uniprot = Q3UHH5
}}
}}
'''Guanine nucleotide binding protein (G protein), q polypeptide''', also known as '''GNAQ''', is a human [[gene]].
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{PBB_Summary
| section_title =
| summary_text = Guanine nucleotide-binding proteins are a family of heterotrimeric proteins that couple cell surface, 7-transmembrane domain receptors to intracellular signaling pathways. Receptor activation catalyzes the exchange of GTP for GDP bound to the inactive G protein alpha subunit resulting in a conformational change and dissociation of the complex. The G protein alpha and beta-gamma subunits are capable of regulating various cellular effectors. Activation is terminated by a GTPase intrinsic to the G-alpha subunit. G-alpha-q is the alpha subunit of one of the heterotrimeric GTP-binding proteins that mediates stimulation of phospholipase C-beta (MIM 600230).[supplied by OMIM]<ref>{{cite web | title = Entrez Gene: GNAQ guanine nucleotide binding protein (G protein), q polypeptide| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=2776| accessdate = }}</ref>
}}
==References==
{{reflist}}
==Further reading==
{{refbegin | 2}}
{{PBB_Further_reading
| citations =
*{{cite journal | author=Raymond JR, Mukhin YV, Gelasco A, ''et al.'' |title=Multiplicity of mechanisms of serotonin receptor signal transduction. |journal=Pharmacol. Ther. |volume=92 |issue= 2-3 |pages= 179-212 |year= 2002 |pmid= 11916537 |doi= }}
*{{cite journal | author=Van Oekelen D, Luyten WH, Leysen JE |title=5-HT2A and 5-HT2C receptors and their atypical regulation properties. |journal=Life Sci. |volume=72 |issue= 22 |pages= 2429-49 |year= 2003 |pmid= 12650852 |doi= }}
*{{cite journal | author=Lesch KP, Manji HK |title=Signal-transducing G proteins and antidepressant drugs: evidence for modulation of alpha subunit gene expression in rat brain. |journal=Biol. Psychiatry |volume=32 |issue= 7 |pages= 549-79 |year= 1992 |pmid= 1333286 |doi= }}
*{{cite journal | author=Thomas CP, Dunn MJ, Mattera R |title=Ca2+ signalling in K562 human erythroleukaemia cells: effect of dimethyl sulphoxide and role of G-proteins in thrombin- and thromboxane A2-activated pathways. |journal=Biochem. J. |volume=312 ( Pt 1) |issue= |pages= 151-8 |year= 1996 |pmid= 7492305 |doi= }}
*{{cite journal | author=Blin N, Yun J, Wess J |title=Mapping of single amino acid residues required for selective activation of Gq/11 by the m3 muscarinic acetylcholine receptor. |journal=J. Biol. Chem. |volume=270 |issue= 30 |pages= 17741-8 |year= 1995 |pmid= 7629074 |doi= }}
*{{cite journal | author=Kabouridis PS, Waters ST, Escobar S, ''et al.'' |title=Expression of GTP-binding protein alpha subunits in human thymocytes. |journal=Mol. Cell. Biochem. |volume=144 |issue= 1 |pages= 45-51 |year= 1995 |pmid= 7791744 |doi= }}
*{{cite journal | author=Allgeier A, Offermanns S, Van Sande J, ''et al.'' |title=The human thyrotropin receptor activates G-proteins Gs and Gq/11. |journal=J. Biol. Chem. |volume=269 |issue= 19 |pages= 13733-5 |year= 1994 |pmid= 8188646 |doi= }}
*{{cite journal | author=Wedegaertner PB, Chu DH, Wilson PT, ''et al.'' |title=Palmitoylation is required for signaling functions and membrane attachment of Gq alpha and Gs alpha. |journal=J. Biol. Chem. |volume=268 |issue= 33 |pages= 25001-8 |year= 1993 |pmid= 8227063 |doi= }}
*{{cite journal | author=Europe-Finner GN, Phaneuf S, Watson SP, López Bernal A |title=Identification and expression of G-proteins in human myometrium: up-regulation of G alpha s in pregnancy. |journal=Endocrinology |volume=132 |issue= 6 |pages= 2484-90 |year= 1993 |pmid= 8504751 |doi= }}
*{{cite journal | author=Laugwitz KL, Allgeier A, Offermanns S, ''et al.'' |title=The human thyrotropin receptor: a heptahelical receptor capable of stimulating members of all four G protein families. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=93 |issue= 1 |pages= 116-20 |year= 1996 |pmid= 8552586 |doi= }}
*{{cite journal | author=Denker SP, McCaffery JM, Palade GE, ''et al.'' |title=Differential distribution of alpha subunits and beta gamma subunits of heterotrimeric G proteins on Golgi membranes of the exocrine pancreas. |journal=J. Cell Biol. |volume=133 |issue= 5 |pages= 1027-40 |year= 1996 |pmid= 8655576 |doi= }}
*{{cite journal | author=Chen B, Leverette RD, Schwinn DA, Kwatra MM |title=Human G(alpha q): cDNA and tissue distribution. |journal=Biochim. Biophys. Acta |volume=1281 |issue= 2 |pages= 125-8 |year= 1996 |pmid= 8664309 |doi= }}
*{{cite journal | author=Dong Q, Shenker A, Way J, ''et al.'' |title=Molecular cloning of human G alpha q cDNA and chromosomal localization of the G alpha q gene (GNAQ) and a processed pseudogene. |journal=Genomics |volume=30 |issue= 3 |pages= 470-75 |year= 1997 |pmid= 8825633 |doi= 10.1006/geno.1995.1267 }}
*{{cite journal | author=Johnson GJ, Leis LA, Dunlop PC |title=Specificity of G alpha q and G alpha 11 gene expression in platelets and erythrocytes. Expressions of cellular differentiation and species differences. |journal=Biochem. J. |volume=318 ( Pt 3) |issue= |pages= 1023-31 |year= 1996 |pmid= 8836152 |doi= }}
*{{cite journal | author=Gomeza J, Mary S, Brabet I, ''et al.'' |title=Coupling of metabotropic glutamate receptors 2 and 4 to G alpha 15, G alpha 16, and chimeric G alpha q/i proteins: characterization of new antagonists. |journal=Mol. Pharmacol. |volume=50 |issue= 4 |pages= 923-30 |year= 1996 |pmid= 8863838 |doi= }}
*{{cite journal | author=Petit A, Geoffroy P, Bélisle S |title=Expression of angiotensin II type-I receptor and phospholipase C-linked G alpha q/11 protein in the human placenta. |journal=J. Soc. Gynecol. Investig. |volume=3 |issue= 6 |pages= 316-21 |year= 1997 |pmid= 8923415 |doi= }}
*{{cite journal | author=Petit A, Geoffroy P, Bélisle S |title=Expression of G proteins in human placentas from pregnancies complicated by gestational hypertension. |journal=Life Sci. |volume=60 |issue= 12 |pages= 953-60 |year= 1997 |pmid= 9061052 |doi= }}
*{{cite journal | author=Kinsella BT, O'Mahony DJ, Fitzgerald GA |title=The human thromboxane A2 receptor alpha isoform (TP alpha) functionally couples to the G proteins Gq and G11 in vivo and is activated by the isoprostane 8-epi prostaglandin F2 alpha. |journal=J. Pharmacol. Exp. Ther. |volume=281 |issue= 2 |pages= 957-64 |year= 1997 |pmid= 9152406 |doi= }}
*{{cite journal | author=Wise A, Parenti M, Milligan G |title=Interaction of the G-protein G11alpha with receptors and phosphoinositidase C: the contribution of G-protein palmitoylation and membrane association. |journal=FEBS Lett. |volume=407 |issue= 3 |pages= 257-60 |year= 1997 |pmid= 9175863 |doi= }}
*{{cite journal | author=Gabbeta J, Yang X, Kowalska MA, ''et al.'' |title=Platelet signal transduction defect with Galpha subunit dysfunction and diminished Galphaq in a patient with abnormal platelet responses. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=94 |issue= 16 |pages= 8750-5 |year= 1997 |pmid= 9238049 |doi= }}
}}
{{refend}}
{{protein-stub}}
- INFO: Beginning work on GNB3... {November 14, 2007 1:24:56 PM PST}
- AMBIGUITY: Did not locate an acceptable page to update. {November 14, 2007 1:25:44 PM PST}
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{PBB_Controls
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}
<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{GNF_Protein_box
| image =
| image_source =
| PDB =
| Name = Guanine nucleotide binding protein (G protein), beta polypeptide 3
| HGNCid = 4400
| Symbol = GNB3
| AltSymbols =;
| OMIM = 139130
| ECnumber =
| Homologene = 55628
| MGIid = 95785
| GeneAtlas_image1 = PBB_GE_GNB3_206047_at_tn.png
| Function = {{GNF_GO|id=GO:0003924 |text = GTPase activity}} {{GNF_GO|id=GO:0004871 |text = signal transducer activity}}
| Component =
| Process = {{GNF_GO|id=GO:0007165 |text = signal transduction}} {{GNF_GO|id=GO:0007186 |text = G-protein coupled receptor protein signaling pathway}} {{GNF_GO|id=GO:0008217 |text = blood pressure regulation}}
| Orthologs = {{GNF_Ortholog_box
| Hs_EntrezGene = 2784
| Hs_Ensembl = ENSG00000111664
| Hs_RefseqProtein = NP_002066
| Hs_RefseqmRNA = NM_002075
| Hs_GenLoc_db =
| Hs_GenLoc_chr = 12
| Hs_GenLoc_start = 6820713
| Hs_GenLoc_end = 6826819
| Hs_Uniprot = P16520
| Mm_EntrezGene = 14695
| Mm_Ensembl = ENSMUSG00000023439
| Mm_RefseqmRNA = NM_013530
| Mm_RefseqProtein = NP_038558
| Mm_GenLoc_db =
| Mm_GenLoc_chr = 6
| Mm_GenLoc_start = 124799859
| Mm_GenLoc_end = 124805894
| Mm_Uniprot = Q54AE3
}}
}}
'''Guanine nucleotide binding protein (G protein), beta polypeptide 3''', also known as '''GNB3''', is a human [[gene]].
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{PBB_Summary
| section_title =
| summary_text = Heterotrimeric guanine nucleotide-binding proteins (G proteins), which integrate signals between receptors and effector proteins, are composed of an alpha, a beta, and a gamma subunit. These subunits are encoded by families of related genes. This gene encodes a beta subunit. Beta subunits are important regulators of alpha subunits, as well as of certain signal transduction receptors and effectors. A single-nucleotide polymorphism (C825T) in this gene is associated with essential hypertension and obesity. This polymorphism is also associated with the occurrence of the splice variant GNB3-s, which appears to have increased activity. GNB3-s is an example of alternative splicing caused by a nucleotide change outside of the splice donor and acceptor sites. Additional splice variants may exist for this gene, but they have not been fully described.<ref>{{cite web | title = Entrez Gene: GNB3 guanine nucleotide binding protein (G protein), beta polypeptide 3| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=2784| accessdate = }}</ref>
}}
==References==
{{reflist}}
==Further reading==
{{refbegin | 2}}
{{PBB_Further_reading
| citations =
*{{cite journal | author=Wedegaertner PB, Wilson PT, Bourne HR |title=Lipid modifications of trimeric G proteins. |journal=J. Biol. Chem. |volume=270 |issue= 2 |pages= 503-6 |year= 1995 |pmid= 7822269 |doi= }}
*{{cite journal | author=Downes GB, Gautam N |title=The G protein subunit gene families. |journal=Genomics |volume=62 |issue= 3 |pages= 544-52 |year= 2000 |pmid= 10644457 |doi= 10.1006/geno.1999.5992 }}
*{{cite journal | author=Sartori M, Parotto E, Ceolotto G, ''et al.'' |title=[C825T polymorphism of the GNB3 gene codifying the G-protein beta3-subunit and cardiovascular risk] |journal=Ann. Ital. Med. Int. |volume=19 |issue= 4 |pages= 240-8 |year= 2005 |pmid= 15678704 |doi= }}
*{{cite journal | author=Zhu H, Wang X, Lu Y, ''et al.'' |title=Update on G-protein polymorphisms in hypertension. |journal=Curr. Hypertens. Rep. |volume=8 |issue= 1 |pages= 23-9 |year= 2006 |pmid= 16600156 |doi= }}
*{{cite journal | author=Weder AB |title=Genetics and hypertension. |journal=Journal of clinical hypertension (Greenwich, Conn.) |volume=9 |issue= 3 |pages= 217-23 |year= 2007 |pmid= 17341998 |doi= }}
*{{cite journal | author=Levine MA, Modi WS, O'Brien SJ |title=Chromosomal localization of the genes encoding two forms of the G protein beta polypeptide, beta 1 and beta 3, in man. |journal=Genomics |volume=8 |issue= 2 |pages= 380-6 |year= 1991 |pmid= 1979057 |doi= }}
*{{cite journal | author=Levine MA, Smallwood PM, Moen PT, ''et al.'' |title=Molecular cloning of beta 3 subunit, a third form of the G protein beta-subunit polypeptide. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=87 |issue= 6 |pages= 2329-33 |year= 1990 |pmid= 2107550 |doi= }}
*{{cite journal | author=Garcia-Higuera I, Thomas TC, Yi F, Neer EJ |title=Intersubunit surfaces in G protein alpha beta gamma heterotrimers. Analysis by cross-linking and mutagenesis of beta gamma. |journal=J. Biol. Chem. |volume=271 |issue= 1 |pages= 528-35 |year= 1996 |pmid= 8550614 |doi= }}
*{{cite journal | author=Yan K, Kalyanaraman V, Gautam N |title=Differential ability to form the G protein betagamma complex among members of the beta and gamma subunit families. |journal=J. Biol. Chem. |volume=271 |issue= 12 |pages= 7141-6 |year= 1996 |pmid= 8636150 |doi= }}
*{{cite journal | author=Ansari-Lari MA, Muzny DM, Lu J, ''et al.'' |title=A gene-rich cluster between the CD4 and triosephosphate isomerase genes at human chromosome 12p13. |journal=Genome Res. |volume=6 |issue= 4 |pages= 314-26 |year= 1996 |pmid= 8723724 |doi= }}
*{{cite journal | author=Ansari-Lari MA, Shen Y, Muzny DM, ''et al.'' |title=Large-scale sequencing in human chromosome 12p13: experimental and computational gene structure determination. |journal=Genome Res. |volume=7 |issue= 3 |pages= 268-80 |year= 1997 |pmid= 9074930 |doi= }}
*{{cite journal | author=Siffert W, Rosskopf D, Siffert G, ''et al.'' |title=Association of a human G-protein beta3 subunit variant with hypertension. |journal=Nat. Genet. |volume=18 |issue= 1 |pages= 45-8 |year= 1998 |pmid= 9425898 |doi= 10.1038/ng0198-45 }}
*{{cite journal | author=Kageyama K, Murakami T, Iizuka K, ''et al.'' |title=Translocation of G-protein beta3 subunit from the cytosol pool to the membrane pool by beta1-adrenergic receptor stimulation in perfused rat hearts. |journal=Biochem. Pharmacol. |volume=58 |issue= 9 |pages= 1497-500 |year= 1999 |pmid= 10513993 |doi= }}
*{{cite journal | author=Rosskopf D, Busch S, Manthey I, Siffert W |title=G protein beta 3 gene: structure, promoter, and additional polymorphisms. |journal=Hypertension |volume=36 |issue= 1 |pages= 33-41 |year= 2000 |pmid= 10904009 |doi= }}
*{{cite journal | author=Obineche EN, Frossard PM, Bokhari AM |title=An association study of five genetic loci and left ventricular hypertrophy amongst Gulf Arabs. |journal=Hypertens. Res. |volume=24 |issue= 6 |pages= 635-9 |year= 2002 |pmid= 11768721 |doi= }}
*{{cite journal | author=Tabara Y, Kohara K, Miki T |title=Polymorphisms of genes encoding components of the sympathetic nervous system but not the renin-angiotensin system as risk factors for orthostatic hypotension. |journal=J. Hypertens. |volume=20 |issue= 4 |pages= 651-6 |year= 2002 |pmid= 11910300 |doi= }}
*{{cite journal | author=Serretti A, Lorenzi C, Lilli R, ''et al.'' |title=Pharmacogenetics of lithium prophylaxis in mood disorders: analysis of COMT, MAO-A, and Gbeta3 variants. |journal=Am. J. Med. Genet. |volume=114 |issue= 4 |pages= 370-9 |year= 2002 |pmid= 11992559 |doi= 10.1002/ajmg.10357 }}
*{{cite journal | author=Shlyakhto EV, Shwartz EI, Nefedova YB, ''et al.'' |title=Lack of association of G-protein subunit gene C825T polymorphism with left ventricular hypertrophy in essential hypertension. |journal=Med. Sci. Monit. |volume=8 |issue= 5 |pages= CR337-40 |year= 2002 |pmid= 12011775 |doi= }}
}}
{{refend}}
{{protein-stub}}
- INFO: Beginning work on HEXA... {November 14, 2007 1:25:44 PM PST}
- AMBIGUITY: Did not locate an acceptable page to update. {November 14, 2007 1:26:12 PM PST}
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{PBB_Controls
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}
<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{GNF_Protein_box
| image = PBB_Protein_HEXA_image.jpg
| image_source = [[Protein_Data_Bank|PDB]] rendering based on 2gjx.
| PDB = {{PDB2|2gjx}}, {{PDB2|2gk1}}
| Name = Hexosaminidase A (alpha polypeptide)
| HGNCid = 4878
| Symbol = HEXA
| AltSymbols =; MGC99608; TSD
| OMIM = 606869
| ECnumber =
| Homologene = 20146
| MGIid = 96073
| Function = {{GNF_GO|id=GO:0004563 |text = beta-N-acetylhexosaminidase activity}} {{GNF_GO|id=GO:0016798 |text = hydrolase activity, acting on glycosyl bonds}} {{GNF_GO|id=GO:0043169 |text = cation binding}} {{GNF_GO|id=GO:0046982 |text = protein heterodimerization activity}}
| Component = {{GNF_GO|id=GO:0005764 |text = lysosome}} {{GNF_GO|id=GO:0016020 |text = membrane}}
| Process = {{GNF_GO|id=GO:0001501 |text = skeletal development}} {{GNF_GO|id=GO:0005975 |text = carbohydrate metabolic process}} {{GNF_GO|id=GO:0006687 |text = glycosphingolipid metabolic process}} {{GNF_GO|id=GO:0006689 |text = ganglioside catabolic process}} {{GNF_GO|id=GO:0007040 |text = lysosome organization and biogenesis}} {{GNF_GO|id=GO:0007605 |text = sensory perception of sound}} {{GNF_GO|id=GO:0007626 |text = locomotory behavior}} {{GNF_GO|id=GO:0007628 |text = adult walking behavior}} {{GNF_GO|id=GO:0008152 |text = metabolic process}} {{GNF_GO|id=GO:0019915 |text = sequestering of lipid}} {{GNF_GO|id=GO:0019953 |text = sexual reproduction}} {{GNF_GO|id=GO:0030203 |text = glycosaminoglycan metabolic process}} {{GNF_GO|id=GO:0042552 |text = myelination}} {{GNF_GO|id=GO:0050884 |text = regulation of posture}} {{GNF_GO|id=GO:0050885 |text = regulation of balance}}
| Orthologs = {{GNF_Ortholog_box
| Hs_EntrezGene = 3073
| Hs_Ensembl =
| Hs_RefseqProtein = NP_000511
| Hs_RefseqmRNA = NM_000520
| Hs_GenLoc_db =
| Hs_GenLoc_chr =
| Hs_GenLoc_start =
| Hs_GenLoc_end =
| Hs_Uniprot =
| Mm_EntrezGene = 15211
| Mm_Ensembl = ENSMUSG00000025232
| Mm_RefseqmRNA = NM_010421
| Mm_RefseqProtein = NP_034551
| Mm_GenLoc_db =
| Mm_GenLoc_chr = 9
| Mm_GenLoc_start = 59337673
| Mm_GenLoc_end = 59363111
| Mm_Uniprot = Q3THQ0
}}
}}
'''Hexosaminidase A (alpha polypeptide)''', also known as '''HEXA''', is a human [[gene]].
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{PBB_Summary
| section_title =
| summary_text = Hexosaminidase A is the alpha subunit of the lysosomal enzyme beta-hexosaminidase that, together with the cofactor GM2 activator protein, catalyzes the degradation of the ganglioside GM2, and other molecules containing terminal N-acetyl hexosamines. Beta-hexosaminidase is composed of two subunits, alpha and beta, which are encoded by separate genes. Both beta-hexosaminidase alpha and beta subunits are members of family 20 of glycosyl hydrolases. Mutations in the alpha or beta subunit genes lead to an accumulation of GM2 ganglioside in neurons and neurodegenerative disorders termed the GM2 gangliosidoses. Alpha subunit gene mutations lead to Tay-Sachs disease (GM2-gangliosidosis type I).<ref>{{cite web | title = Entrez Gene: HEXA hexosaminidase A (alpha polypeptide)| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=3073| accessdate = }}</ref>
}}
==References==
{{reflist}}
==Further reading==
{{refbegin | 2}}
{{PBB_Further_reading
| citations =
*{{cite journal | author=Mahuran DJ |title=The biochemistry of HEXA and HEXB gene mutations causing GM2 gangliosidosis. |journal=Biochim. Biophys. Acta |volume=1096 |issue= 2 |pages= 87-94 |year= 1991 |pmid= 1825792 |doi= }}
*{{cite journal | author=Myerowitz R |title=Tay-Sachs disease-causing mutations and neutral polymorphisms in the Hex A gene. |journal=Hum. Mutat. |volume=9 |issue= 3 |pages= 195-208 |year= 1997 |pmid= 9090523 |doi= 10.1002/(SICI)1098-1004(1997)9:3<195::AID-HUMU1>3.0.CO;2-7 }}
*{{cite journal | author=Mahuran DJ |title=Biochemical consequences of mutations causing the GM2 gangliosidoses. |journal=Biochim. Biophys. Acta |volume=1455 |issue= 2-3 |pages= 105-38 |year= 1999 |pmid= 10571007 |doi= }}
*{{cite journal | author=Gilbert F, Kucherlapati R, Creagan RP, ''et al.'' |title=Tay-Sachs' and Sandhoff's diseases: the assignment of genes for hexosaminidase A and B to individual human chromosomes. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=72 |issue= 1 |pages= 263-7 |year= 1975 |pmid= 1054503 |doi= }}
*{{cite journal | author=Trop I, Kaplan F, Brown C, ''et al.'' |title=A glycine250--> aspartate substitution in the alpha-subunit of hexosaminidase A causes juvenile-onset Tay-Sachs disease in a Lebanese-Canadian family. |journal=Hum. Mutat. |volume=1 |issue= 1 |pages= 35-9 |year= 1993 |pmid= 1301189 |doi= 10.1002/humu.1380010106 }}
*{{cite journal | author=Akalin N, Shi HP, Vavougios G, ''et al.'' |title=Novel Tay-Sachs disease mutations from China. |journal=Hum. Mutat. |volume=1 |issue= 1 |pages= 40-6 |year= 1993 |pmid= 1301190 |doi= 10.1002/humu.1380010107 }}
*{{cite journal | author=Akerman BR, Zielenski J, Triggs-Raine BL, ''et al.'' |title=A mutation common in non-Jewish Tay-Sachs disease: frequency and RNA studies. |journal=Hum. Mutat. |volume=1 |issue= 4 |pages= 303-9 |year= 1993 |pmid= 1301938 |doi= 10.1002/humu.1380010407 }}
*{{cite journal | author=Fernandes M, Kaplan F, Natowicz M, ''et al.'' |title=A new Tay-Sachs disease B1 allele in exon 7 in two compound heterozygotes each with a second novel mutation. |journal=Hum. Mol. Genet. |volume=1 |issue= 9 |pages= 759-61 |year= 1993 |pmid= 1302612 |doi= }}
*{{cite journal | author=McDowell GA, Mules EH, Fabacher P, ''et al.'' |title=The presence of two different infantile Tay-Sachs disease mutations in a Cajun population. |journal=Am. J. Hum. Genet. |volume=51 |issue= 5 |pages= 1071-7 |year= 1992 |pmid= 1307230 |doi= }}
*{{cite journal | author=Whitley CB, Anderson RA, McIvor RS |title=Heterozygosity for the "DN allele" (G533-greater than A) of the beta-hexosaminidase alpha subunit gene identified by direct DNA sequencing in a family with the B1 variant of GM2-gangliosidosis. |journal=Neuropediatrics |volume=23 |issue= 2 |pages= 96-101 |year= 1992 |pmid= 1318511 |doi= }}
*{{cite journal | author=Triggs-Raine BL, Mules EH, Kaback MM, ''et al.'' |title=A pseudodeficiency allele common in non-Jewish Tay-Sachs carriers: implications for carrier screening. |journal=Am. J. Hum. Genet. |volume=51 |issue= 4 |pages= 793-801 |year= 1992 |pmid= 1384323 |doi= }}
*{{cite journal | author=Hechtman P, Boulay B, De Braekeleer M, ''et al.'' |title=The intron 7 donor splice site transition: a second Tay-Sachs disease mutation in French Canada. |journal=Hum. Genet. |volume=90 |issue= 4 |pages= 402-6 |year= 1993 |pmid= 1483696 |doi= }}
*{{cite journal | author=Mules EH, Hayflick S, Miller CS, ''et al.'' |title=Six novel deleterious and three neutral mutations in the gene encoding the alpha-subunit of hexosaminidase A in non-Jewish individuals. |journal=Am. J. Hum. Genet. |volume=50 |issue= 4 |pages= 834-41 |year= 1992 |pmid= 1532289 |doi= }}
*{{cite journal | author=Weitz G, Proia RL |title=Analysis of the glycosylation and phosphorylation of the alpha-subunit of the lysosomal enzyme, beta-hexosaminidase A, by site-directed mutagenesis. |journal=J. Biol. Chem. |volume=267 |issue= 14 |pages= 10039-44 |year= 1992 |pmid= 1533633 |doi= }}
*{{cite journal | author=Navon R, Proia RL |title=Tay-Sachs disease in Moroccan Jews: deletion of a phenylalanine in the alpha-subunit of beta-hexosaminidase. |journal=Am. J. Hum. Genet. |volume=48 |issue= 2 |pages= 412-9 |year= 1991 |pmid= 1825014 |doi= }}
*{{cite journal | author=Mules EH, Dowling CE, Petersen MB, ''et al.'' |title=A novel mutation in the invariant AG of the acceptor splice site of intron 4 of the beta-hexosaminidase alpha-subunit gene in two unrelated American black GM2-gangliosidosis (Tay-Sachs disease) patients. |journal=Am. J. Hum. Genet. |volume=48 |issue= 6 |pages= 1181-5 |year= 1991 |pmid= 1827945 |doi= }}
*{{cite journal | author=Nakai H, Byers MG, Nowak NJ, Shows TB |title=Assignment of beta-hexosaminidase A alpha-subunit to human chromosomal region 15q23----q24. |journal=Cytogenet. Cell Genet. |volume=56 |issue= 3-4 |pages= 164 |year= 1991 |pmid= 1829032 |doi= }}
*{{cite journal | author=Nishimoto J, Tanaka A, Nanba E, Suzuki K |title=Expression of the beta-hexosaminidase alpha subunit gene with the four-base insertion of infantile Jewish Tay-Sachs disease. |journal=J. Biol. Chem. |volume=266 |issue= 22 |pages= 14306-9 |year= 1991 |pmid= 1830584 |doi= }}
*{{cite journal | author=dos Santos MR, Tanaka A, sá Miranda MC, ''et al.'' |title=GM2-gangliosidosis B1 variant: analysis of beta-hexosaminidase alpha gene mutations in 11 patients from a defined region in Portugal. |journal=Am. J. Hum. Genet. |volume=49 |issue= 4 |pages= 886-90 |year= 1991 |pmid= 1832817 |doi= }}
}}
{{refend}}
{{protein-stub}}
- INFO: Beginning work on HLA-E... {November 14, 2007 1:26:12 PM PST}
- AMBIGUITY: Did not locate an acceptable page to update. {November 14, 2007 1:27:01 PM PST}
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{PBB_Controls
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}
<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{GNF_Protein_box
| image = PBB_Protein_HLA-E_image.jpg
| image_source = [[Protein_Data_Bank|PDB]] rendering based on 1kpr.
| PDB = {{PDB2|1kpr}}, {{PDB2|1ktl}}, {{PDB2|1mhe}}, {{PDB2|2esv}}
| Name = Major histocompatibility complex, class I, E
| HGNCid = 4962
| Symbol = HLA-E
| AltSymbols =; DKFZp686P19218; EA1.2; EA2.1; HLA-6.2; MHC
| OMIM = 143010
| ECnumber =
| Homologene = 38064
| MGIid = 95957
| GeneAtlas_image1 = PBB_GE_HLA-E_200904_at_tn.png
| GeneAtlas_image2 = PBB_GE_HLA-E_200905_x_at_tn.png
| GeneAtlas_image3 = PBB_GE_HLA-E_217456_x_at_tn.png
| Function = {{GNF_GO|id=GO:0032393 |text = MHC class I receptor activity}}
| Component = {{GNF_GO|id=GO:0016020 |text = membrane}} {{GNF_GO|id=GO:0016021 |text = integral to membrane}} {{GNF_GO|id=GO:0042612 |text = MHC class I protein complex}}
| Process = {{GNF_GO|id=GO:0002474 |text = antigen processing and presentation of peptide antigen via MHC class I}} {{GNF_GO|id=GO:0006955 |text = immune response}} {{GNF_GO|id=GO:0019882 |text = antigen processing and presentation}}
| Orthologs = {{GNF_Ortholog_box
| Hs_EntrezGene = 3133
| Hs_Ensembl = ENSG00000204592
| Hs_RefseqProtein = NP_005507
| Hs_RefseqmRNA = NM_005516
| Hs_GenLoc_db =
| Hs_GenLoc_chr = 6
| Hs_GenLoc_start = 30565198
| Hs_GenLoc_end = 30569950
| Hs_Uniprot = P13747
| Mm_EntrezGene = 15040
| Mm_Ensembl = ENSMUSG00000067212
| Mm_RefseqmRNA = XM_001004712
| Mm_RefseqProtein = XP_001004712
| Mm_GenLoc_db =
| Mm_GenLoc_chr = 17
| Mm_GenLoc_start = 35638029
| Mm_GenLoc_end = 35640754
| Mm_Uniprot = Q31130
}}
}}
'''Major histocompatibility complex, class I, E''', also known as '''HLA-E''', is a human [[gene]].
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{PBB_Summary
| section_title =
| summary_text = HLA-E belongs to the HLA class I heavy chain paralogues. This class I molecule is a heterodimer consisting of a heavy chain and a light chain (beta-2 microglobulin). The heavy chain is anchored in the membrane. HLA-E binds a restricted subset of peptides derived from the leader peptides of other class I molecules. The heavy chain is approximately 45 kDa and its gene contains 8 exons. Exon one encodes the leader peptide, exons 2 and 3 encode the alpha1 and alpha2 domains, which both bind the peptide, exon 4 encodes the alpha3 domain, exon 5 encodes the transmembrane region, and exons 6 and 7 encode the cytoplasmic tail.<ref>{{cite web | title = Entrez Gene: HLA-E major histocompatibility complex, class I, E| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=3133| accessdate = }}</ref>
}}
==References==
{{reflist}}
==Further reading==
{{refbegin | 2}}
{{PBB_Further_reading
| citations =
*{{cite journal | author=Arnaiz-Villena A, Martinez-Laso J, Alvarez M, ''et al.'' |title=Primate Mhc-E and -G alleles. |journal=Immunogenetics |volume=46 |issue= 4 |pages= 251-66 |year= 1997 |pmid= 9218527 |doi= }}
*{{cite journal | author=Geyer M, Fackler OT, Peterlin BM |title=Structure--function relationships in HIV-1 Nef. |journal=EMBO Rep. |volume=2 |issue= 7 |pages= 580-5 |year= 2001 |pmid= 11463741 |doi= 10.1093/embo-reports/kve141 }}
*{{cite journal | author=Greenway AL, Holloway G, McPhee DA, ''et al.'' |title=HIV-1 Nef control of cell signalling molecules: multiple strategies to promote virus replication. |journal=J. Biosci. |volume=28 |issue= 3 |pages= 323-35 |year= 2004 |pmid= 12734410 |doi= }}
*{{cite journal | author=Bénichou S, Benmerah A |title=[The HIV nef and the Kaposi-sarcoma-associated virus K3/K5 proteins: "parasites"of the endocytosis pathway] |journal=Med Sci (Paris) |volume=19 |issue= 1 |pages= 100-6 |year= 2003 |pmid= 12836198 |doi= }}
*{{cite journal | author=Leavitt SA, SchOn A, Klein JC, ''et al.'' |title=Interactions of HIV-1 proteins gp120 and Nef with cellular partners define a novel allosteric paradigm. |journal=Curr. Protein Pept. Sci. |volume=5 |issue= 1 |pages= 1-8 |year= 2004 |pmid= 14965316 |doi= }}
*{{cite journal | author=Tolstrup M, Ostergaard L, Laursen AL, ''et al.'' |title=HIV/SIV escape from immune surveillance: focus on Nef. |journal=Curr. HIV Res. |volume=2 |issue= 2 |pages= 141-51 |year= 2004 |pmid= 15078178 |doi= }}
*{{cite journal | author=Joseph AM, Kumar M, Mitra D |title=Nef: "necessary and enforcing factor" in HIV infection. |journal=Curr. HIV Res. |volume=3 |issue= 1 |pages= 87-94 |year= 2005 |pmid= 15638726 |doi= }}
*{{cite journal | author=Anderson JL, Hope TJ |title=HIV accessory proteins and surviving the host cell. |journal=Current HIV/AIDS reports |volume=1 |issue= 1 |pages= 47-53 |year= 2005 |pmid= 16091223 |doi= }}
*{{cite journal | author=Kozlowski S, Corr M, Takeshita T, ''et al.'' |title=Serum angiotensin-1 converting enzyme activity processes a human immunodeficiency virus 1 gp160 peptide for presentation by major histocompatibility complex class I molecules. |journal=J. Exp. Med. |volume=175 |issue= 6 |pages= 1417-22 |year= 1992 |pmid= 1316930 |doi= }}
*{{cite journal | author=Ulbrecht M, Honka T, Person S, ''et al.'' |title=The HLA-E gene encodes two differentially regulated transcripts and a cell surface protein. |journal=J. Immunol. |volume=149 |issue= 9 |pages= 2945-53 |year= 1992 |pmid= 1401923 |doi= }}
*{{cite journal | author=Truong MJ, Gruart V, Capron A, ''et al.'' |title=Cloning and expression of a cDNA encoding a non-classical MHC class I antigen (HLA-E) in eosinophils from hypereosinophilic patients. |journal=J. Immunol. |volume=148 |issue= 2 |pages= 627-32 |year= 1992 |pmid= 1530866 |doi= }}
*{{cite journal | author=Houlihan JM, Biro PA, Fergar-Payne A, ''et al.'' |title=Evidence for the expression of non-HLA-A,-B,-C class I genes in the human fetal liver. |journal=J. Immunol. |volume=149 |issue= 2 |pages= 668-75 |year= 1992 |pmid= 1624808 |doi= }}
*{{cite journal | author=Ohya K, Kondo K, Mizuno S |title=Polymorphism in the human class I MHC locus HLA-E in Japanese. |journal=Immunogenetics |volume=32 |issue= 3 |pages= 205-9 |year= 1990 |pmid= 1977695 |doi= }}
*{{cite journal | author=Wei XH, Orr HT |title=Differential expression of HLA-E, HLA-F, and HLA-G transcripts in human tissue. |journal=Hum. Immunol. |volume=29 |issue= 2 |pages= 131-42 |year= 1991 |pmid= 2249951 |doi= }}
*{{cite journal | author=Srivastava R, Chorney MJ, Lawrance SK, ''et al.'' |title=Structure, expression, and molecular mapping of a divergent member of the class I HLA gene family. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=84 |issue= 12 |pages= 4224-8 |year= 1987 |pmid= 2438694 |doi= }}
*{{cite journal | author=Pohla H, Kuon W, Tabaczewski P, ''et al.'' |title=Allelic variation in HLA-B and HLA-C sequences and the evolution of the HLA-B alleles. |journal=Immunogenetics |volume=29 |issue= 5 |pages= 297-307 |year= 1989 |pmid= 2714852 |doi= }}
*{{cite journal | author=Takahashi H, Merli S, Putney SD, ''et al.'' |title=A single amino acid interchange yields reciprocal CTL specificities for HIV-1 gp160. |journal=Science |volume=246 |issue= 4926 |pages= 118-21 |year= 1989 |pmid= 2789433 |doi= }}
*{{cite journal | author=Carroll MC, Katzman P, Alicot EM, ''et al.'' |title=Linkage map of the human major histocompatibility complex including the tumor necrosis factor genes. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=84 |issue= 23 |pages= 8535-9 |year= 1988 |pmid= 2825194 |doi= }}
*{{cite journal | author=Mizuno S, Trapani JA, Koller BH, ''et al.'' |title=Isolation and nucleotide sequence of a cDNA clone encoding a novel HLA class I gene. |journal=J. Immunol. |volume=140 |issue= 11 |pages= 4024-30 |year= 1988 |pmid= 3131426 |doi= }}
*{{cite journal | author=Koller BH, Geraghty DE, Shimizu Y, ''et al.'' |title=HLA-E. A novel HLA class I gene expressed in resting T lymphocytes. |journal=J. Immunol. |volume=141 |issue= 3 |pages= 897-904 |year= 1988 |pmid= 3260916 |doi= }}
}}
{{refend}}
{{protein-stub}}
- INFO: Beginning work on IRF1... {November 14, 2007 1:27:02 PM PST}
- AMBIGUITY: Did not locate an acceptable page to update. {November 14, 2007 1:28:00 PM PST}
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{PBB_Controls
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}
<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{GNF_Protein_box
| image = PBB_Protein_IRF1_image.jpg
| image_source = [[Protein_Data_Bank|PDB]] rendering based on 1if1.
| PDB = {{PDB2|1if1}}
| Name = Interferon regulatory factor 1
| HGNCid = 6116
| Symbol = IRF1
| AltSymbols =; IRF-1; MAR
| OMIM = 147575
| ECnumber =
| Homologene = 1658
| MGIid = 96590
| GeneAtlas_image1 = PBB_GE_IRF1_202531_at_tn.png
| Function = {{GNF_GO|id=GO:0003700 |text = transcription factor activity}}
| Component = {{GNF_GO|id=GO:0005634 |text = nucleus}}
| Process = {{GNF_GO|id=GO:0006350 |text = transcription}} {{GNF_GO|id=GO:0006366 |text = transcription from RNA polymerase II promoter}} {{GNF_GO|id=GO:0006955 |text = immune response}} {{GNF_GO|id=GO:0007049 |text = cell cycle}} {{GNF_GO|id=GO:0045084 |text = positive regulation of interleukin-12 biosynthetic process}} {{GNF_GO|id=GO:0045786 |text = negative regulation of progression through cell cycle}} {{GNF_GO|id=GO:0045893 |text = positive regulation of transcription, DNA-dependent}}
| Orthologs = {{GNF_Ortholog_box
| Hs_EntrezGene = 3659
| Hs_Ensembl = ENSG00000125347
| Hs_RefseqProtein = NP_002189
| Hs_RefseqmRNA = NM_002198
| Hs_GenLoc_db =
| Hs_GenLoc_chr = 5
| Hs_GenLoc_start = 131845200
| Hs_GenLoc_end = 131854389
| Hs_Uniprot = P10914
| Mm_EntrezGene = 16362
| Mm_Ensembl = ENSMUSG00000018899
| Mm_RefseqmRNA = NM_008390
| Mm_RefseqProtein = NP_032416
| Mm_GenLoc_db =
| Mm_GenLoc_chr = 11
| Mm_GenLoc_start = 53613501
| Mm_GenLoc_end = 53620853
| Mm_Uniprot = Q4FK18
}}
}}
'''Interferon regulatory factor 1''', also known as '''IRF1''', is a human [[gene]].
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{PBB_Summary
| section_title =
| summary_text = IRF1 encodes interferon regulatory factor 1, a member of the interferon regulatory transcription factor (IRF) family. IRF1 serves as an activator of interferons alpha and beta transcription, and in mouse it has been shown to be required for double-stranded RNA induction of these genes. IRF1 also functions as a transcription activator of genes induced by interferons alpha, beta, and gamma. Further, IRF1 has been shown to play roles in regulating apoptosis and tumor-suppressoion.<ref>{{cite web | title = Entrez Gene: IRF1 interferon regulatory factor 1| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=3659| accessdate = }}</ref>
}}
==References==
{{reflist}}
==Further reading==
{{refbegin | 2}}
{{PBB_Further_reading
| citations =
*{{cite journal | author=Harada H, Taniguchi T, Tanaka N |title=The role of interferon regulatory factors in the interferon system and cell growth control. |journal=Biochimie |volume=80 |issue= 8-9 |pages= 641-50 |year= 1999 |pmid= 9865486 |doi= }}
*{{cite journal | author=Pitha PM, Au WC, Lowther W, ''et al.'' |title=Role of the interferon regulatory factors (IRFs) in virus-mediated signaling and regulation of cell growth. |journal=Biochimie |volume=80 |issue= 8-9 |pages= 651-8 |year= 1999 |pmid= 9865487 |doi= }}
*{{cite journal | author=Yu-Lee L |title=Stimulation of interferon regulatory factor-1 by prolactin. |journal=Lupus |volume=10 |issue= 10 |pages= 691-9 |year= 2002 |pmid= 11721695 |doi= }}
*{{cite journal | author=Pine R |title=IRF and tuberculosis. |journal=J. Interferon Cytokine Res. |volume=22 |issue= 1 |pages= 15-25 |year= 2002 |pmid= 11846972 |doi= 10.1089/107999002753452629 }}
*{{cite journal | author=Romeo G, Fiorucci G, Chiantore MV, ''et al.'' |title=IRF-1 as a negative regulator of cell proliferation. |journal=J. Interferon Cytokine Res. |volume=22 |issue= 1 |pages= 39-47 |year= 2002 |pmid= 11846974 |doi= 10.1089/107999002753452647 }}
*{{cite journal | author=Cha Y, Sims SH, Romine MF, ''et al.'' |title=Human interferon regulatory factor 1: intron-exon organization. |journal=DNA Cell Biol. |volume=11 |issue= 8 |pages= 605-11 |year= 1992 |pmid= 1382447 |doi= }}
*{{cite journal | author=Itoh S, Harada H, Nakamura Y, ''et al.'' |title=Assignment of the human interferon regulatory factor-1 (IRF1) gene to chromosome 5q23-q31. |journal=Genomics |volume=10 |issue= 4 |pages= 1097-9 |year= 1991 |pmid= 1680796 |doi= }}
*{{cite journal | author=Harada H, Fujita T, Miyamoto M, ''et al.'' |title=Structurally similar but functionally distinct factors, IRF-1 and IRF-2, bind to the same regulatory elements of IFN and IFN-inducible genes. |journal=Cell |volume=58 |issue= 4 |pages= 729-39 |year= 1989 |pmid= 2475256 |doi= }}
*{{cite journal | author=Maruyama M, Fujita T, Taniguchi T |title=Sequence of a cDNA coding for human IRF-1. |journal=Nucleic Acids Res. |volume=17 |issue= 8 |pages= 3292 |year= 1989 |pmid= 2726461 |doi= }}
*{{cite journal | author=Miyamoto M, Fujita T, Kimura Y, ''et al.'' |title=Regulated expression of a gene encoding a nuclear factor, IRF-1, that specifically binds to IFN-beta gene regulatory elements. |journal=Cell |volume=54 |issue= 6 |pages= 903-13 |year= 1988 |pmid= 3409321 |doi= }}
*{{cite journal | author=Harada H, Takahashi E, Itoh S, ''et al.'' |title=Structure and regulation of the human interferon regulatory factor 1 (IRF-1) and IRF-2 genes: implications for a gene network in the interferon system. |journal=Mol. Cell. Biol. |volume=14 |issue= 2 |pages= 1500-9 |year= 1994 |pmid= 7507207 |doi= }}
*{{cite journal | author=Sharf R, Azriel A, Lejbkowicz F, ''et al.'' |title=Functional domain analysis of interferon consensus sequence binding protein (ICSBP) and its association with interferon regulatory factors. |journal=J. Biol. Chem. |volume=270 |issue= 22 |pages= 13063-9 |year= 1995 |pmid= 7768900 |doi= }}
*{{cite journal | author=Willman CL, Sever CE, Pallavicini MG, ''et al.'' |title=Deletion of IRF-1, mapping to chromosome 5q31.1, in human leukemia and preleukemic myelodysplasia. |journal=Science |volume=259 |issue= 5097 |pages= 968-71 |year= 1993 |pmid= 8438156 |doi= }}
*{{cite journal | author=Drew PD, Franzoso G, Becker KG, ''et al.'' |title=NF kappa B and interferon regulatory factor 1 physically interact and synergistically induce major histocompatibility class I gene expression. |journal=J. Interferon Cytokine Res. |volume=15 |issue= 12 |pages= 1037-45 |year= 1997 |pmid= 8746784 |doi= }}
*{{cite journal | author=Ronco LV, Karpova AY, Vidal M, Howley PM |title=Human papillomavirus 16 E6 oncoprotein binds to interferon regulatory factor-3 and inhibits its transcriptional activity. |journal=Genes Dev. |volume=12 |issue= 13 |pages= 2061-72 |year= 1998 |pmid= 9649509 |doi= }}
*{{cite journal | author=Nozawa H, Oda E, Ueda S, ''et al.'' |title=Functionally inactivating point mutation in the tumor-suppressor IRF-1 gene identified in human gastric cancer. |journal=Int. J. Cancer |volume=77 |issue= 4 |pages= 522-7 |year= 1998 |pmid= 9679752 |doi= }}
*{{cite journal | author=Schaper F, Kirchhoff S, Posern G, ''et al.'' |title=Functional domains of interferon regulatory factor I (IRF-1). |journal=Biochem. J. |volume=335 ( Pt 1) |issue= |pages= 147-57 |year= 1998 |pmid= 9742224 |doi= }}
*{{cite journal | author=Masumi A, Wang IM, Lefebvre B, ''et al.'' |title=The histone acetylase PCAF is a phorbol-ester-inducible coactivator of the IRF family that confers enhanced interferon responsiveness. |journal=Mol. Cell. Biol. |volume=19 |issue= 3 |pages= 1810-20 |year= 1999 |pmid= 10022868 |doi= }}
}}
{{refend}}
{{protein-stub}}
- INFO: Beginning work on L1CAM... {November 14, 2007 1:28:00 PM PST}
- AMBIGUITY: Did not locate an acceptable page to update. {November 14, 2007 1:28:47 PM PST}
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{PBB_Controls
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}
<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{GNF_Protein_box
| image =
| image_source =
| PDB =
| Name = L1 cell adhesion molecule
| HGNCid = 6470
| Symbol = L1CAM
| AltSymbols =; CAML1; CD171; HSAS; HSAS1; MASA; MIC5; N-CAML1; S10; SPG1
| OMIM = 308840
| ECnumber =
| Homologene = 20128
| MGIid = 96721
| GeneAtlas_image1 = PBB_GE_L1CAM_204584_at_tn.png
| GeneAtlas_image2 = PBB_GE_L1CAM_204585_s_at_tn.png
| Function = {{GNF_GO|id=GO:0005515 |text = protein binding}}
| Component = {{GNF_GO|id=GO:0016020 |text = membrane}} {{GNF_GO|id=GO:0016021 |text = integral to membrane}}
| Process = {{GNF_GO|id=GO:0007155 |text = cell adhesion}} {{GNF_GO|id=GO:0007275 |text = multicellular organismal development}} {{GNF_GO|id=GO:0007399 |text = nervous system development}} {{GNF_GO|id=GO:0030154 |text = cell differentiation}}
| Orthologs = {{GNF_Ortholog_box
| Hs_EntrezGene = 3897
| Hs_Ensembl = ENSG00000198910
| Hs_RefseqProtein = NP_000416
| Hs_RefseqmRNA = NM_000425
| Hs_GenLoc_db =
| Hs_GenLoc_chr = X
| Hs_GenLoc_start = 152780163
| Hs_GenLoc_end = 152804802
| Hs_Uniprot = P32004
| Mm_EntrezGene = 16728
| Mm_Ensembl = ENSMUSG00000031391
| Mm_RefseqmRNA = NM_008478
| Mm_RefseqProtein = NP_032504
| Mm_GenLoc_db =
| Mm_GenLoc_chr = X
| Mm_GenLoc_start = 70106675
| Mm_GenLoc_end = 70133554
| Mm_Uniprot = Q6PGJ3
}}
}}
'''L1 cell adhesion molecule''', also known as '''L1CAM''', is a human [[gene]].
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{PBB_Summary
| section_title =
| summary_text = The protein encoded by this gene is an axonal glycoprotein belonging to the immunoglobulin supergene family. The ectodomain, consisting of several immunoglobulin-like domains and fibronectin-like repeats (type III), is linked via a single transmembrane sequence to a conserved cytoplasmic domain. This cell adhesion molecule plays an important role in nervous system development, including neuronal migration and differentiation. Mutations in the gene cause three X-linked neurological syndromes known by the acronym CRASH (corpus callosum hypoplasia, retardation, aphasia, spastic paraplegia and hydrocephalus). Alternative splicing of a neuron-specific exon is thought to be functionally relevant.<ref>{{cite web | title = Entrez Gene: L1CAM L1 cell adhesion molecule| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=3897| accessdate = }}</ref>
}}
==References==
{{reflist}}
==Further reading==
{{refbegin | 2}}
{{PBB_Further_reading
| citations =
*{{cite journal | author=Fransen E, Lemmon V, Van Camp G, ''et al.'' |title=CRASH syndrome: clinical spectrum of corpus callosum hypoplasia, retardation, adducted thumbs, spastic paraparesis and hydrocephalus due to mutations in one single gene, L1. |journal=Eur. J. Hum. Genet. |volume=3 |issue= 5 |pages= 273-84 |year= 1996 |pmid= 8556302 |doi= }}
*{{cite journal | author=Fransen E, Van Camp G, Vits L, Willems PJ |title=L1-associated diseases: clinical geneticists divide, molecular geneticists unite. |journal=Hum. Mol. Genet. |volume=6 |issue= 10 |pages= 1625-32 |year= 1997 |pmid= 9300653 |doi= }}
*{{cite journal | author=Weller S, Gärtner J |title=Genetic and clinical aspects of X-linked hydrocephalus (L1 disease): Mutations in the L1CAM gene. |journal=Hum. Mutat. |volume=18 |issue= 1 |pages= 1-12 |year= 2001 |pmid= 11438988 |doi= 10.1002/humu.1144 }}
*{{cite journal | author=Bearer CF |title=L1 cell adhesion molecule signal cascades: targets for ethanol developmental neurotoxicity. |journal=Neurotoxicology |volume=22 |issue= 5 |pages= 625-33 |year= 2002 |pmid= 11770884 |doi= }}
*{{cite journal | author=Haspel J, Grumet M |title=The L1CAM extracellular region: a multi-domain protein with modular and cooperative binding modes. |journal=Front. Biosci. |volume=8 |issue= |pages= s1210-25 |year= 2003 |pmid= 12957823 |doi= }}
*{{cite journal | author=Rosenthal A, Jouet M, Kenwrick S |title=Aberrant splicing of neural cell adhesion molecule L1 mRNA in a family with X-linked hydrocephalus. |journal=Nat. Genet. |volume=2 |issue= 2 |pages= 107-12 |year= 1993 |pmid= 1303258 |doi= 10.1038/ng1092-107 }}
*{{cite journal | author=Reid RA, Hemperly JJ |title=Variants of human L1 cell adhesion molecule arise through alternate splicing of RNA. |journal=J. Mol. Neurosci. |volume=3 |issue= 3 |pages= 127-35 |year= 1992 |pmid= 1627459 |doi= }}
*{{cite journal | author=Hlavin ML, Lemmon V |title=Molecular structure and functional testing of human L1CAM: an interspecies comparison. |journal=Genomics |volume=11 |issue= 2 |pages= 416-23 |year= 1992 |pmid= 1769655 |doi= }}
*{{cite journal | author=Fryns JP, Spaepen A, Cassiman JJ, van den Berghe H |title=X linked complicated spastic paraplegia, MASA syndrome, and X linked hydrocephalus owing to congenital stenosis of the aqueduct of Sylvius: variable expression of the same mutation at Xq28. |journal=J. Med. Genet. |volume=28 |issue= 6 |pages= 429-31 |year= 1991 |pmid= 1870106 |doi= }}
*{{cite journal | author=Rosenthal A, MacKinnon RN, Jones DS |title=PCR walking from microdissection clone M54 identifies three exons from the human gene for the neural cell adhesion molecule L1 (CAM-L1). |journal=Nucleic Acids Res. |volume=19 |issue= 19 |pages= 5395-401 |year= 1991 |pmid= 1923824 |doi= }}
*{{cite journal | author=Kobayashi M, Miura M, Asou H, Uyemura K |title=Molecular cloning of cell adhesion molecule L1 from human nervous tissue: a comparison of the primary sequences of L1 molecules of different origin. |journal=Biochim. Biophys. Acta |volume=1090 |issue= 2 |pages= 238-40 |year= 1991 |pmid= 1932117 |doi= }}
*{{cite journal | author=Harper JR, Prince JT, Healy PA, ''et al.'' |title=Isolation and sequence of partial cDNA clones of human L1: homology of human and rodent L1 in the cytoplasmic region. |journal=J. Neurochem. |volume=56 |issue= 3 |pages= 797-804 |year= 1991 |pmid= 1993895 |doi= }}
*{{cite journal | author=Djabali M, Mattei MG, Nguyen C, ''et al.'' |title=The gene encoding L1, a neural adhesion molecule of the immunoglobulin family, is located on the X chromosome in mouse and man. |journal=Genomics |volume=7 |issue= 4 |pages= 587-93 |year= 1990 |pmid= 2387585 |doi= }}
*{{cite journal | author=Wolff JM, Frank R, Mujoo K, ''et al.'' |title=A human brain glycoprotein related to the mouse cell adhesion molecule L1. |journal=J. Biol. Chem. |volume=263 |issue= 24 |pages= 11943-7 |year= 1988 |pmid= 3136168 |doi= }}
*{{cite journal | author=Friedlander DR, Milev P, Karthikeyan L, ''et al.'' |title=The neuronal chondroitin sulfate proteoglycan neurocan binds to the neural cell adhesion molecules Ng-CAM/L1/NILE and N-CAM, and inhibits neuronal adhesion and neurite outgrowth. |journal=J. Cell Biol. |volume=125 |issue= 3 |pages= 669-80 |year= 1994 |pmid= 7513709 |doi= }}
*{{cite journal | author=Ruiz JC, Cuppens H, Legius E, ''et al.'' |title=Mutations in L1-CAM in two families with X linked complicated spastic paraplegia, MASA syndrome, and HSAS. |journal=J. Med. Genet. |volume=32 |issue= 7 |pages= 549-52 |year= 1995 |pmid= 7562969 |doi= }}
*{{cite journal | author=Olive S, Dubois C, Schachner M, Rougon G |title=The F3 neuronal glycosylphosphatidylinositol-linked molecule is localized to glycolipid-enriched membrane subdomains and interacts with L1 and fyn kinase in cerebellum. |journal=J. Neurochem. |volume=65 |issue= 5 |pages= 2307-17 |year= 1995 |pmid= 7595520 |doi= }}
*{{cite journal | author=Jouet M, Moncla A, Paterson J, ''et al.'' |title=New domains of neural cell-adhesion molecule L1 implicated in X-linked hydrocephalus and MASA syndrome. |journal=Am. J. Hum. Genet. |volume=56 |issue= 6 |pages= 1304-14 |year= 1995 |pmid= 7762552 |doi= }}
*{{cite journal | author=Fransen E, Schrander-Stumpel C, Vits L, ''et al.'' |title=X-linked hydrocephalus and MASA syndrome present in one family are due to a single missense mutation in exon 28 of the L1CAM gene. |journal=Hum. Mol. Genet. |volume=3 |issue= 12 |pages= 2255-6 |year= 1995 |pmid= 7881431 |doi= }}
*{{cite journal | author=Jouet M, Rosenthal A, Armstrong G, ''et al.'' |title=X-linked spastic paraplegia (SPG1), MASA syndrome and X-linked hydrocephalus result from mutations in the L1 gene. |journal=Nat. Genet. |volume=7 |issue= 3 |pages= 402-7 |year= 1994 |pmid= 7920659 |doi= 10.1038/ng0794-402 }}
}}
{{refend}}
{{protein-stub}}
- INFO: Beginning work on MPZ... {November 14, 2007 1:29:57 PM PST}
- AMBIGUITY: Did not locate an acceptable page to update. {November 14, 2007 1:31:54 PM PST}
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{PBB_Controls
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}
<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{GNF_Protein_box
| image = PBB_Protein_MPZ_image.jpg
| image_source = [[Protein_Data_Bank|PDB]] rendering based on 1neu.
| PDB = {{PDB2|1neu}}
| Name = Myelin protein zero (Charcot-Marie-Tooth neuropathy 1B)
| HGNCid = 7225
| Symbol = MPZ
| AltSymbols =; DSS; CHM; CMT4E; CMT1; CMT1B; CMT2I; CMT2J; CMTDI3; HMSNIB; MPP; P0
| OMIM = 159440
| ECnumber =
| Homologene = 445
| MGIid = 103177
| GeneAtlas_image1 = PBB_GE_MPZ_210280_at_tn.png
| Function = {{GNF_GO|id=GO:0003674 |text = molecular_function}}
| Component = {{GNF_GO|id=GO:0005575 |text = cellular_component}} {{GNF_GO|id=GO:0016020 |text = membrane}}
| Process = {{GNF_GO|id=GO:0008366 |text = axon ensheathment}}
| Orthologs = {{GNF_Ortholog_box
| Hs_EntrezGene = 4359
| Hs_Ensembl = ENSG00000158887
| Hs_RefseqProtein = NP_000521
| Hs_RefseqmRNA = NM_000530
| Hs_GenLoc_db =
| Hs_GenLoc_chr = 1
| Hs_GenLoc_start = 159541149
| Hs_GenLoc_end = 159546368
| Hs_Uniprot = P25189
| Mm_EntrezGene = 17528
| Mm_Ensembl = ENSMUSG00000056569
| Mm_RefseqmRNA = NM_008623
| Mm_RefseqProtein = NP_032649
| Mm_GenLoc_db =
| Mm_GenLoc_chr = 1
| Mm_GenLoc_start = 172987388
| Mm_GenLoc_end = 172997798
| Mm_Uniprot = Q542C9
}}
}}
'''Myelin protein zero (Charcot-Marie-Tooth neuropathy 1B)''', also known as '''MPZ''', is a human [[gene]].
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{PBB_Summary
| section_title =
| summary_text = Myelin protein-zero is the major structural protein of peripheral myelin.[supplied by OMIM]<ref>{{cite web | title = Entrez Gene: MPZ myelin protein zero (Charcot-Marie-Tooth neuropathy 1B)| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=4359| accessdate = }}</ref>
}}
==References==
{{reflist}}
==Further reading==
{{refbegin | 2}}
{{PBB_Further_reading
| citations =
*{{cite journal | author=Patel PI, Lupski JR |title=Charcot-Marie-Tooth disease: a new paradigm for the mechanism of inherited disease. |journal=Trends Genet. |volume=10 |issue= 4 |pages= 128-33 |year= 1994 |pmid= 7518101 |doi= }}
*{{cite journal | author=Roa BB, Lupski JR |title=Molecular genetics of Charcot-Marie-Tooth neuropathy. |journal=Adv. Hum. Genet. |volume=22 |issue= |pages= 117-52 |year= 1995 |pmid= 7762451 |doi= }}
*{{cite journal | author=Nelis E, Haites N, Van Broeckhoven C |title=Mutations in the peripheral myelin genes and associated genes in inherited peripheral neuropathies. |journal=Hum. Mutat. |volume=13 |issue= 1 |pages= 11-28 |year= 1999 |pmid= 9888385 |doi= 10.1002/(SICI)1098-1004(1999)13:1<11::AID-HUMU2>3.0.CO;2-A }}
*{{cite journal | author=Watanabe M, Yamamoto N, Ohkoshi N, ''et al.'' |title=Corticosteroid- responsive asymmetric neuropathy with a myelin protein zero gene mutation. |journal=Neurology |volume=59 |issue= 5 |pages= 767-9 |year= 2002 |pmid= 12221176 |doi= }}
*{{cite journal | author=Hattori N, Yamamoto M, Yoshihara T, ''et al.'' |title=Demyelinating and axonal features of Charcot-Marie-Tooth disease with mutations of myelin-related proteins (PMP22, MPZ and Cx32): a clinicopathological study of 205 Japanese patients. |journal=Brain |volume=126 |issue= Pt 1 |pages= 134-51 |year= 2003 |pmid= 12477701 |doi= }}
*{{cite journal | author=Shy ME |title=Peripheral neuropathies caused by mutations in the myelin protein zero. |journal=J. Neurol. Sci. |volume=242 |issue= 1-2 |pages= 55-66 |year= 2006 |pmid= 16414078 |doi= 10.1016/j.jns.2005.11.015 }}
*{{cite journal | author=Hayasaka K, Nanao K, Tahara M, ''et al.'' |title=Isolation and sequence determination of cDNA encoding the major structural protein of human peripheral myelin. |journal=Biochem. Biophys. Res. Commun. |volume=180 |issue= 2 |pages= 515-8 |year= 1991 |pmid= 1719967 |doi= }}
*{{cite journal | author=Ouvrier RA, McLeod JG, Conchin TE |title=The hypertrophic forms of hereditary motor and sensory neuropathy. A study of hypertrophic Charcot-Marie-Tooth disease (HMSN type I) and Dejerine-Sottas disease (HMSN type III) in childhood. |journal=Brain |volume=110 ( Pt 1) |issue= |pages= 121-48 |year= 1987 |pmid= 3467805 |doi= }}
*{{cite journal | author=Tachi N, Ishikawa Y, Minami R |title=Two cases of congenital hypomyelination neuropathy. |journal=Brain Dev. |volume=6 |issue= 6 |pages= 560-5 |year= 1985 |pmid= 6099985 |doi= }}
*{{cite journal | author=Hayasaka K, Himoro M, Wang Y, ''et al.'' |title=Structure and chromosomal localization of the gene encoding the human myelin protein zero (MPZ). |journal=Genomics |volume=17 |issue= 3 |pages= 755-8 |year= 1993 |pmid= 7503936 |doi= 10.1006/geno.1993.1400 }}
*{{cite journal | author=Su Y, Brooks DG, Li L, ''et al.'' |title=Myelin protein zero gene mutated in Charcot-Marie-tooth type 1B patients. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=90 |issue= 22 |pages= 10856-60 |year= 1993 |pmid= 7504284 |doi= }}
*{{cite journal | author=Himoro M, Yoshikawa H, Matsui T, ''et al.'' |title=New mutation of the myelin P0 gene in a pedigree of Charcot-Marie-Tooth neuropathy 1. |journal=Biochem. Mol. Biol. Int. |volume=31 |issue= 1 |pages= 169-73 |year= 1994 |pmid= 7505151 |doi= }}
*{{cite journal | author=Hayasaka K, Himoro M, Sawaishi Y, ''et al.'' |title=De novo mutation of the myelin P0 gene in Dejerine-Sottas disease (hereditary motor and sensory neuropathy type III). |journal=Nat. Genet. |volume=5 |issue= 3 |pages= 266-8 |year= 1994 |pmid= 7506095 |doi= 10.1038/ng1193-266 }}
*{{cite journal | author=Pham-Dinh D, Fourbil Y, Blanquet F, ''et al.'' |title=The major peripheral myelin protein zero gene: structure and localization in the cluster of Fc gamma receptor genes on human chromosome 1q21.3-q23. |journal=Hum. Mol. Genet. |volume=2 |issue= 12 |pages= 2051-4 |year= 1994 |pmid= 7509228 |doi= }}
*{{cite journal | author=Thomas FP, Lebo RV, Rosoklija G, ''et al.'' |title=Tomaculous neuropathy in chromosome 1 Charcot-Marie-Tooth syndrome. |journal=Acta Neuropathol. |volume=87 |issue= 1 |pages= 91-7 |year= 1994 |pmid= 7511317 |doi= }}
*{{cite journal | author=Nelis E, Timmerman V, De Jonghe P, ''et al.'' |title=Rapid screening of myelin genes in CMT1 patients by SSCP analysis: identification of new mutations and polymorphisms in the P0 gene. |journal=Hum. Genet. |volume=94 |issue= 6 |pages= 653-7 |year= 1995 |pmid= 7527371 |doi= }}
*{{cite journal | author=Hilmi S, Fournier M, Valeins H, ''et al.'' |title=Myelin P0 glycoprotein: identification of the site phosphorylated in vitro and in vivo by endogenous protein kinases. |journal=J. Neurochem. |volume=64 |issue= 2 |pages= 902-7 |year= 1995 |pmid= 7530295 |doi= }}
*{{cite journal | author=Rautenstrauss B, Nelis E, Grehl H, ''et al.'' |title=Identification of a de novo insertional mutation in P0 in a patient with a Déjérine-Sottas syndrome (DSS) phenotype. |journal=Hum. Mol. Genet. |volume=3 |issue= 9 |pages= 1701-2 |year= 1995 |pmid= 7530550 |doi= }}
*{{cite journal | author=Latour P, Blanquet F, Nelis E, ''et al.'' |title=Mutations in the myelin protein zero gene associated with Charcot-Marie-Tooth disease type 1B. |journal=Hum. Mutat. |volume=6 |issue= 1 |pages= 50-4 |year= 1995 |pmid= 7550231 |doi= 10.1002/humu.1380060110 }}
}}
{{refend}}
{{protein-stub}}
- INFO: Beginning work on NCOR1... {November 14, 2007 1:39:08 PM PST}
- AMBIGUITY: Did not locate an acceptable page to update. {November 14, 2007 1:40:26 PM PST}
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{PBB_Controls
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}
<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{GNF_Protein_box
| image =
| image_source =
| PDB =
| Name = Nuclear receptor co-repressor 1
| HGNCid = 7672
| Symbol = NCOR1
| AltSymbols =; KIAA1047; MGC104216; N-CoR; TRAC1; hCIT529I10; hN-CoR
| OMIM = 600849
| ECnumber =
| Homologene = 38166
| MGIid = 1349717
| GeneAtlas_image1 = PBB_GE_NCOR1_200854_at_tn.png
| GeneAtlas_image2 = PBB_GE_NCOR1_200855_at_tn.png
| GeneAtlas_image3 = PBB_GE_NCOR1_200856_x_at_tn.png
| Function = {{GNF_GO|id=GO:0003677 |text = DNA binding}} {{GNF_GO|id=GO:0003714 |text = transcription corepressor activity}} {{GNF_GO|id=GO:0004872 |text = receptor activity}} {{GNF_GO|id=GO:0005515 |text = protein binding}}
| Component = {{GNF_GO|id=GO:0005634 |text = nucleus}}
| Process = {{GNF_GO|id=GO:0006366 |text = transcription from RNA polymerase II promoter}} {{GNF_GO|id=GO:0016568 |text = chromatin modification}} {{GNF_GO|id=GO:0045449 |text = regulation of transcription}} {{GNF_GO|id=GO:0045892 |text = negative regulation of transcription, DNA-dependent}}
| Orthologs = {{GNF_Ortholog_box
| Hs_EntrezGene = 9611
| Hs_Ensembl = ENSG00000141027
| Hs_RefseqProtein = XP_001133522
| Hs_RefseqmRNA = XM_001133522
| Hs_GenLoc_db =
| Hs_GenLoc_chr = 17
| Hs_GenLoc_start = 15875984
| Hs_GenLoc_end = 16059570
| Hs_Uniprot = O75376
| Mm_EntrezGene = 20185
| Mm_Ensembl =
| Mm_RefseqmRNA = NM_011308
| Mm_RefseqProtein = NP_035438
| Mm_GenLoc_db =
| Mm_GenLoc_chr =
| Mm_GenLoc_start =
| Mm_GenLoc_end =
| Mm_Uniprot =
}}
}}
'''Nuclear receptor co-repressor 1''', also known as '''NCOR1''', is a human [[gene]].
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{PBB_Summary
| section_title =
| summary_text = This gene encodes a protein that mediates ligand-independent transcription repression of thyroid-hormone and retinoic-acid receptors by promoting chromatin condensation and preventing access of the transcription machinery. It is part of a complex which also includes histone deacetylases and transcriptional regulators similar to the yeast protein Sin3p. This gene is located between the Charcot-Marie-Tooth and Smith-Magenis syndrome critical regions on chromosome 17. An alternatively spliced transcript variant has been described, but its full length sequence has not been determined.<ref>{{cite web | title = Entrez Gene: NCOR1 nuclear receptor co-repressor 1| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=9611| accessdate = }}</ref>
}}
==References==
{{reflist}}
==Further reading==
{{refbegin | 2}}
{{PBB_Further_reading
| citations =
*{{cite journal | author=Minucci S, Pelicci PG |title=Retinoid receptors in health and disease: co-regulators and the chromatin connection. |journal=Semin. Cell Dev. Biol. |volume=10 |issue= 2 |pages= 215-25 |year= 1999 |pmid= 10441075 |doi= 10.1006/scdb.1999.0303 }}
*{{cite journal | author=Hörlein AJ, Näär AM, Heinzel T, ''et al.'' |title=Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. |journal=Nature |volume=377 |issue= 6548 |pages= 397-404 |year= 1995 |pmid= 7566114 |doi= 10.1038/377397a0 }}
*{{cite journal | author=Downes M, Burke LJ, Bailey PJ, Muscat GE |title=Two receptor interaction domains in the corepressor, N-CoR/RIP13, are required for an efficient interaction with Rev-erbA alpha and RVR: physical association is dependent on the E region of the orphan receptors. |journal=Nucleic Acids Res. |volume=24 |issue= 22 |pages= 4379-86 |year= 1997 |pmid= 8948627 |doi= }}
*{{cite journal | author=Tagami T, Madison LD, Nagaya T, Jameson JL |title=Nuclear receptor corepressors activate rather than suppress basal transcription of genes that are negatively regulated by thyroid hormone. |journal=Mol. Cell. Biol. |volume=17 |issue= 5 |pages= 2642-8 |year= 1997 |pmid= 9111334 |doi= }}
*{{cite journal | author=Zamir I, Dawson J, Lavinsky RM, ''et al.'' |title=Cloning and characterization of a corepressor and potential component of the nuclear hormone receptor repression complex. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=94 |issue= 26 |pages= 14400-5 |year= 1998 |pmid= 9405624 |doi= }}
*{{cite journal | author=Burke LJ, Downes M, Laudet V, Muscat GE |title=Identification and characterization of a novel corepressor interaction region in RVR and Rev-erbA alpha. |journal=Mol. Endocrinol. |volume=12 |issue= 2 |pages= 248-62 |year= 1998 |pmid= 9482666 |doi= }}
*{{cite journal | author=Guidez F, Ivins S, Zhu J, ''et al.'' |title=Reduced retinoic acid-sensitivities of nuclear receptor corepressor binding to PML- and PLZF-RARalpha underlie molecular pathogenesis and treatment of acute promyelocytic leukemia. |journal=Blood |volume=91 |issue= 8 |pages= 2634-42 |year= 1998 |pmid= 9531570 |doi= }}
*{{cite journal | author=Kao HY, Ordentlich P, Koyano-Nakagawa N, ''et al.'' |title=A histone deacetylase corepressor complex regulates the Notch signal transduction pathway. |journal=Genes Dev. |volume=12 |issue= 15 |pages= 2269-77 |year= 1998 |pmid= 9694793 |doi= }}
*{{cite journal | author=Laherty CD, Billin AN, Lavinsky RM, ''et al.'' |title=SAP30, a component of the mSin3 corepressor complex involved in N-CoR-mediated repression by specific transcription factors. |journal=Mol. Cell |volume=2 |issue= 1 |pages= 33-42 |year= 1998 |pmid= 9702189 |doi= }}
*{{cite journal | author=Wang J, Hoshino T, Redner RL, ''et al.'' |title=ETO, fusion partner in t(8;21) acute myeloid leukemia, represses transcription by interaction with the human N-CoR/mSin3/HDAC1 complex. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=95 |issue= 18 |pages= 10860-5 |year= 1998 |pmid= 9724795 |doi= }}
*{{cite journal | author=Ordentlich P, Downes M, Xie W, ''et al.'' |title=Unique forms of human and mouse nuclear receptor corepressor SMRT. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=96 |issue= 6 |pages= 2639-44 |year= 1999 |pmid= 10077563 |doi= }}
*{{cite journal | author=Dowell P, Ishmael JE, Avram D, ''et al.'' |title=Identification of nuclear receptor corepressor as a peroxisome proliferator-activated receptor alpha interacting protein. |journal=J. Biol. Chem. |volume=274 |issue= 22 |pages= 15901-7 |year= 1999 |pmid= 10336495 |doi= }}
*{{cite journal | author=Boutell JM, Thomas P, Neal JW, ''et al.'' |title=Aberrant interactions of transcriptional repressor proteins with the Huntington's disease gene product, huntingtin. |journal=Hum. Mol. Genet. |volume=8 |issue= 9 |pages= 1647-55 |year= 2000 |pmid= 10441327 |doi= }}
*{{cite journal | author=Nagaya T, Chen KS, Fujieda M, ''et al.'' |title=Localization of the human nuclear receptor corepressor (hN-CoR) gene between the CMT1A and the SMS critical regions of chromosome 17p11.2. |journal=Genomics |volume=59 |issue= 3 |pages= 339-41 |year= 1999 |pmid= 10444336 |doi= 10.1006/geno.1998.5694 }}
*{{cite journal | author=Kikuno R, Nagase T, Ishikawa K, ''et al.'' |title=Prediction of the coding sequences of unidentified human genes. XIV. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro. |journal=DNA Res. |volume=6 |issue= 3 |pages= 197-205 |year= 1999 |pmid= 10470851 |doi= }}
*{{cite journal | author=Hu X, Lazar MA |title=The CoRNR motif controls the recruitment of corepressors by nuclear hormone receptors. |journal=Nature |volume=402 |issue= 6757 |pages= 93-6 |year= 1999 |pmid= 10573424 |doi= 10.1038/47069 }}
*{{cite journal | author=Huang EY, Zhang J, Miska EA, ''et al.'' |title=Nuclear receptor corepressors partner with class II histone deacetylases in a Sin3-independent repression pathway. |journal=Genes Dev. |volume=14 |issue= 1 |pages= 45-54 |year= 2000 |pmid= 10640275 |doi= }}
*{{cite journal | author=Morohoshi F, Mitani S, Mitsuhashi N, ''et al.'' |title=Structure and expression pattern of a human MTG8/ETO family gene, MTGR1. |journal=Gene |volume=241 |issue= 2 |pages= 287-95 |year= 2000 |pmid= 10675041 |doi= }}
*{{cite journal | author=Masselink H, Bernards R |title=The adenovirus E1A binding protein BS69 is a corepressor of transcription through recruitment of N-CoR. |journal=Oncogene |volume=19 |issue= 12 |pages= 1538-46 |year= 2000 |pmid= 10734313 |doi= 10.1038/sj.onc.1203421 }}
}}
{{refend}}
{{protein-stub}}
- INFO: Beginning work on PAX6... {November 14, 2007 1:31:54 PM PST}
- AMBIGUITY: Did not locate an acceptable page to update. {November 14, 2007 1:32:36 PM PST}
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{PBB_Controls
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}
<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{GNF_Protein_box
| image = PBB_Protein_PAX6_image.jpg
| image_source = [[Protein_Data_Bank|PDB]] rendering based on 2cue.
| PDB = {{PDB2|2cue}}, {{PDB2|6pax}}
| Name = Paired box gene 6 (aniridia, keratitis)
| HGNCid = 8620
| Symbol = PAX6
| AltSymbols =; AN; AN2; D11S812E; MGC17209; MGDA; WAGR
| OMIM = 607108
| ECnumber =
| Homologene = 1212
| MGIid = 97490
| GeneAtlas_image1 = PBB_GE_PAX6_205646_s_at_tn.png
| Function = {{GNF_GO|id=GO:0003677 |text = DNA binding}} {{GNF_GO|id=GO:0003700 |text = transcription factor activity}} {{GNF_GO|id=GO:0005515 |text = protein binding}} {{GNF_GO|id=GO:0043565 |text = sequence-specific DNA binding}}
| Component = {{GNF_GO|id=GO:0005634 |text = nucleus}}
| Process = {{GNF_GO|id=GO:0001654 |text = eye development}} {{GNF_GO|id=GO:0006350 |text = transcription}} {{GNF_GO|id=GO:0006355 |text = regulation of transcription, DNA-dependent}} {{GNF_GO|id=GO:0007275 |text = multicellular organismal development}} {{GNF_GO|id=GO:0007417 |text = central nervous system development}} {{GNF_GO|id=GO:0007601 |text = visual perception}} {{GNF_GO|id=GO:0009887 |text = organ morphogenesis}} {{GNF_GO|id=GO:0030154 |text = cell differentiation}}
| Orthologs = {{GNF_Ortholog_box
| Hs_EntrezGene = 5080
| Hs_Ensembl = ENSG00000007372
| Hs_RefseqProtein = NP_000271
| Hs_RefseqmRNA = NM_000280
| Hs_GenLoc_db =
| Hs_GenLoc_chr = 11
| Hs_GenLoc_start = 31767034
| Hs_GenLoc_end = 31796085
| Hs_Uniprot = P26367
| Mm_EntrezGene = 18508
| Mm_Ensembl = ENSMUSG00000027168
| Mm_RefseqmRNA = NM_013627
| Mm_RefseqProtein = NP_038655
| Mm_GenLoc_db =
| Mm_GenLoc_chr = 2
| Mm_GenLoc_start = 105469735
| Mm_GenLoc_end = 105498202
| Mm_Uniprot = Q3UTV5
}}
}}
'''Paired box gene 6 (aniridia, keratitis)''', also known as '''PAX6''', is a human [[gene]].
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{PBB_Summary
| section_title =
| summary_text = This gene encodes paired box gene 6, one of many human homologues of the Drosophila melanogaster gene prd. In addition to the hallmark feature of this gene family, a conserved paired box domain, the encoded protein also contains a homeo box domain. Both domains are known to bind DNA, and function as regulators of gene transcription. This gene is expressed in the developing nervous system, and in developing eyes. Mutations in this gene are known to cause aniridia as well as Peter's anomaly, both ocular diseases.<ref>{{cite web | title = Entrez Gene: PAX6 paired box gene 6 (aniridia, keratitis)| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=5080| accessdate = }}</ref>
}}
==References==
{{reflist}}
==Further reading==
{{refbegin | 2}}
{{PBB_Further_reading
| citations =
*{{cite journal | author=Callaerts P, Halder G, Gehring WJ |title=PAX-6 in development and evolution. |journal=Annu. Rev. Neurosci. |volume=20 |issue= |pages= 483-532 |year= 1997 |pmid= 9056723 |doi= 10.1146/annurev.neuro.20.1.483 }}
*{{cite journal | author=Prosser J, van Heyningen V |title=PAX6 mutations reviewed. |journal=Hum. Mutat. |volume=11 |issue= 2 |pages= 93-108 |year= 1998 |pmid= 9482572 |doi= 10.1002/(SICI)1098-1004(1998)11:2<93::AID-HUMU1>3.0.CO;2-M }}
*{{cite journal | author=Hever AM, Williamson KA, van Heyningen V |title=Developmental malformations of the eye: the role of PAX6, SOX2 and OTX2. |journal=Clin. Genet. |volume=69 |issue= 6 |pages= 459-70 |year= 2007 |pmid= 16712695 |doi= 10.1111/j.1399-0004.2006.00619.x }}
*{{cite journal | author=Jordan T, Hanson I, Zaletayev D, ''et al.'' |title=The human PAX6 gene is mutated in two patients with aniridia. |journal=Nat. Genet. |volume=1 |issue= 5 |pages= 328-32 |year= 1993 |pmid= 1302030 |doi= 10.1038/ng0892-328 }}
*{{cite journal | author=Glaser T, Walton DS, Maas RL |title=Genomic structure, evolutionary conservation and aniridia mutations in the human PAX6 gene. |journal=Nat. Genet. |volume=2 |issue= 3 |pages= 232-9 |year= 1994 |pmid= 1345175 |doi= 10.1038/ng1192-232 }}
*{{cite journal | author=Ton CC, Hirvonen H, Miwa H, ''et al.'' |title=Positional cloning and characterization of a paired box- and homeobox-containing gene from the aniridia region. |journal=Cell |volume=67 |issue= 6 |pages= 1059-74 |year= 1992 |pmid= 1684738 |doi= }}
*{{cite journal | author=O'Donnell FE, Pappas HR |title=Autosomal dominant foveal hypoplasia and presenile cataracts. A new syndrome. |journal=Arch. Ophthalmol. |volume=100 |issue= 2 |pages= 279-81 |year= 1982 |pmid= 7065945 |doi= }}
*{{cite journal | author=Martha A, Strong LC, Ferrell RE, Saunders GF |title=Three novel aniridia mutations in the human PAX6 gene. |journal=Hum. Mutat. |volume=6 |issue= 1 |pages= 44-9 |year= 1995 |pmid= 7550230 |doi= 10.1002/humu.1380060109 }}
*{{cite journal | author=Hanson I, Brown A, van Heyningen V |title=A new PAX6 mutation in familial aniridia. |journal=J. Med. Genet. |volume=32 |issue= 6 |pages= 488-9 |year= 1995 |pmid= 7666404 |doi= }}
*{{cite journal | author=Mirzayans F, Pearce WG, MacDonald IM, Walter MA |title=Mutation of the PAX6 gene in patients with autosomal dominant keratitis. |journal=Am. J. Hum. Genet. |volume=57 |issue= 3 |pages= 539-48 |year= 1995 |pmid= 7668281 |doi= }}
*{{cite journal | author=van Heyningen V, Little PF |title=Report of the fourth international workshop on human chromosome 11 mapping 1994. |journal=Cytogenet. Cell Genet. |volume=69 |issue= 3-4 |pages= 127-58 |year= 1995 |pmid= 7698003 |doi= }}
*{{cite journal | author=Auffray C, Behar G, Bois F, ''et al.'' |title=[IMAGE: molecular integration of the analysis of the human genome and its expression] |journal=C. R. Acad. Sci. III, Sci. Vie |volume=318 |issue= 2 |pages= 263-72 |year= 1995 |pmid= 7757816 |doi= }}
*{{cite journal | author=Martha A, Ferrell RE, Mintz-Hittner H, ''et al.'' |title=Paired box mutations in familial and sporadic aniridia predicts truncated aniridia proteins. |journal=Am. J. Hum. Genet. |volume=54 |issue= 5 |pages= 801-11 |year= 1994 |pmid= 7909985 |doi= }}
*{{cite journal | author=Glaser T, Jepeal L, Edwards JG, ''et al.'' |title=PAX6 gene dosage effect in a family with congenital cataracts, aniridia, anophthalmia and central nervous system defects. |journal=Nat. Genet. |volume=7 |issue= 4 |pages= 463-71 |year= 1994 |pmid= 7951315 |doi= 10.1038/ng0894-463 }}
*{{cite journal | author=Epstein JA, Glaser T, Cai J, ''et al.'' |title=Two independent and interactive DNA-binding subdomains of the Pax6 paired domain are regulated by alternative splicing. |journal=Genes Dev. |volume=8 |issue= 17 |pages= 2022-34 |year= 1994 |pmid= 7958875 |doi= }}
*{{cite journal | author=Davis A, Cowell JK |title=Mutations in the PAX6 gene in patients with hereditary aniridia. |journal=Hum. Mol. Genet. |volume=2 |issue= 12 |pages= 2093-7 |year= 1994 |pmid= 8111379 |doi= }}
*{{cite journal | author=Hanson IM, Fletcher JM, Jordan T, ''et al.'' |title=Mutations at the PAX6 locus are found in heterogeneous anterior segment malformations including Peters' anomaly. |journal=Nat. Genet. |volume=6 |issue= 2 |pages= 168-73 |year= 1994 |pmid= 8162071 |doi= 10.1038/ng0294-168 }}
*{{cite journal | author=Hanson IM, Seawright A, Hardman K, ''et al.'' |title=PAX6 mutations in aniridia. |journal=Hum. Mol. Genet. |volume=2 |issue= 7 |pages= 915-20 |year= 1993 |pmid= 8364574 |doi= }}
*{{cite journal | author=Azuma N, Nishina S, Yanagisawa H, ''et al.'' |title=PAX6 missense mutation in isolated foveal hypoplasia. |journal=Nat. Genet. |volume=13 |issue= 2 |pages= 141-2 |year= 1996 |pmid= 8640214 |doi= 10.1038/ng0696-141 }}
}}
{{refend}}
{{protein-stub}}
- INFO: Beginning work on PRKCQ... {November 14, 2007 1:32:36 PM PST}
- AMBIGUITY: Did not locate an acceptable page to update. {November 14, 2007 1:33:36 PM PST}
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{PBB_Controls
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}
<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{GNF_Protein_box
| image = PBB_Protein_PRKCQ_image.jpg
| image_source = [[Protein_Data_Bank|PDB]] rendering based on 1xjd.
| PDB = {{PDB2|1xjd}}
| Name = Protein kinase C, theta
| HGNCid = 9410
| Symbol = PRKCQ
| AltSymbols =; MGC126514; MGC141919; PRKCT; nPKC-theta
| OMIM = 600448
| ECnumber =
| Homologene = 21263
| MGIid = 97601
| GeneAtlas_image1 = PBB_GE_PRKCQ_210039_s_at_tn.png
| GeneAtlas_image2 = PBB_GE_PRKCQ_210038_at_tn.png
| Function = {{GNF_GO|id=GO:0000166 |text = nucleotide binding}} {{GNF_GO|id=GO:0000287 |text = magnesium ion binding}} {{GNF_GO|id=GO:0004674 |text = protein serine/threonine kinase activity}} {{GNF_GO|id=GO:0004697 |text = protein kinase C activity}} {{GNF_GO|id=GO:0005515 |text = protein binding}} {{GNF_GO|id=GO:0005524 |text = ATP binding}} {{GNF_GO|id=GO:0008270 |text = zinc ion binding}} {{GNF_GO|id=GO:0016740 |text = transferase activity}} {{GNF_GO|id=GO:0019992 |text = diacylglycerol binding}}
| Component = {{GNF_GO|id=GO:0001772 |text = immunological synapse}} {{GNF_GO|id=GO:0005622 |text = intracellular}} {{GNF_GO|id=GO:0005737 |text = cytoplasm}} {{GNF_GO|id=GO:0005886 |text = plasma membrane}}
| Process = {{GNF_GO|id=GO:0001558 |text = regulation of cell growth}} {{GNF_GO|id=GO:0006468 |text = protein amino acid phosphorylation}} {{GNF_GO|id=GO:0007242 |text = intracellular signaling cascade}} {{GNF_GO|id=GO:0042102 |text = positive regulation of T cell proliferation}} {{GNF_GO|id=GO:0045086 |text = positive regulation of interleukin-2 biosynthetic process}} {{GNF_GO|id=GO:0051092 |text = activation of NF-kappaB transcription factor}}
| Orthologs = {{GNF_Ortholog_box
| Hs_EntrezGene = 5588
| Hs_Ensembl = ENSG00000065675
| Hs_RefseqProtein = NP_006248
| Hs_RefseqmRNA = NM_006257
| Hs_GenLoc_db =
| Hs_GenLoc_chr = 10
| Hs_GenLoc_start = 6509111
| Hs_GenLoc_end = 6662269
| Hs_Uniprot = Q04759
| Mm_EntrezGene = 18761
| Mm_Ensembl = ENSMUSG00000026778
| Mm_RefseqmRNA = NM_008859
| Mm_RefseqProtein = NP_032885
| Mm_GenLoc_db =
| Mm_GenLoc_chr = 2
| Mm_GenLoc_start = 11090235
| Mm_GenLoc_end = 11219079
| Mm_Uniprot = Q3UK53
}}
}}
'''Protein kinase C, theta''', also known as '''PRKCQ''', is a human [[gene]].
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{PBB_Summary
| section_title =
| summary_text = Protein kinase C (PKC) is a family of serine- and threonine-specific protein kinases that can be activated by calcium and the second messenger diacylglycerol. PKC family members phosphorylate a wide variety of protein targets and are known to be involved in diverse cellular signaling pathways. PKC family members also serve as major receptors for phorbol esters, a class of tumor promoters. Each member of the PKC family has a specific expression profile and is believed to play a distinct role. The protein encoded by this gene is one of the PKC family members. It is a calcium-independent and phospholipid-dependent protein kinase. This kinase is important for T-cell activation. It is required for the activation of the transcription factors NF-kappaB and AP-1, and may link the T cell receptor (TCR) signaling complex to the activation of the transcription factors.<ref>{{cite web | title = Entrez Gene: PRKCQ protein kinase C, theta| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=5588| accessdate = }}</ref>
}}
==References==
{{reflist}}
==Further reading==
{{refbegin | 2}}
{{PBB_Further_reading
| citations =
*{{cite journal | author=Meller N, Altman A, Isakov N |title=New perspectives on PKCtheta, a member of the novel subfamily of protein kinase C. |journal=Stem Cells |volume=16 |issue= 3 |pages= 178-92 |year= 1998 |pmid= 9617893 |doi= }}
*{{cite journal | author=Greenway AL, Holloway G, McPhee DA, ''et al.'' |title=HIV-1 Nef control of cell signalling molecules: multiple strategies to promote virus replication. |journal=J. Biosci. |volume=28 |issue= 3 |pages= 323-35 |year= 2004 |pmid= 12734410 |doi= }}
*{{cite journal | author=Ruegg CL, Strand M |title=A synthetic peptide with sequence identity to the transmembrane protein GP41 of HIV-1 inhibits distinct lymphocyte activation pathways dependent on protein kinase C and intracellular calcium influx. |journal=Cell. Immunol. |volume=137 |issue= 1 |pages= 1-13 |year= 1991 |pmid= 1832084 |doi= }}
*{{cite journal | author=Chowdhury IH, Koyanagi Y, Kobayashi S, ''et al.'' |title=The phorbol ester TPA strongly inhibits HIV-1-induced syncytia formation but enhances virus production: possible involvement of protein kinase C pathway. |journal=Virology |volume=176 |issue= 1 |pages= 126-32 |year= 1990 |pmid= 1970444 |doi= }}
*{{cite journal | author=Ruegg CL, Strand M |title=Inhibition of protein kinase C and anti-CD3-induced Ca2+ influx in Jurkat T cells by a synthetic peptide with sequence identity to HIV-1 gp41. |journal=J. Immunol. |volume=144 |issue= 10 |pages= 3928-35 |year= 1990 |pmid= 2139676 |doi= }}
*{{cite journal | author=Jakobovits A, Rosenthal A, Capon DJ |title=Trans-activation of HIV-1 LTR-directed gene expression by tat requires protein kinase C. |journal=EMBO J. |volume=9 |issue= 4 |pages= 1165-70 |year= 1990 |pmid= 2182321 |doi= }}
*{{cite journal | author=Fields AP, Bednarik DP, Hess A, May WS |title=Human immunodeficiency virus induces phosphorylation of its cell surface receptor. |journal=Nature |volume=333 |issue= 6170 |pages= 278-80 |year= 1988 |pmid= 3259291 |doi= 10.1038/333278a0 }}
*{{cite journal | author=Chirmule N, Goonewardena H, Pahwa S, ''et al.'' |title=HIV-1 envelope glycoproteins induce activation of activated protein-1 in CD4+ T cells. |journal=J. Biol. Chem. |volume=270 |issue= 33 |pages= 19364-9 |year= 1995 |pmid= 7642615 |doi= }}
*{{cite journal | author=Chang JD, Xu Y, Raychowdhury MK, Ware JA |title=Molecular cloning and expression of a cDNA encoding a novel isoenzyme of protein kinase C (nPKC). A new member of the nPKC family expressed in skeletal muscle, megakaryoblastic cells, and platelets. |journal=J. Biol. Chem. |volume=268 |issue= 19 |pages= 14208-14 |year= 1993 |pmid= 7686153 |doi= }}
*{{cite journal | author=Erdel M, Baier-Bitterlich G, Duba C, ''et al.'' |title=Mapping of the human protein kinase C-theta (PRKCQ) gene locus to the short arm of chromosome 10 (10p15) by FISH. |journal=Genomics |volume=25 |issue= 2 |pages= 595-7 |year= 1995 |pmid= 7790001 |doi= }}
*{{cite journal | author=Ward NE, Gravitt KR, O'Brian CA |title=Inhibition of protein kinase C by a synthetic peptide corresponding to cytoplasmic domain residues 828-848 of the human immunodeficiency virus type 1 envelope glycoprotein. |journal=Cancer Lett. |volume=88 |issue= 1 |pages= 37-40 |year= 1995 |pmid= 7850771 |doi= }}
*{{cite journal | author=Gupta S, Aggarwal S, Kim C, Gollapudi S |title=Human immunodeficiency virus-1 recombinant gp120 induces changes in protein kinase C isozymes--a preliminary report. |journal=Int. J. Immunopharmacol. |volume=16 |issue= 3 |pages= 197-204 |year= 1994 |pmid= 8206685 |doi= }}
*{{cite journal | author=Baier G, Telford D, Giampa L, ''et al.'' |title=Molecular cloning and characterization of PKC theta, a novel member of the protein kinase C (PKC) gene family expressed predominantly in hematopoietic cells. |journal=J. Biol. Chem. |volume=268 |issue= 7 |pages= 4997-5004 |year= 1993 |pmid= 8444877 |doi= }}
*{{cite journal | author=Parada NA, Cruikshank WW, Danis HL, ''et al.'' |title=IL-16- and other CD4 ligand-induced migration is dependent upon protein kinase C. |journal=Cell. Immunol. |volume=168 |issue= 1 |pages= 100-6 |year= 1996 |pmid= 8599832 |doi= 10.1006/cimm.1996.0054 }}
*{{cite journal | author=Conant K, Ma M, Nath A, Major EO |title=Extracellular human immunodeficiency virus type 1 Tat protein is associated with an increase in both NF-kappa B binding and protein kinase C activity in primary human astrocytes. |journal=J. Virol. |volume=70 |issue= 3 |pages= 1384-9 |year= 1996 |pmid= 8627654 |doi= }}
*{{cite journal | author=Smith BL, Krushelnycky BW, Mochly-Rosen D, Berg P |title=The HIV nef protein associates with protein kinase C theta. |journal=J. Biol. Chem. |volume=271 |issue= 28 |pages= 16753-7 |year= 1996 |pmid= 8663223 |doi= }}
*{{cite journal | author=Meller N, Liu YC, Collins TL, ''et al.'' |title=Direct interaction between protein kinase C theta (PKC theta) and 14-3-3 tau in T cells: 14-3-3 overexpression results in inhibition of PKC theta translocation and function. |journal=Mol. Cell. Biol. |volume=16 |issue= 10 |pages= 5782-91 |year= 1996 |pmid= 8816492 |doi= }}
*{{cite journal | author=Holmes AM |title=In vitro phosphorylation of human immunodeficiency virus type 1 Tat protein by protein kinase C: evidence for the phosphorylation of amino acid residue serine-46. |journal=Arch. Biochem. Biophys. |volume=335 |issue= 1 |pages= 8-12 |year= 1996 |pmid= 8914829 |doi= 10.1006/abbi.1996.0476 }}
*{{cite journal | author=Monks CR, Kupfer H, Tamir I, ''et al.'' |title=Selective modulation of protein kinase C-theta during T-cell activation. |journal=Nature |volume=385 |issue= 6611 |pages= 83-6 |year= 1997 |pmid= 8985252 |doi= 10.1038/385083a0 }}
*{{cite journal | author=Datta R, Kojima H, Yoshida K, Kufe D |title=Caspase-3-mediated cleavage of protein kinase C theta in induction of apoptosis. |journal=J. Biol. Chem. |volume=272 |issue= 33 |pages= 20317-20 |year= 1997 |pmid= 9252332 |doi= }}
}}
{{refend}}
{{protein-stub}}
- INFO: Beginning work on SFRS1... {November 14, 2007 1:33:36 PM PST}
- AMBIGUITY: Did not locate an acceptable page to update. {November 14, 2007 1:34:20 PM PST}
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{PBB_Controls
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}
<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{GNF_Protein_box
| image = PBB_Protein_SFRS1_image.jpg
| image_source = [[Protein_Data_Bank|PDB]] rendering based on 1x4a.
| PDB = {{PDB2|1x4a}}
| Name = Splicing factor, arginine/serine-rich 1 (splicing factor 2, alternate splicing factor)
| HGNCid = 10780
| Symbol = SFRS1
| AltSymbols =; ASF; MGC5228; SF2; SF2p33; SRp30a
| OMIM = 600812
| ECnumber =
| Homologene = 31411
| MGIid = 98283
| GeneAtlas_image1 = PBB_GE_SFRS1_208863_s_at_tn.png
| GeneAtlas_image2 = PBB_GE_SFRS1_201742_x_at_tn.png
| GeneAtlas_image3 = PBB_GE_SFRS1_211784_s_at_tn.png
| Function = {{GNF_GO|id=GO:0000166 |text = nucleotide binding}} {{GNF_GO|id=GO:0003723 |text = RNA binding}} {{GNF_GO|id=GO:0005515 |text = protein binding}}
| Component = {{GNF_GO|id=GO:0005634 |text = nucleus}} {{GNF_GO|id=GO:0005681 |text = spliceosome}}
| Process = {{GNF_GO|id=GO:0006376 |text = mRNA splice site selection}} {{GNF_GO|id=GO:0006397 |text = mRNA processing}} {{GNF_GO|id=GO:0008380 |text = RNA splicing}}
| Orthologs = {{GNF_Ortholog_box
| Hs_EntrezGene = 6426
| Hs_Ensembl = ENSG00000136450
| Hs_RefseqProtein = NP_001071634
| Hs_RefseqmRNA = NM_001078166
| Hs_GenLoc_db =
| Hs_GenLoc_chr = 17
| Hs_GenLoc_start = 53437651
| Hs_GenLoc_end = 53439593
| Hs_Uniprot = Q07955
| Mm_EntrezGene = 110809
| Mm_Ensembl = ENSMUSG00000018379
| Mm_RefseqmRNA = NM_001078167
| Mm_RefseqProtein = NP_001071635
| Mm_GenLoc_db =
| Mm_GenLoc_chr = 11
| Mm_GenLoc_start = 87863880
| Mm_GenLoc_end = 87867803
| Mm_Uniprot = Q6PDM2
}}
}}
'''Splicing factor, arginine/serine-rich 1 (splicing factor 2, alternate splicing factor)''', also known as '''SFRS1''', is a human [[gene]].
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{PBB_Summary
| section_title =
| summary_text = This gene encodes a member of the arginine/serine-rich splicing factor protein family, and functions in both constitutive and alternative pre-mRNA splicing. The protein binds to pre-mRNA transcripts and components of the spliceosome, and can either activate or repress splicing depending on the location of the pre-mRNA binding site. The protein's ability to activate splicing is regulated by phosphorylation and interactions with other splicing factor associated proteins. Multiple transcript variants encoding different isoforms have been found for this gene.<ref>{{cite web | title = Entrez Gene: SFRS1 splicing factor, arginine/serine-rich 1 (splicing factor 2, alternate splicing factor)| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=6426| accessdate = }}</ref>
}}
==References==
{{reflist}}
==Further reading==
{{refbegin | 2}}
{{PBB_Further_reading
| citations =
*{{cite journal | author=Zahler AM, Lane WS, Stolk JA, Roth MB |title=SR proteins: a conserved family of pre-mRNA splicing factors. |journal=Genes Dev. |volume=6 |issue= 5 |pages= 837-47 |year= 1992 |pmid= 1577277 |doi= }}
*{{cite journal | author=Mayeda A, Zahler AM, Krainer AR, Roth MB |title=Two members of a conserved family of nuclear phosphoproteins are involved in pre-mRNA splicing. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=89 |issue= 4 |pages= 1301-4 |year= 1992 |pmid= 1741384 |doi= }}
*{{cite journal | author=Krainer AR, Mayeda A, Kozak D, Binns G |title=Functional expression of cloned human splicing factor SF2: homology to RNA-binding proteins, U1 70K, and Drosophila splicing regulators. |journal=Cell |volume=66 |issue= 2 |pages= 383-94 |year= 1991 |pmid= 1830244 |doi= }}
*{{cite journal | author=Ge H, Zuo P, Manley JL |title=Primary structure of the human splicing factor ASF reveals similarities with Drosophila regulators. |journal=Cell |volume=66 |issue= 2 |pages= 373-82 |year= 1991 |pmid= 1855257 |doi= }}
*{{cite journal | author=Zuo P, Manley JL |title=The human splicing factor ASF/SF2 can specifically recognize pre-mRNA 5' splice sites. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=91 |issue= 8 |pages= 3363-7 |year= 1994 |pmid= 7512732 |doi= }}
*{{cite journal | author=Tacke R, Manley JL |title=The human splicing factors ASF/SF2 and SC35 possess distinct, functionally significant RNA binding specificities. |journal=EMBO J. |volume=14 |issue= 14 |pages= 3540-51 |year= 1995 |pmid= 7543047 |doi= }}
*{{cite journal | author=Maruyama K, Sugano S |title=Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. |journal=Gene |volume=138 |issue= 1-2 |pages= 171-4 |year= 1994 |pmid= 8125298 |doi= }}
*{{cite journal | author=Kohtz JD, Jamison SF, Will CL, ''et al.'' |title=Protein-protein interactions and 5'-splice-site recognition in mammalian mRNA precursors. |journal=Nature |volume=368 |issue= 6467 |pages= 119-24 |year= 1994 |pmid= 8139654 |doi= 10.1038/368119a0 }}
*{{cite journal | author=Luo Y, Yu H, Peterlin BM |title=Cellular protein modulates effects of human immunodeficiency virus type 1 Rev. |journal=J. Virol. |volume=68 |issue= 6 |pages= 3850-6 |year= 1994 |pmid= 8189522 |doi= }}
*{{cite journal | author=Gui JF, Lane WS, Fu XD |title=A serine kinase regulates intracellular localization of splicing factors in the cell cycle. |journal=Nature |volume=369 |issue= 6482 |pages= 678-82 |year= 1994 |pmid= 8208298 |doi= 10.1038/369678a0 }}
*{{cite journal | author=Zuo P, Manley JL |title=Functional domains of the human splicing factor ASF/SF2. |journal=EMBO J. |volume=12 |issue= 12 |pages= 4727-37 |year= 1993 |pmid= 8223481 |doi= }}
*{{cite journal | author=Wu JY, Maniatis T |title=Specific interactions between proteins implicated in splice site selection and regulated alternative splicing. |journal=Cell |volume=75 |issue= 6 |pages= 1061-70 |year= 1994 |pmid= 8261509 |doi= }}
*{{cite journal | author=Bermingham JR, Arden KC, Naumova AK, ''et al.'' |title=Chromosomal localization of mouse and human genes encoding the splicing factors ASF/SF2 (SFRS1) and SC-35 (SFRS2). |journal=Genomics |volume=29 |issue= 1 |pages= 70-9 |year= 1996 |pmid= 8530103 |doi= 10.1006/geno.1995.1216 }}
*{{cite journal | author=Colwill K, Pawson T, Andrews B, ''et al.'' |title=The Clk/Sty protein kinase phosphorylates SR splicing factors and regulates their intranuclear distribution. |journal=EMBO J. |volume=15 |issue= 2 |pages= 265-75 |year= 1996 |pmid= 8617202 |doi= }}
*{{cite journal | author=Tange TO, Jensen TH, Kjems J |title=In vitro interaction between human immunodeficiency virus type 1 Rev protein and splicing factor ASF/SF2-associated protein, p32. |journal=J. Biol. Chem. |volume=271 |issue= 17 |pages= 10066-72 |year= 1996 |pmid= 8626563 |doi= }}
*{{cite journal | author=Colwill K, Feng LL, Yeakley JM, ''et al.'' |title=SRPK1 and Clk/Sty protein kinases show distinct substrate specificities for serine/arginine-rich splicing factors. |journal=J. Biol. Chem. |volume=271 |issue= 40 |pages= 24569-75 |year= 1996 |pmid= 8798720 |doi= }}
*{{cite journal | author=Zhang WJ, Wu JY |title=Functional properties of p54, a novel SR protein active in constitutive and alternative splicing. |journal=Mol. Cell. Biol. |volume=16 |issue= 10 |pages= 5400-8 |year= 1996 |pmid= 8816452 |doi= }}
*{{cite journal | author=Powell DM, Amaral MC, Wu JY, ''et al.'' |title=HIV Rev-dependent binding of SF2/ASF to the Rev response element: possible role in Rev-mediated inhibition of HIV RNA splicing. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=94 |issue= 3 |pages= 973-8 |year= 1997 |pmid= 9023367 |doi= }}
*{{cite journal | author=Tronchère H, Wang J, Fu XD |title=A protein related to splicing factor U2AF35 that interacts with U2AF65 and SR proteins in splicing of pre-mRNA. |journal=Nature |volume=388 |issue= 6640 |pages= 397-400 |year= 1997 |pmid= 9237760 |doi= 10.1038/41137 }}
*{{cite journal | author=Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, ''et al.'' |title=Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library. |journal=Gene |volume=200 |issue= 1-2 |pages= 149-56 |year= 1997 |pmid= 9373149 |doi= }}
}}
{{refend}}
{{protein-stub}}
- INFO: Beginning work on SIN3A... {November 14, 2007 1:40:26 PM PST}
- SEARCH REDIRECT: Control Box Found: SIN3A {November 14, 2007 1:41:37 PM PST}
- UPDATE PROTEIN BOX: Updating Protein Box, No errors. {November 14, 2007 1:41:38 PM PST}
- UPDATE SUMMARY: Updating Summary, No Errors. {November 14, 2007 1:41:38 PM PST}
- UPDATE CITATIONS: Updating Citations, No Errors. {November 14, 2007 1:41:38 PM PST}
- UPDATED: Updated protein page: SIN3A {November 14, 2007 1:41:46 PM PST}
- INFO: Beginning work on SMAD1... {November 14, 2007 1:28:47 PM PST}
- AMBIGUITY: Did not locate an acceptable page to update. {November 14, 2007 1:29:57 PM PST}
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{PBB_Controls
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}
<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{GNF_Protein_box
| image = PBB_Protein_SMAD1_image.jpg
| image_source = [[Protein_Data_Bank|PDB]] rendering based on 1khu.
| PDB = {{PDB2|1khu}}
| Name = SMAD family member 1
| HGNCid = 6767
| Symbol = SMAD1
| AltSymbols =; BSP1; JV4-1; JV41; MADH1; MADR1
| OMIM = 601595
| ECnumber =
| Homologene = 21196
| MGIid = 109452
| GeneAtlas_image1 = PBB_GE_SMAD1_210993_s_at_tn.png
| Function = {{GNF_GO|id=GO:0003700 |text = transcription factor activity}} {{GNF_GO|id=GO:0003702 |text = RNA polymerase II transcription factor activity}} {{GNF_GO|id=GO:0005057 |text = receptor signaling protein activity}} {{GNF_GO|id=GO:0005515 |text = protein binding}} {{GNF_GO|id=GO:0016563 |text = transcription activator activity}}
| Component = {{GNF_GO|id=GO:0005622 |text = intracellular}} {{GNF_GO|id=GO:0005634 |text = nucleus}} {{GNF_GO|id=GO:0005667 |text = transcription factor complex}} {{GNF_GO|id=GO:0016021 |text = integral to membrane}}
| Process = {{GNF_GO|id=GO:0000165 |text = MAPKKK cascade}} {{GNF_GO|id=GO:0006350 |text = transcription}} {{GNF_GO|id=GO:0006355 |text = regulation of transcription, DNA-dependent}} {{GNF_GO|id=GO:0007165 |text = signal transduction}} {{GNF_GO|id=GO:0007179 |text = transforming growth factor beta receptor signaling pathway}} {{GNF_GO|id=GO:0007276 |text = gamete generation}} {{GNF_GO|id=GO:0008285 |text = negative regulation of cell proliferation}} {{GNF_GO|id=GO:0009880 |text = embryonic pattern specification}} {{GNF_GO|id=GO:0030509 |text = BMP signaling pathway}} {{GNF_GO|id=GO:0030901 |text = midbrain development}} {{GNF_GO|id=GO:0030902 |text = hindbrain development}} {{GNF_GO|id=GO:0042592 |text = homeostatic process}} {{GNF_GO|id=GO:0045944 |text = positive regulation of transcription from RNA polymerase II promoter}}
| Orthologs = {{GNF_Ortholog_box
| Hs_EntrezGene = 4086
| Hs_Ensembl = ENSG00000170365
| Hs_RefseqProtein = NP_001003688
| Hs_RefseqmRNA = NM_001003688
| Hs_GenLoc_db =
| Hs_GenLoc_chr = 4
| Hs_GenLoc_start = 146622401
| Hs_GenLoc_end = 146699773
| Hs_Uniprot = Q15797
| Mm_EntrezGene = 17125
| Mm_Ensembl = ENSMUSG00000031681
| Mm_RefseqmRNA = NM_008539
| Mm_RefseqProtein = NP_032565
| Mm_GenLoc_db =
| Mm_GenLoc_chr = 8
| Mm_GenLoc_start = 82234467
| Mm_GenLoc_end = 82295540
| Mm_Uniprot = Q6GT95
}}
}}
'''SMAD family member 1''', also known as '''SMAD1''', is a human [[gene]].
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{PBB_Summary
| section_title =
| summary_text = The protein encoded by this gene belongs to the SMAD, a family of proteins similar to the gene products of the Drosophila gene 'mothers against decapentaplegic' (Mad) and the C. elegans gene Sma. SMAD proteins are signal transducers and transcriptional modulators that mediate multiple signaling pathways. This protein mediates the signals of the bone morphogenetic proteins (BMPs), which are involved in a range of biological activities including cell growth, apoptosis, morphogenesis, development and immune responses. In response to BMP ligands, this protein can be phosphorylated and activated by the BMP receptor kinase. The phosphorylated form of this protein forms a complex with SMAD4, which is important for its function in the transcription regulation. This protein is a target for SMAD-specific E3 ubiquitin ligases, such as SMURF1 and SMURF2, and undergoes ubiquitination and proteasome-mediated degradation. Alternatively spliced transcript variants encoding the same protein have been observed.<ref>{{cite web | title = Entrez Gene: SMAD1 SMAD family member 1| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=4086| accessdate = }}</ref>
}}
==References==
{{reflist}}
==Further reading==
{{refbegin | 2}}
{{PBB_Further_reading
| citations =
*{{cite journal | author=Heldin CH, Miyazono K, ten Dijke P |title=TGF-beta signalling from cell membrane to nucleus through SMAD proteins. |journal=Nature |volume=390 |issue= 6659 |pages= 465-71 |year= 1997 |pmid= 9393997 |doi= 10.1038/37284 }}
*{{cite journal | author=Massagué J |title=TGF-beta signal transduction. |journal=Annu. Rev. Biochem. |volume=67 |issue= |pages= 753-91 |year= 1998 |pmid= 9759503 |doi= 10.1146/annurev.biochem.67.1.753 }}
*{{cite journal | author=Verschueren K, Huylebroeck D |title=Remarkable versatility of Smad proteins in the nucleus of transforming growth factor-beta activated cells. |journal=Cytokine Growth Factor Rev. |volume=10 |issue= 3-4 |pages= 187-99 |year= 2000 |pmid= 10647776 |doi= }}
*{{cite journal | author=Wrana JL, Attisano L |title=The Smad pathway. |journal=Cytokine Growth Factor Rev. |volume=11 |issue= 1-2 |pages= 5-13 |year= 2000 |pmid= 10708948 |doi= }}
*{{cite journal | author=Miyazono K |title=TGF-beta signaling by Smad proteins. |journal=Cytokine Growth Factor Rev. |volume=11 |issue= 1-2 |pages= 15-22 |year= 2000 |pmid= 10708949 |doi= }}
*{{cite journal | author=Attisano L, Silvestri C, Izzi L, Labbé E |title=The transcriptional role of Smads and FAST (FoxH1) in TGFbeta and activin signalling. |journal=Mol. Cell. Endocrinol. |volume=180 |issue= 1-2 |pages= 3-11 |year= 2001 |pmid= 11451566 |doi= }}
*{{cite journal | author=Liu F, Hata A, Baker JC, ''et al.'' |title=A human Mad protein acting as a BMP-regulated transcriptional activator. |journal=Nature |volume=381 |issue= 6583 |pages= 620-3 |year= 1996 |pmid= 8637600 |doi= 10.1038/381620a0 }}
*{{cite journal | author=Hoodless PA, Haerry T, Abdollah S, ''et al.'' |title=MADR1, a MAD-related protein that functions in BMP2 signaling pathways. |journal=Cell |volume=85 |issue= 4 |pages= 489-500 |year= 1996 |pmid= 8653785 |doi= }}
*{{cite journal | author=Lechleider RJ, de Caestecker MP, Dehejia A, ''et al.'' |title=Serine phosphorylation, chromosomal localization, and transforming growth factor-beta signal transduction by human bsp-1. |journal=J. Biol. Chem. |volume=271 |issue= 30 |pages= 17617-20 |year= 1996 |pmid= 8663601 |doi= }}
*{{cite journal | author=Riggins GJ, Thiagalingam S, Rozenblum E, ''et al.'' |title=Mad-related genes in the human. |journal=Nat. Genet. |volume=13 |issue= 3 |pages= 347-9 |year= 1996 |pmid= 8673135 |doi= 10.1038/ng0796-347 }}
*{{cite journal | author=Zhang Y, Feng X, We R, Derynck R |title=Receptor-associated Mad homologues synergize as effectors of the TGF-beta response. |journal=Nature |volume=383 |issue= 6596 |pages= 168-72 |year= 1996 |pmid= 8774881 |doi= 10.1038/383168a0 }}
*{{cite journal | author=Lagna G, Hata A, Hemmati-Brivanlou A, Massagué J |title=Partnership between DPC4 and SMAD proteins in TGF-beta signalling pathways. |journal=Nature |volume=383 |issue= 6603 |pages= 832-6 |year= 1996 |pmid= 8893010 |doi= 10.1038/383832a0 }}
*{{cite journal | author=Nakao A, Röijer E, Imamura T, ''et al.'' |title=Identification of Smad2, a human Mad-related protein in the transforming growth factor beta signaling pathway. |journal=J. Biol. Chem. |volume=272 |issue= 5 |pages= 2896-900 |year= 1997 |pmid= 9006934 |doi= }}
*{{cite journal | author=Kretzschmar M, Liu F, Hata A, ''et al.'' |title=The TGF-beta family mediator Smad1 is phosphorylated directly and activated functionally by the BMP receptor kinase. |journal=Genes Dev. |volume=11 |issue= 8 |pages= 984-95 |year= 1997 |pmid= 9136927 |doi= }}
*{{cite journal | author=Kretzschmar M, Doody J, Massagué J |title=Opposing BMP and EGF signalling pathways converge on the TGF-beta family mediator Smad1. |journal=Nature |volume=389 |issue= 6651 |pages= 618-22 |year= 1997 |pmid= 9335504 |doi= 10.1038/39348 }}
*{{cite journal | author=Imamura T, Takase M, Nishihara A, ''et al.'' |title=Smad6 inhibits signalling by the TGF-beta superfamily. |journal=Nature |volume=389 |issue= 6651 |pages= 622-6 |year= 1997 |pmid= 9335505 |doi= 10.1038/39355 }}
*{{cite journal | author=Macías-Silva M, Hoodless PA, Tang SJ, ''et al.'' |title=Specific activation of Smad1 signaling pathways by the BMP7 type I receptor, ALK2. |journal=J. Biol. Chem. |volume=273 |issue= 40 |pages= 25628-36 |year= 1998 |pmid= 9748228 |doi= }}
*{{cite journal | author=Liu F, Massagué J, Ruiz i Altaba A |title=Carboxy-terminally truncated Gli3 proteins associate with Smads. |journal=Nat. Genet. |volume=20 |issue= 4 |pages= 325-6 |year= 1998 |pmid= 9843199 |doi= 10.1038/3793 }}
}}
{{refend}}
{{protein-stub}}
- INFO: Beginning work on SMARCB1... {November 14, 2007 1:34:20 PM PST}
- AMBIGUITY: Did not locate an acceptable page to update. {November 14, 2007 1:35:31 PM PST}
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{PBB_Controls
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}
<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{GNF_Protein_box
| image =
| image_source =
| PDB =
| Name = SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily b, member 1
| HGNCid = 11103
| Symbol = SMARCB1
| AltSymbols =; BAF47; INI1; RDT; SNF5; SNF5L1; Sfh1p; Snr1; hSNFS
| OMIM = 601607
| ECnumber =
| Homologene = 2310
| MGIid = 1328366
| GeneAtlas_image1 = PBB_GE_SMARCB1_212167_s_at_tn.png
| Function = {{GNF_GO|id=GO:0005515 |text = protein binding}}
| Component = {{GNF_GO|id=GO:0000228 |text = nuclear chromosome}} {{GNF_GO|id=GO:0005634 |text = nucleus}} {{GNF_GO|id=GO:0005654 |text = nucleoplasm}} {{GNF_GO|id=GO:0016514 |text = SWI/SNF complex}}
| Process = {{GNF_GO|id=GO:0006338 |text = chromatin remodeling}} {{GNF_GO|id=GO:0006350 |text = transcription}} {{GNF_GO|id=GO:0006357 |text = regulation of transcription from RNA polymerase II promoter}} {{GNF_GO|id=GO:0007049 |text = cell cycle}} {{GNF_GO|id=GO:0015074 |text = DNA integration}} {{GNF_GO|id=GO:0045090 |text = retroviral genome replication}} {{GNF_GO|id=GO:0045786 |text = negative regulation of progression through cell cycle}}
| Orthologs = {{GNF_Ortholog_box
| Hs_EntrezGene = 6598
| Hs_Ensembl = ENSG00000099956
| Hs_RefseqProtein = NP_001007469
| Hs_RefseqmRNA = NM_001007468
| Hs_GenLoc_db =
| Hs_GenLoc_chr = 22
| Hs_GenLoc_start = 22459150
| Hs_GenLoc_end = 22506701
| Hs_Uniprot = Q12824
| Mm_EntrezGene = 20587
| Mm_Ensembl = ENSMUSG00000000902
| Mm_RefseqmRNA = NM_011418
| Mm_RefseqProtein = NP_035548
| Mm_GenLoc_db =
| Mm_GenLoc_chr = 10
| Mm_GenLoc_start = 75340491
| Mm_GenLoc_end = 75365312
| Mm_Uniprot = Q3UDA4
}}
}}
'''SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily b, member 1''', also known as '''SMARCB1''', is a human [[gene]].
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{PBB_Summary
| section_title =
| summary_text = The protein encoded by this gene is part of a complex that relieves repressive chromatin structures, allowing the transcriptional machinery to access its targets more effectively. The encoded nuclear protein may also bind to and enhance the DNA joining activity of HIV-1 integrase. This gene has been found to be a tumor suppressor, and mutations in it have been associated with malignant rhabdoid tumors. Two transcript variants encoding different isoforms have been found for this gene.<ref>{{cite web | title = Entrez Gene: SMARCB1 SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily b, member 1| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=6598| accessdate = }}</ref>
}}
==References==
{{reflist}}
==Further reading==
{{refbegin | 2}}
{{PBB_Further_reading
| citations =
*{{cite journal | author=Miller MD, Bushman FD |title=HIV integration. Ini1 for integration? |journal=Curr. Biol. |volume=5 |issue= 4 |pages= 368-70 |year= 1995 |pmid= 7627549 |doi= }}
*{{cite journal | author=Van Maele B, Debyser Z |title=HIV-1 integration: an interplay between HIV-1 integrase, cellular and viral proteins. |journal=AIDS reviews |volume=7 |issue= 1 |pages= 26-43 |year= 2005 |pmid= 15875659 |doi= }}
*{{cite journal | author=Van Maele B, Busschots K, Vandekerckhove L, ''et al.'' |title=Cellular co-factors of HIV-1 integration. |journal=Trends Biochem. Sci. |volume=31 |issue= 2 |pages= 98-105 |year= 2006 |pmid= 16403635 |doi= 10.1016/j.tibs.2005.12.002 }}
*{{cite journal | author=Judkins AR |title=Immunohistochemistry of INI1 expression: a new tool for old challenges in CNS and soft tissue pathology. |journal=Advances in anatomic pathology |volume=14 |issue= 5 |pages= 335-9 |year= 2007 |pmid= 17717433 |doi= 10.1097/PAP.0b013e3180ca8b08 }}
*{{cite journal | author=Muchardt C, Sardet C, Bourachot B, ''et al.'' |title=A human protein with homology to Saccharomyces cerevisiae SNF5 interacts with the potential helicase hbrm. |journal=Nucleic Acids Res. |volume=23 |issue= 7 |pages= 1127-32 |year= 1995 |pmid= 7739891 |doi= }}
*{{cite journal | author=Kalpana GV, Marmon S, Wang W, ''et al.'' |title=Binding and stimulation of HIV-1 integrase by a human homolog of yeast transcription factor SNF5. |journal=Science |volume=266 |issue= 5193 |pages= 2002-6 |year= 1995 |pmid= 7801128 |doi= }}
*{{cite journal | author=Wu DY, Kalpana GV, Goff SP, Schubach WH |title=Epstein-Barr virus nuclear protein 2 (EBNA2) binds to a component of the human SNF-SWI complex, hSNF5/Ini1. |journal=J. Virol. |volume=70 |issue= 9 |pages= 6020-8 |year= 1996 |pmid= 8709224 |doi= }}
*{{cite journal | author=Wang W, Côté J, Xue Y, ''et al.'' |title=Purification and biochemical heterogeneity of the mammalian SWI-SNF complex. |journal=EMBO J. |volume=15 |issue= 19 |pages= 5370-82 |year= 1996 |pmid= 8895581 |doi= }}
*{{cite journal | author=Morozov A, Yung E, Kalpana GV |title=Structure-function analysis of integrase interactor 1/hSNF5L1 reveals differential properties of two repeat motifs present in the highly conserved region. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=95 |issue= 3 |pages= 1120-5 |year= 1998 |pmid= 9448295 |doi= }}
*{{cite journal | author=Versteege I, Sévenet N, Lange J, ''et al.'' |title=Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. |journal=Nature |volume=394 |issue= 6689 |pages= 203-6 |year= 1998 |pmid= 9671307 |doi= 10.1038/28212 }}
*{{cite journal | author=Cho H, Orphanides G, Sun X, ''et al.'' |title=A human RNA polymerase II complex containing factors that modify chromatin structure. |journal=Mol. Cell. Biol. |volume=18 |issue= 9 |pages= 5355-63 |year= 1998 |pmid= 9710619 |doi= }}
*{{cite journal | author=Biegel JA, Zhou JY, Rorke LB, ''et al.'' |title=Germ-line and acquired mutations of INI1 in atypical teratoid and rhabdoid tumors. |journal=Cancer Res. |volume=59 |issue= 1 |pages= 74-9 |year= 1999 |pmid= 9892189 |doi= }}
*{{cite journal | author=Phelan ML, Sif S, Narlikar GJ, Kingston RE |title=Reconstitution of a core chromatin remodeling complex from SWI/SNF subunits. |journal=Mol. Cell |volume=3 |issue= 2 |pages= 247-53 |year= 1999 |pmid= 10078207 |doi= }}
*{{cite journal | author=Bruder CE, Dumanski JP, Kedra D |title=The mouse ortholog of the human SMARCB1 gene encodes two splice forms. |journal=Biochem. Biophys. Res. Commun. |volume=257 |issue= 3 |pages= 886-90 |year= 1999 |pmid= 10208879 |doi= 10.1006/bbrc.1999.0563 }}
*{{cite journal | author=Cheng SW, Davies KP, Yung E, ''et al.'' |title=c-MYC interacts with INI1/hSNF5 and requires the SWI/SNF complex for transactivation function. |journal=Nat. Genet. |volume=22 |issue= 1 |pages= 102-5 |year= 1999 |pmid= 10319872 |doi= 10.1038/8811 }}
*{{cite journal | author=Lee D, Sohn H, Kalpana GV, Choe J |title=Interaction of E1 and hSNF5 proteins stimulates replication of human papillomavirus DNA. |journal=Nature |volume=399 |issue= 6735 |pages= 487-91 |year= 1999 |pmid= 10365963 |doi= 10.1038/20966 }}
*{{cite journal | author=Adler HT, Chinery R, Wu DY, ''et al.'' |title=Leukemic HRX fusion proteins inhibit GADD34-induced apoptosis and associate with the GADD34 and hSNF5/INI1 proteins. |journal=Mol. Cell. Biol. |volume=19 |issue= 10 |pages= 7050-60 |year= 2000 |pmid= 10490642 |doi= }}
*{{cite journal | author=Sévenet N, Sheridan E, Amram D, ''et al.'' |title=Constitutional mutations of the hSNF5/INI1 gene predispose to a variety of cancers. |journal=Am. J. Hum. Genet. |volume=65 |issue= 5 |pages= 1342-8 |year= 1999 |pmid= 10521299 |doi= }}
*{{cite journal | author=Kowenz-Leutz E, Leutz A |title=A C/EBP beta isoform recruits the SWI/SNF complex to activate myeloid genes. |journal=Mol. Cell |volume=4 |issue= 5 |pages= 735-43 |year= 2000 |pmid= 10619021 |doi= }}
}}
{{refend}}
{{protein-stub}}
- INFO: Beginning work on SREBF1... {November 14, 2007 1:35:31 PM PST}
- SEARCH REDIRECT: Control Box Found: SREBF1 {November 14, 2007 1:36:10 PM PST}
- UPDATE PROTEIN BOX: Updating Protein Box, No errors. {November 14, 2007 1:36:11 PM PST}
- UPDATE SUMMARY: Updating Summary, No Errors. {November 14, 2007 1:36:11 PM PST}
- UPDATE CITATIONS: Updating Citations, No Errors. {November 14, 2007 1:36:11 PM PST}
- UPDATED: Updated protein page: SREBF1 {November 14, 2007 1:36:17 PM PST}
- INFO: Beginning work on SRY... {November 14, 2007 1:36:17 PM PST}
- AMBIGUITY: Did not locate an acceptable page to update. {November 14, 2007 1:36:56 PM PST}
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{PBB_Controls
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}
<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{GNF_Protein_box
| image = PBB_Protein_SRY_image.jpg
| image_source = [[Protein_Data_Bank|PDB]] rendering based on 1hry.
| PDB = {{PDB2|1hry}}, {{PDB2|1hrz}}, {{PDB2|1j46}}, {{PDB2|1j47}}
| Name = Sex determining region Y
| HGNCid = 11311
| Symbol = SRY
| AltSymbols =; TDF; TDY
| OMIM = 480000
| ECnumber =
| Homologene = 48168
| MGIid = 98660
| GeneAtlas_image1 = PBB_GE_SRY_207893_at_tn.png
| Function = {{GNF_GO|id=GO:0005515 |text = protein binding}} {{GNF_GO|id=GO:0008301 |text = DNA bending activity}} {{GNF_GO|id=GO:0016563 |text = transcription activator activity}}
| Component = {{GNF_GO|id=GO:0005634 |text = nucleus}}
| Process = {{GNF_GO|id=GO:0006350 |text = transcription}} {{GNF_GO|id=GO:0006355 |text = regulation of transcription, DNA-dependent}} {{GNF_GO|id=GO:0007548 |text = sex differentiation}} {{GNF_GO|id=GO:0030154 |text = cell differentiation}} {{GNF_GO|id=GO:0030238 |text = male sex determination}}
| Orthologs = {{GNF_Ortholog_box
| Hs_EntrezGene = 6736
| Hs_Ensembl = ENSG00000184895
| Hs_RefseqProtein = NP_003131
| Hs_RefseqmRNA = NM_003140
| Hs_GenLoc_db =
| Hs_GenLoc_chr = Y
| Hs_GenLoc_start = 2714896
| Hs_GenLoc_end = 2715740
| Hs_Uniprot = Q05066
| Mm_EntrezGene = 21674
| Mm_Ensembl = ENSMUSG00000069036
| Mm_RefseqmRNA = NM_011564
| Mm_RefseqProtein = NP_035694
| Mm_GenLoc_db =
| Mm_GenLoc_chr = Y
| Mm_GenLoc_start = 1947341
| Mm_GenLoc_end = 1948528
| Mm_Uniprot = Q2T9H0
}}
}}
'''Sex determining region Y''', also known as '''SRY''', is a human [[gene]].
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{PBB_Summary
| section_title =
| summary_text = This intronless gene encodes a transcription factor that is a member of the high mobility group (HMG)-box family of DNA-binding proteins. This protein is the testis-determining factor (TDF), which initiates male sex determination. Mutations in this gene give rise to XY females with gonadal dysgenesis (Swyer syndrome); translocation of part of the Y chromosome containing this gene to the X chromosome causes XX male syndrome.<ref>{{cite web | title = Entrez Gene: SRY sex determining region Y| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=6736| accessdate = }}</ref>
}}
==References==
{{reflist}}
==Further reading==
{{refbegin | 2}}
{{PBB_Further_reading
| citations =
*{{cite journal | author=Haqq CM, King CY, Ukiyama E, ''et al.'' |title=Molecular basis of mammalian sexual determination: activation of Müllerian inhibiting substance gene expression by SRY. |journal=Science |volume=266 |issue= 5190 |pages= 1494-500 |year= 1995 |pmid= 7985018 |doi= }}
*{{cite journal | author=Goodfellow PN, Lovell-Badge R |title=SRY and sex determination in mammals. |journal=Annu. Rev. Genet. |volume=27 |issue= |pages= 71-92 |year= 1994 |pmid= 8122913 |doi= 10.1146/annurev.ge.27.120193.000443 }}
*{{cite journal | author=Hawkins JR |title=Mutational analysis of SRY in XY females. |journal=Hum. Mutat. |volume=2 |issue= 5 |pages= 347-50 |year= 1994 |pmid= 8257986 |doi= 10.1002/humu.1380020504 }}
*{{cite journal | author=Harley VR |title=The molecular action of testis-determining factors SRY and SOX9. |journal=Novartis Found. Symp. |volume=244 |issue= |pages= 57-66; discussion 66-7, 79-85, 253-7 |year= 2002 |pmid= 11990798 |doi= }}
*{{cite journal | author=Jordan BK, Vilain E |title=Sry and the genetics of sex determination. |journal=Adv. Exp. Med. Biol. |volume=511 |issue= |pages= 1-13; discussion 13-4 |year= 2003 |pmid= 12575752 |doi= }}
*{{cite journal | author=Oh HJ, Lau YF |title=KRAB: a partner for SRY action on chromatin. |journal=Mol. Cell. Endocrinol. |volume=247 |issue= 1-2 |pages= 47-52 |year= 2006 |pmid= 16414182 |doi= 10.1016/j.mce.2005.12.011 }}
*{{cite journal | author=Polanco JC, Koopman P |title=Sry and the hesitant beginnings of male development. |journal=Dev. Biol. |volume=302 |issue= 1 |pages= 13-24 |year= 2007 |pmid= 16996051 |doi= 10.1016/j.ydbio.2006.08.049 }}
*{{cite journal | author=Hawkins JR, Taylor A, Berta P, ''et al.'' |title=Mutational analysis of SRY: nonsense and missense mutations in XY sex reversal. |journal=Hum. Genet. |volume=88 |issue= 4 |pages= 471-4 |year= 1992 |pmid= 1339396 |doi= }}
*{{cite journal | author=Hawkins JR, Taylor A, Goodfellow PN, ''et al.'' |title=Evidence for increased prevalence of SRY mutations in XY females with complete rather than partial gonadal dysgenesis. |journal=Am. J. Hum. Genet. |volume=51 |issue= 5 |pages= 979-84 |year= 1992 |pmid= 1415266 |doi= }}
*{{cite journal | author=Ferrari S, Harley VR, Pontiggia A, ''et al.'' |title=SRY, like HMG1, recognizes sharp angles in DNA. |journal=EMBO J. |volume=11 |issue= 12 |pages= 4497-506 |year= 1992 |pmid= 1425584 |doi= }}
*{{cite journal | author=Jäger RJ, Harley VR, Pfeiffer RA, ''et al.'' |title=A familial mutation in the testis-determining gene SRY shared by both sexes. |journal=Hum. Genet. |volume=90 |issue= 4 |pages= 350-5 |year= 1993 |pmid= 1483689 |doi= }}
*{{cite journal | author=Vilain E, McElreavey K, Jaubert F, ''et al.'' |title=Familial case with sequence variant in the testis-determining region associated with two sex phenotypes. |journal=Am. J. Hum. Genet. |volume=50 |issue= 5 |pages= 1008-11 |year= 1992 |pmid= 1570829 |doi= }}
*{{cite journal | author=Müller J, Schwartz M, Skakkebaek NE |title=Analysis of the sex-determining region of the Y chromosome (SRY) in sex reversed patients: point-mutation in SRY causing sex-reversion in a 46,XY female. |journal=J. Clin. Endocrinol. Metab. |volume=75 |issue= 1 |pages= 331-3 |year= 1992 |pmid= 1619028 |doi= }}
*{{cite journal | author=McElreavey KD, Vilain E, Boucekkine C, ''et al.'' |title=XY sex reversal associated with a nonsense mutation in SRY. |journal=Genomics |volume=13 |issue= 3 |pages= 838-40 |year= 1992 |pmid= 1639410 |doi= }}
*{{cite journal | author=Sinclair AH, Berta P, Palmer MS, ''et al.'' |title=A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. |journal=Nature |volume=346 |issue= 6281 |pages= 240-4 |year= 1990 |pmid= 1695712 |doi= 10.1038/346240a0 }}
*{{cite journal | author=Berkovitz GD, Fechner PY, Zacur HW, ''et al.'' |title=Clinical and pathologic spectrum of 46,XY gonadal dysgenesis: its relevance to the understanding of sex differentiation. |journal=Medicine (Baltimore) |volume=70 |issue= 6 |pages= 375-83 |year= 1991 |pmid= 1956279 |doi= }}
*{{cite journal | author=Berta P, Hawkins JR, Sinclair AH, ''et al.'' |title=Genetic evidence equating SRY and the testis-determining factor. |journal=Nature |volume=348 |issue= 6300 |pages= 448-50 |year= 1991 |pmid= 2247149 |doi= 10.1038/348448A0 }}
*{{cite journal | author=Jäger RJ, Anvret M, Hall K, Scherer G |title=A human XY female with a frame shift mutation in the candidate testis-determining gene SRY. |journal=Nature |volume=348 |issue= 6300 |pages= 452-4 |year= 1991 |pmid= 2247151 |doi= 10.1038/348452a0 }}
*{{cite journal | author=Ellis NA, Goodfellow PJ, Pym B, ''et al.'' |title=The pseudoautosomal boundary in man is defined by an Alu repeat sequence inserted on the Y chromosome. |journal=Nature |volume=337 |issue= 6202 |pages= 81-4 |year= 1989 |pmid= 2909893 |doi= 10.1038/337081a0 }}
*{{cite journal | author=Whitfield LS, Hawkins TL, Goodfellow PN, Sulston J |title=41 kilobases of analyzed sequence from the pseudoautosomal and sex-determining regions of the short arm of the human Y chromosome. |journal=Genomics |volume=27 |issue= 2 |pages= 306-11 |year= 1995 |pmid= 7557997 |doi= }}
}}
{{refend}}
{{protein-stub}}
- INFO: Beginning work on TIMP3... {November 14, 2007 1:36:56 PM PST}
- AMBIGUITY: Did not locate an acceptable page to update. {November 14, 2007 1:37:55 PM PST}
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{PBB_Controls
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}
<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{GNF_Protein_box
| image =
| image_source =
| PDB =
| Name = TIMP metallopeptidase inhibitor 3 (Sorsby fundus dystrophy, pseudoinflammatory)
| HGNCid = 11822
| Symbol = TIMP3
| AltSymbols =; HSMRK222; K222; K222TA2; SFD
| OMIM = 188826
| ECnumber =
| Homologene = 36322
| MGIid = 98754
| GeneAtlas_image1 = PBB_GE_TIMP3_201149_s_at_tn.png
| GeneAtlas_image2 = PBB_GE_TIMP3_201147_s_at_tn.png
| GeneAtlas_image3 = PBB_GE_TIMP3_201148_s_at_tn.png
| Function = {{GNF_GO|id=GO:0003674 |text = molecular_function}} {{GNF_GO|id=GO:0004857 |text = enzyme inhibitor activity}} {{GNF_GO|id=GO:0008191 |text = metalloendopeptidase inhibitor activity}}
| Component = {{GNF_GO|id=GO:0005578 |text = proteinaceous extracellular matrix}} {{GNF_GO|id=GO:0005604 |text = basement membrane}}
| Process = {{GNF_GO|id=GO:0007169 |text = transmembrane receptor protein tyrosine kinase signaling pathway}} {{GNF_GO|id=GO:0007601 |text = visual perception}} {{GNF_GO|id=GO:0008624 |text = induction of apoptosis by extracellular signals}} {{GNF_GO|id=GO:0050896 |text = response to stimulus}}
| Orthologs = {{GNF_Ortholog_box
| Hs_EntrezGene = 7078
| Hs_Ensembl = ENSG00000100234
| Hs_RefseqProtein = NP_000353
| Hs_RefseqmRNA = NM_000362
| Hs_GenLoc_db =
| Hs_GenLoc_chr = 22
| Hs_GenLoc_start = 31526802
| Hs_GenLoc_end = 31589025
| Hs_Uniprot = P35625
| Mm_EntrezGene = 21859
| Mm_Ensembl = ENSMUSG00000020044
| Mm_RefseqmRNA = NM_011595
| Mm_RefseqProtein = NP_035725
| Mm_GenLoc_db =
| Mm_GenLoc_chr = 10
| Mm_GenLoc_start = 85730336
| Mm_GenLoc_end = 85779307
| Mm_Uniprot = Q54AE5
}}
}}
'''TIMP metallopeptidase inhibitor 3 (Sorsby fundus dystrophy, pseudoinflammatory)''', also known as '''TIMP3''', is a human [[gene]].
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{PBB_Summary
| section_title =
| summary_text = This gene belongs to the TIMP gene family. The proteins encoded by this gene family are inhibitors of the matrix metalloproteinases, a group of peptidases involved in degradation of the extracellular matrix (ECM). Expression of this gene is induced in response to mitogenic stimulation and this netrin domain-containing protein is localized to the ECM. Mutations in this gene have been associated with the autosomal dominant disorder Sorsby's fundus dystrophy.<ref>{{cite web | title = Entrez Gene: TIMP3 TIMP metallopeptidase inhibitor 3 (Sorsby fundus dystrophy, pseudoinflammatory)| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=7078| accessdate = }}</ref>
}}
==References==
{{reflist}}
==Further reading==
{{refbegin | 2}}
{{PBB_Further_reading
| citations =
*{{cite journal | author=Li Z, Clarke MP, Barker MD, McKie N |title=TIMP3 mutation in Sorsby's fundus dystrophy: molecular insights. |journal=Expert reviews in molecular medicine |volume=7 |issue= 24 |pages= 1-15 |year= 2007 |pmid= 16259644 |doi= 10.1017/S1462399405010045 }}
*{{cite journal | author=Docherty AJ, Lyons A, Smith BJ, ''et al.'' |title=Sequence of human tissue inhibitor of metalloproteinases and its identity to erythroid-potentiating activity. |journal=Nature |volume=318 |issue= 6041 |pages= 66-9 |year= 1985 |pmid= 3903517 |doi= }}
*{{cite journal | author=Forsius HR, Eriksson AW, Suvanto EA, Alanko HI |title=Pseudoinflammatory fundus dystrophy with autosomal recessive inheritance. |journal=Am. J. Ophthalmol. |volume=94 |issue= 5 |pages= 634-49 |year= 1983 |pmid= 7148944 |doi= }}
*{{cite journal | author=Wick M, Härönen R, Mumberg D, ''et al.'' |title=Structure of the human TIMP-3 gene and its cell cycle-regulated promoter. |journal=Biochem. J. |volume=311 ( Pt 2) |issue= |pages= 549-54 |year= 1995 |pmid= 7487894 |doi= }}
*{{cite journal | author=Jacobson SG, Cideciyan AV, Regunath G, ''et al.'' |title=Night blindness in Sorsby's fundus dystrophy reversed by vitamin A. |journal=Nat. Genet. |volume=11 |issue= 1 |pages= 27-32 |year= 1995 |pmid= 7550309 |doi= 10.1038/ng0995-27 }}
*{{cite journal | author=Higuchi T, Kanzaki H, Nakayama H, ''et al.'' |title=Induction of tissue inhibitor of metalloproteinase 3 gene expression during in vitro decidualization of human endometrial stromal cells. |journal=Endocrinology |volume=136 |issue= 11 |pages= 4973-81 |year= 1995 |pmid= 7588231 |doi= }}
*{{cite journal | author=Wilde CG, Hawkins PR, Coleman RT, ''et al.'' |title=Cloning and characterization of human tissue inhibitor of metalloproteinases-3. |journal=DNA Cell Biol. |volume=13 |issue= 7 |pages= 711-8 |year= 1995 |pmid= 7772252 |doi= }}
*{{cite journal | author=Apte SS, Olsen BR, Murphy G |title=The gene structure of tissue inhibitor of metalloproteinases (TIMP)-3 and its inhibitory activities define the distinct TIMP gene family. |journal=J. Biol. Chem. |volume=270 |issue= 24 |pages= 14313-8 |year= 1995 |pmid= 7782289 |doi= }}
*{{cite journal | author=Kishnani NS, Staskus PW, Yang TT, ''et al.'' |title=Identification and characterization of human tissue inhibitor of metalloproteinase-3 and detection of three additional metalloproteinase inhibitor activities in extracellular matrix. |journal=Matrix Biol. |volume=14 |issue= 6 |pages= 479-88 |year= 1995 |pmid= 7795886 |doi= }}
*{{cite journal | author=Weber BH, Vogt G, Pruett RC, ''et al.'' |title=Mutations in the tissue inhibitor of metalloproteinases-3 (TIMP3) in patients with Sorsby's fundus dystrophy. |journal=Nat. Genet. |volume=8 |issue= 4 |pages= 352-6 |year= 1995 |pmid= 7894485 |doi= 10.1038/ng1294-352 }}
*{{cite journal | author=Weber BH, Vogt G, Wolz W, ''et al.'' |title=Sorsby's fundus dystrophy is genetically linked to chromosome 22q13-qter. |journal=Nat. Genet. |volume=7 |issue= 2 |pages= 158-61 |year= 1994 |pmid= 7920634 |doi= 10.1038/ng0694-158 }}
*{{cite journal | author=Jones SE, Jomary C, Neal MJ |title=Expression of TIMP3 mRNA is elevated in retinas affected by simplex retinitis pigmentosa. |journal=FEBS Lett. |volume=352 |issue= 2 |pages= 171-4 |year= 1994 |pmid= 7925969 |doi= }}
*{{cite journal | author=Wick M, Bürger C, Brüsselbach S, ''et al.'' |title=A novel member of human tissue inhibitor of metalloproteinases (TIMP) gene family is regulated during G1 progression, mitogenic stimulation, differentiation, and senescence. |journal=J. Biol. Chem. |volume=269 |issue= 29 |pages= 18953-60 |year= 1994 |pmid= 8034652 |doi= }}
*{{cite journal | author=Silbiger SM, Jacobsen VL, Cupples RL, Koski RA |title=Cloning of cDNAs encoding human TIMP-3, a novel member of the tissue inhibitor of metalloproteinase family. |journal=Gene |volume=141 |issue= 2 |pages= 293-7 |year= 1994 |pmid= 8163205 |doi= }}
*{{cite journal | author=Uría JA, Ferrando AA, Velasco G, ''et al.'' |title=Structure and expression in breast tumors of human TIMP-3, a new member of the metalloproteinase inhibitor family. |journal=Cancer Res. |volume=54 |issue= 8 |pages= 2091-4 |year= 1994 |pmid= 8174111 |doi= }}
*{{cite journal | author=Apte SS, Mattei MG, Olsen BR |title=Cloning of the cDNA encoding human tissue inhibitor of metalloproteinases-3 (TIMP-3) and mapping of the TIMP3 gene to chromosome 22. |journal=Genomics |volume=19 |issue= 1 |pages= 86-90 |year= 1994 |pmid= 8188246 |doi= 10.1006/geno.1994.1016 }}
*{{cite journal | author=Byrne JA, Tomasetto C, Rouyer N, ''et al.'' |title=The tissue inhibitor of metalloproteinases-3 gene in breast carcinoma: identification of multiple polyadenylation sites and a stromal pattern of expression. |journal=Mol. Med. |volume=1 |issue= 4 |pages= 418-27 |year= 1996 |pmid= 8521299 |doi= }}
*{{cite journal | author=Andersson B, Wentland MA, Ricafrente JY, ''et al.'' |title=A "double adaptor" method for improved shotgun library construction. |journal=Anal. Biochem. |volume=236 |issue= 1 |pages= 107-13 |year= 1996 |pmid= 8619474 |doi= 10.1006/abio.1996.0138 }}
*{{cite journal | author=Felbor U, Stöhr H, Amann T, ''et al.'' |title=A novel Ser156Cys mutation in the tissue inhibitor of metalloproteinases-3 (TIMP3) in Sorsby's fundus dystrophy with unusual clinical features. |journal=Hum. Mol. Genet. |volume=4 |issue= 12 |pages= 2415-6 |year= 1996 |pmid= 8634721 |doi= }}
*{{cite journal | author=Carrero-Valenzuela RD, Klein ML, Weleber RG, ''et al.'' |title=Sorsby fundus dystrophy. A family with the Ser181Cys mutation of the tissue inhibitor of metalloproteinases 3. |journal=Arch. Ophthalmol. |volume=114 |issue= 6 |pages= 737-8 |year= 1996 |pmid= 8639088 |doi= }}
}}
{{refend}}
{{protein-stub}}
- INFO: Beginning work on TRAF3... {November 14, 2007 1:37:55 PM PST}
- AMBIGUITY: Did not locate an acceptable page to update. {November 14, 2007 1:38:37 PM PST}
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{PBB_Controls
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}
<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{GNF_Protein_box
| image = PBB_Protein_TRAF3_image.jpg
| image_source = [[Protein_Data_Bank|PDB]] rendering based on 1flk.
| PDB = {{PDB2|1flk}}, {{PDB2|1fll}}, {{PDB2|1kzz}}, {{PDB2|1l0a}}, {{PDB2|1rf3}}, {{PDB2|1zms}}, {{PDB2|2gkw}}
| Name = TNF receptor-associated factor 3
| HGNCid = 12033
| Symbol = TRAF3
| AltSymbols =; LAP1; CAP-1; CD40bp; CRAF1
| OMIM = 601896
| ECnumber =
| Homologene = 7981
| MGIid = 108041
| GeneAtlas_image1 = PBB_GE_TRAF3_208315_x_at_tn.png
| Function = {{GNF_GO|id=GO:0004871 |text = signal transducer activity}} {{GNF_GO|id=GO:0005515 |text = protein binding}} {{GNF_GO|id=GO:0008270 |text = zinc ion binding}} {{GNF_GO|id=GO:0046872 |text = metal ion binding}}
| Component =
| Process = {{GNF_GO|id=GO:0006917 |text = induction of apoptosis}} {{GNF_GO|id=GO:0007165 |text = signal transduction}} {{GNF_GO|id=GO:0042981 |text = regulation of apoptosis}}
| Orthologs = {{GNF_Ortholog_box
| Hs_EntrezGene = 7187
| Hs_Ensembl = ENSG00000131323
| Hs_RefseqProtein = NP_003291
| Hs_RefseqmRNA = NM_003300
| Hs_GenLoc_db =
| Hs_GenLoc_chr = 14
| Hs_GenLoc_start = 102406268
| Hs_GenLoc_end = 102441895
| Hs_Uniprot = Q13114
| Mm_EntrezGene = 22031
| Mm_Ensembl = ENSMUSG00000021277
| Mm_RefseqmRNA = NM_001048206
| Mm_RefseqProtein = NP_001041671
| Mm_GenLoc_db =
| Mm_GenLoc_chr = 12
| Mm_GenLoc_start = 111614356
| Mm_GenLoc_end = 111714956
| Mm_Uniprot = Q60803
}}
}}
'''TNF receptor-associated factor 3''', also known as '''TRAF3''', is a human [[gene]].
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{PBB_Summary
| section_title =
| summary_text = The protein encoded by this gene is a member of the TNF receptor associated factor (TRAF) protein family. TRAF proteins associate with, and mediate the signal transduction from, members of the TNF receptor (TNFR) superfamily. This protein participates in the signal transduction of CD40, a TNFR family member important for the activation of the immune response. This protein is found to be a critical component of the lymphotoxin-beta receptor (LTbetaR) signaling complex, which induces NF-kappaB activation and cell death initiated by LTbeta ligation. Epstein-Barr virus encoded latent infection membrane protein-1 (LMP1) can interact with this and several other members of the TRAF family, which may be essential for the oncogenic effects of LMP1. Three alternatively spliced transcript variants encoding two distinct isoforms have been reported.<ref>{{cite web | title = Entrez Gene: TRAF3 TNF receptor-associated factor 3| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=7187| accessdate = }}</ref>
}}
==References==
{{reflist}}
==Further reading==
{{refbegin | 2}}
{{PBB_Further_reading
| citations =
*{{cite journal | author=Wajant H, Henkler F, Scheurich P |title=The TNF-receptor-associated factor family: scaffold molecules for cytokine receptors, kinases and their regulators. |journal=Cell. Signal. |volume=13 |issue= 6 |pages= 389-400 |year= 2001 |pmid= 11384837 |doi= }}
*{{cite journal | author=Bradley JR, Pober JS |title=Tumor necrosis factor receptor-associated factors (TRAFs). |journal=Oncogene |volume=20 |issue= 44 |pages= 6482-91 |year= 2001 |pmid= 11607847 |doi= 10.1038/sj.onc.1204788 }}
*{{cite journal | author=Saha SK, Cheng G |title=TRAF3: a new regulator of type I interferons. |journal=Cell Cycle |volume=5 |issue= 8 |pages= 804-7 |year= 2006 |pmid= 16582590 |doi= }}
*{{cite journal | author=Hu HM, O'Rourke K, Boguski MS, Dixit VM |title=A novel RING finger protein interacts with the cytoplasmic domain of CD40. |journal=J. Biol. Chem. |volume=269 |issue= 48 |pages= 30069-72 |year= 1994 |pmid= 7527023 |doi= }}
*{{cite journal | author=Sato T, Irie S, Reed JC |title=A novel member of the TRAF family of putative signal transducing proteins binds to the cytosolic domain of CD40. |journal=FEBS Lett. |volume=358 |issue= 2 |pages= 113-8 |year= 1995 |pmid= 7530216 |doi= }}
*{{cite journal | author=Cheng G, Cleary AM, Ye ZS, ''et al.'' |title=Involvement of CRAF1, a relative of TRAF, in CD40 signaling. |journal=Science |volume=267 |issue= 5203 |pages= 1494-8 |year= 1995 |pmid= 7533327 |doi= }}
*{{cite journal | author=Mosialos G, Birkenbach M, Yalamanchili R, ''et al.'' |title=The Epstein-Barr virus transforming protein LMP1 engages signaling proteins for the tumor necrosis factor receptor family. |journal=Cell |volume=80 |issue= 3 |pages= 389-99 |year= 1995 |pmid= 7859281 |doi= }}
*{{cite journal | author=Hsu H, Shu HB, Pan MG, Goeddel DV |title=TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. |journal=Cell |volume=84 |issue= 2 |pages= 299-308 |year= 1996 |pmid= 8565075 |doi= }}
*{{cite journal | author=Hsu H, Huang J, Shu HB, ''et al.'' |title=TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. |journal=Immunity |volume=4 |issue= 4 |pages= 387-96 |year= 1996 |pmid= 8612133 |doi= }}
*{{cite journal | author=Butch ER, Guan KL |title=Characterization of ERK1 activation site mutants and the effect on recognition by MEK1 and MEK2. |journal=J. Biol. Chem. |volume=271 |issue= 8 |pages= 4230-5 |year= 1996 |pmid= 8626767 |doi= }}
*{{cite journal | author=Gedrich RW, Gilfillan MC, Duckett CS, ''et al.'' |title=CD30 contains two binding sites with different specificities for members of the tumor necrosis factor receptor-associated factor family of signal transducing proteins. |journal=J. Biol. Chem. |volume=271 |issue= 22 |pages= 12852-8 |year= 1996 |pmid= 8662842 |doi= }}
*{{cite journal | author=Nakano H, Oshima H, Chung W, ''et al.'' |title=TRAF5, an activator of NF-kappaB and putative signal transducer for the lymphotoxin-beta receptor. |journal=J. Biol. Chem. |volume=271 |issue= 25 |pages= 14661-4 |year= 1996 |pmid= 8663299 |doi= }}
*{{cite journal | author=Rothe M, Xiong J, Shu HB, ''et al.'' |title=I-TRAF is a novel TRAF-interacting protein that regulates TRAF-mediated signal transduction. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=93 |issue= 16 |pages= 8241-6 |year= 1996 |pmid= 8710854 |doi= }}
*{{cite journal | author=Hubberstey A, Yu G, Loewith R, ''et al.'' |title=Mammalian CAP interacts with CAP, CAP2, and actin. |journal=J. Cell. Biochem. |volume=61 |issue= 3 |pages= 459-66 |year= 1997 |pmid= 8761950 |doi= 10.1002/(SICI)1097-4644(19960601)61:3<459::AID-JCB13>3.0.CO;2-E }}
*{{cite journal | author=Ansieau S, Scheffrahn I, Mosialos G, ''et al.'' |title=Tumor necrosis factor receptor-associated factor (TRAF)-1, TRAF-2, and TRAF-3 interact in vivo with the CD30 cytoplasmic domain; TRAF-2 mediates CD30-induced nuclear factor kappa B activation. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=93 |issue= 24 |pages= 14053-8 |year= 1997 |pmid= 8943059 |doi= }}
*{{cite journal | author=VanArsdale TL, VanArsdale SL, Force WR, ''et al.'' |title=Lymphotoxin-beta receptor signaling complex: role of tumor necrosis factor receptor-associated factor 3 recruitment in cell death and activation of nuclear factor kappaB. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=94 |issue= 6 |pages= 2460-5 |year= 1997 |pmid= 9122217 |doi= }}
*{{cite journal | author=Marsters SA, Ayres TM, Skubatch M, ''et al.'' |title=Herpesvirus entry mediator, a member of the tumor necrosis factor receptor (TNFR) family, interacts with members of the TNFR-associated factor family and activates the transcription factors NF-kappaB and AP-1. |journal=J. Biol. Chem. |volume=272 |issue= 22 |pages= 14029-32 |year= 1997 |pmid= 9162022 |doi= }}
*{{cite journal | author=Boucher LM, Marengère LE, Lu Y, ''et al.'' |title=Binding sites of cytoplasmic effectors TRAF1, 2, and 3 on CD30 and other members of the TNF receptor superfamily. |journal=Biochem. Biophys. Res. Commun. |volume=233 |issue= 3 |pages= 592-600 |year= 1997 |pmid= 9168896 |doi= 10.1006/bbrc.1997.6509 }}
*{{cite journal | author=Song HY, Régnier CH, Kirschning CJ, ''et al.'' |title=Tumor necrosis factor (TNF)-mediated kinase cascades: bifurcation of nuclear factor-kappaB and c-jun N-terminal kinase (JNK/SAPK) pathways at TNF receptor-associated factor 2. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=94 |issue= 18 |pages= 9792-6 |year= 1997 |pmid= 9275204 |doi= }}
*{{cite journal | author=Force WR, Cheung TC, Ware CF |title=Dominant negative mutants of TRAF3 reveal an important role for the coiled coil domains in cell death signaling by the lymphotoxin-beta receptor. |journal=J. Biol. Chem. |volume=272 |issue= 49 |pages= 30835-40 |year= 1998 |pmid= 9388227 |doi= }}
}}
{{refend}}
{{protein-stub}}
- INFO: Beginning work on TXN... {November 14, 2007 1:38:37 PM PST}
- AMBIGUITY: Did not locate an acceptable page to update. {November 14, 2007 1:39:08 PM PST}
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{PBB_Controls
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}
<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{GNF_Protein_box
| image = PBB_Protein_TXN_image.jpg
| image_source = [[Protein_Data_Bank|PDB]] rendering based on 1aiu.
| PDB = {{PDB2|1aiu}}, {{PDB2|1auc}}, {{PDB2|1cqg}}, {{PDB2|1cqh}}, {{PDB2|1ert}}, {{PDB2|1eru}}, {{PDB2|1erv}}, {{PDB2|1erw}}, {{PDB2|1mdi}}, {{PDB2|1mdj}}, {{PDB2|1mdk}}, {{PDB2|1trs}}, {{PDB2|1tru}}, {{PDB2|1trv}}, {{PDB2|1trw}}, {{PDB2|2hsh}}, {{PDB2|2hxk}}, {{PDB2|2ifq}}, {{PDB2|2iiy}}, {{PDB2|3trx}}, {{PDB2|4trx}}
| Name = Thioredoxin
| HGNCid = 12435
| Symbol = TXN
| AltSymbols =; DKFZp686B1993; MGC61975; TRX
| OMIM = 187700
| ECnumber =
| Homologene = 55732
| MGIid = 98874
| GeneAtlas_image1 = PBB_GE_TXN_208864_s_at_tn.png
| Function = {{GNF_GO|id=GO:0005515 |text = protein binding}} {{GNF_GO|id=GO:0009055 |text = electron carrier activity}} {{GNF_GO|id=GO:0015035 |text = protein disulfide oxidoreductase activity}} {{GNF_GO|id=GO:0030508 |text = thiol-disulfide exchange intermediate activity}}
| Component =
| Process = {{GNF_GO|id=GO:0006118 |text = electron transport}} {{GNF_GO|id=GO:0006810 |text = transport}} {{GNF_GO|id=GO:0006928 |text = cell motility}} {{GNF_GO|id=GO:0007165 |text = signal transduction}} {{GNF_GO|id=GO:0007267 |text = cell-cell signaling}} {{GNF_GO|id=GO:0008283 |text = cell proliferation}} {{GNF_GO|id=GO:0045454 |text = cell redox homeostasis}}
| Orthologs = {{GNF_Ortholog_box
| Hs_EntrezGene = 7295
| Hs_Ensembl = ENSG00000136810
| Hs_RefseqProtein = NP_003320
| Hs_RefseqmRNA = NM_003329
| Hs_GenLoc_db =
| Hs_GenLoc_chr = 9
| Hs_GenLoc_start = 112045912
| Hs_GenLoc_end = 112058741
| Hs_Uniprot = P10599
| Mm_EntrezGene = 22166
| Mm_Ensembl = ENSMUSG00000028367
| Mm_RefseqmRNA = NM_011660
| Mm_RefseqProtein = NP_035790
| Mm_GenLoc_db =
| Mm_GenLoc_chr = 4
| Mm_GenLoc_start = 58037427
| Mm_GenLoc_end = 58050345
| Mm_Uniprot = P10639
}}
}}
'''Thioredoxin''', also known as '''TXN''', is a human [[gene]].
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{PBB_Summary
| section_title =
| summary_text = Thioredoxin is a 12-kD oxidoreductase enzyme containing a dithiol-disulfide active site. It is ubiquitous and found in many organisms from plants and bacteria to mammals. Multiple in vitro substrates for thioredoxin have been identified, including ribonuclease, choriogonadotropins, coagulation factors, glucocorticoid receptor, and insulin. Reduction of insulin is classically used as an activity test.[supplied by OMIM]<ref>{{cite web | title = Entrez Gene: TXN thioredoxin| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=7295| accessdate = }}</ref>
}}
==References==
{{reflist}}
==Further reading==
{{refbegin | 2}}
{{PBB_Further_reading
| citations =
*{{cite journal | author=Arnér ES, Holmgren A |title=Physiological functions of thioredoxin and thioredoxin reductase. |journal=Eur. J. Biochem. |volume=267 |issue= 20 |pages= 6102-9 |year= 2000 |pmid= 11012661 |doi= }}
*{{cite journal | author=Nishinaka Y, Masutani H, Nakamura H, Yodoi J |title=Regulatory roles of thioredoxin in oxidative stress-induced cellular responses. |journal=Redox Rep. |volume=6 |issue= 5 |pages= 289-95 |year= 2002 |pmid= 11778846 |doi= }}
*{{cite journal | author=Ago T, Sadoshima J |title=Thioredoxin and ventricular remodeling. |journal=J. Mol. Cell. Cardiol. |volume=41 |issue= 5 |pages= 762-73 |year= 2007 |pmid= 17007870 |doi= 10.1016/j.yjmcc.2006.08.006 }}
*{{cite journal | author=Tonissen KF, Wells JR |title=Isolation and characterization of human thioredoxin-encoding genes. |journal=Gene |volume=102 |issue= 2 |pages= 221-8 |year= 1991 |pmid= 1874447 |doi= }}
*{{cite journal | author=Martin H, Dean M |title=Identification of a thioredoxin-related protein associated with plasma membranes. |journal=Biochem. Biophys. Res. Commun. |volume=175 |issue= 1 |pages= 123-8 |year= 1991 |pmid= 1998498 |doi= }}
*{{cite journal | author=Forman-Kay JD, Clore GM, Wingfield PT, Gronenborn AM |title=High-resolution three-dimensional structure of reduced recombinant human thioredoxin in solution. |journal=Biochemistry |volume=30 |issue= 10 |pages= 2685-98 |year= 1991 |pmid= 2001356 |doi= }}
*{{cite journal | author=Jacquot JP, de Lamotte F, Fontecave M, ''et al.'' |title=Human thioredoxin reactivity-structure/function relationship. |journal=Biochem. Biophys. Res. Commun. |volume=173 |issue= 3 |pages= 1375-81 |year= 1991 |pmid= 2176490 |doi= }}
*{{cite journal | author=Forman-Kay JD, Clore GM, Driscoll PC, ''et al.'' |title=A proton nuclear magnetic resonance assignment and secondary structure determination of recombinant human thioredoxin. |journal=Biochemistry |volume=28 |issue= 17 |pages= 7088-97 |year= 1990 |pmid= 2684271 |doi= }}
*{{cite journal | author=Tagaya Y, Maeda Y, Mitsui A, ''et al.'' |title=ATL-derived factor (ADF), an IL-2 receptor/Tac inducer homologous to thioredoxin; possible involvement of dithiol-reduction in the IL-2 receptor induction. |journal=EMBO J. |volume=8 |issue= 3 |pages= 757-64 |year= 1989 |pmid= 2785919 |doi= }}
*{{cite journal | author=Wollman EE, d'Auriol L, Rimsky L, ''et al.'' |title=Cloning and expression of a cDNA for human thioredoxin. |journal=J. Biol. Chem. |volume=263 |issue= 30 |pages= 15506-12 |year= 1988 |pmid= 3170595 |doi= }}
*{{cite journal | author=Heppell-Parton A, Cahn A, Bench A, ''et al.'' |title=Thioredoxin, a mediator of growth inhibition, maps to 9q31. |journal=Genomics |volume=26 |issue= 2 |pages= 379-81 |year= 1995 |pmid= 7601465 |doi= }}
*{{cite journal | author=Qin J, Clore GM, Kennedy WM, ''et al.'' |title=Solution structure of human thioredoxin in a mixed disulfide intermediate complex with its target peptide from the transcription factor NF kappa B. |journal=Structure |volume=3 |issue= 3 |pages= 289-97 |year= 1995 |pmid= 7788295 |doi= }}
*{{cite journal | author=Kato S, Sekine S, Oh SW, ''et al.'' |title=Construction of a human full-length cDNA bank. |journal=Gene |volume=150 |issue= 2 |pages= 243-50 |year= 1995 |pmid= 7821789 |doi= }}
*{{cite journal | author=Qin J, Clore GM, Gronenborn AM |title=The high-resolution three-dimensional solution structures of the oxidized and reduced states of human thioredoxin. |journal=Structure |volume=2 |issue= 6 |pages= 503-22 |year= 1994 |pmid= 7922028 |doi= }}
*{{cite journal | author=Gasdaska PY, Oblong JE, Cotgreave IA, Powis G |title=The predicted amino acid sequence of human thioredoxin is identical to that of the autocrine growth factor human adult T-cell derived factor (ADF): thioredoxin mRNA is elevated in some human tumors. |journal=Biochim. Biophys. Acta |volume=1218 |issue= 3 |pages= 292-6 |year= 1994 |pmid= 8049254 |doi= }}
*{{cite journal | author=Qin J, Clore GM, Kennedy WP, ''et al.'' |title=The solution structure of human thioredoxin complexed with its target from Ref-1 reveals peptide chain reversal. |journal=Structure |volume=4 |issue= 5 |pages= 613-20 |year= 1996 |pmid= 8736558 |doi= }}
*{{cite journal | author=Weichsel A, Gasdaska JR, Powis G, Montfort WR |title=Crystal structures of reduced, oxidized, and mutated human thioredoxins: evidence for a regulatory homodimer. |journal=Structure |volume=4 |issue= 6 |pages= 735-51 |year= 1996 |pmid= 8805557 |doi= }}
*{{cite journal | author=Andersen JF, Sanders DA, Gasdaska JR, ''et al.'' |title=Human thioredoxin homodimers: regulation by pH, role of aspartate 60, and crystal structure of the aspartate 60 --> asparagine mutant. |journal=Biochemistry |volume=36 |issue= 46 |pages= 13979-88 |year= 1997 |pmid= 9369469 |doi= 10.1021/bi971004s }}
*{{cite journal | author=Maruyama T, Kitaoka Y, Sachi Y, ''et al.'' |title=Thioredoxin expression in the human endometrium during the menstrual cycle. |journal=Mol. Hum. Reprod. |volume=3 |issue= 11 |pages= 989-93 |year= 1998 |pmid= 9433926 |doi= }}
*{{cite journal | author=Sahlin L, Stjernholm Y, Holmgren A, ''et al.'' |title=The expression of thioredoxin mRNA is increased in the human cervix during pregnancy. |journal=Mol. Hum. Reprod. |volume=3 |issue= 12 |pages= 1113-7 |year= 1998 |pmid= 9464857 |doi= }}
}}
{{refend}}
{{protein-stub}}
end log.