User:Maschen/Relativistic Hamiltonian mechanics
Appearance
Part of a series on |
Classical mechanics |
---|
Part of a series on |
Spacetime |
---|
In theoretical physics, relativistic Hamiltonian mechanics is Hamiltonian mechanics applied in the context of special relativity and general relativity.
Special relativity
[edit]Coordinate formulation
[edit]Covariant formulation
[edit]Examples
[edit]See also
[edit]- Relativistic Lagrangian mechanics
- Relativistic mechanics
- Hamiltonian field theory
- Fundamental lemma of the calculus of variations
- Canonical coordinates
- Functional derivative
- Generalized coordinates
- Hamiltonian mechanics
- Hamiltonian optics
- Non-autonomous mechanics
- Restricted three-body problem
- Plateau's problem
References
[edit]- Penrose, Roger (2007). The Road to Reality. Vintage books. ISBN 978-0-679-77631-4.
- Landau, L. D.; Lifshitz, E. M. (15 January 1976). Mechanics (3rd ed.). Butterworth Heinemann. p. 134. ISBN 9780750628969.
- Landau, Lev; Lifshitz, Evgeny (1975). The Classical Theory of Fields. Elsevier Ltd. ISBN 978-0-7506-2768-9.
- Hand, L. N.; Finch, J. D. (13 November 1998). Analytical Mechanics (2nd ed.). Cambridge University Press. p. 23. ISBN 9780521575720.
- Louis N. Hand, Janet D. Finch (1998). Analytical mechanics. Cambridge University Press. pp. 140–141. ISBN 0-521-57572-9.
- Goldstein, Herbert (1980). Classical Mechanics (2nd ed.). San Francisco, CA: Addison Wesley. pp. 352–353. ISBN 0201029189.
- Goldstein, Herbert; Poole, Charles P., Jr.; Safko, John L. (2002). Classical Mechanics (3rd ed.). San Francisco, CA: Addison Wesley. pp. 347–349. ISBN 0-201-65702-3.
{{cite book}}
: CS1 maint: multiple names: authors list (link)
- Lanczos, Cornelius (1986). "II §5 Auxiliary conditions: the Lagrangian λ-method". The variational principles of mechanics (Reprint of University of Toronto 1970 4th ed.). Courier Dover. p. 43. ISBN 0-486-65067-7.
- Feynman, R. P.; Leighton, R. B.; Sands, M. (1977) [1964]. The Feynman Lectures on Physics. Vol. 2. Addison Wesley. ISBN 0-201-02117-X.
- Foster, J; Nightingale, J.D. (1995). A Short Course in General Relativity (2nd ed.). Springer. ISBN 0-03-063366-4.
- M. P. Hobson, G. P. Efstathiou, A. N. Lasenby (2006). General Relativity: An Introduction for Physicists. Cambridge University Press. p. 79–80. ISBN 9780521829519.
{{cite book}}
: CS1 maint: multiple names: authors list (link)