Jump to content

User:Eas4200c.f08.nine.s/Lecture 5

From Wikipedia, the free encyclopedia

Homework 1

Homework 2

Homework 3

Homework 4

Homework 5

Homework 6

Group nine - Homework 5



Stress-Strain Relation

[edit]

where the {6x6} determinant is denoted by

relation:

where the {6x6} determinant is denoted by

Verification of the Identity Matrix:




Stress Tensors

uniform vs. non-uniform loading

four zero stress components using this equation:

gives:

Bidirectional Bending

[edit]
example
Distributed loading

Moment of Inertia Tensors:

Hooke's Law

Nonuniform Stress Field

[edit]

Nonuniform Stress Field in 3-D.

Non-uniform stress field 3D

0=A[]+f(x)dx

were f(x) is the force per unit length and A is the applied load.

Similarly for the forces in the y direction:

which becomes:

Z direction:


which becomes:







Dimensional Analysis

[edit]








MATLAB Code

[edit]
 fprintf('\n NACA Airfoil calculation program \n \n')
m = 2/100;
p = 4/100;
t = 15/100;
segment = 50;
y = 0;
n = 1;
c=1;
 zc = size(segment);
 dzdy = size(segment);
 yu = size(segment);
 zu = size(segment);
 yl = size(segment);
 zl = size(segment);
Dy = 1/4;
Dz = 0;
Gy = 3/4;
Gz = 0;
a1a= 0;
a1b= 0;
a2a = 0;
a2b = 0;
a3a = 0;
a3b = 0;
 
 
j=1;
while y<=p
 
  zc(n) = (m/p^2)*(2*p*y-y^2);
  dzdy(n) = (m/p^2)*(2*p-2*y);
  y = y + c/segment;
  zcc(n)=zc(n)*c;
  n = n+1;
end
while y<=c
  zc(n) = (m/((1-p)^2))*((1-2*p)+2*p*y-y^2);
  dzdy(n) = (m/((1-p)^2))*(2*p-2*y);
  y = y + c/segment;
  zcc(n)=zc(n)*c;
  n = n+1;
end
 
y=0;
n=1;
figure(2)
plot(zcc,y,'-k')
while y<=c
    theta = size(segment);
    zt = size(segment);
  zt(n) = 5*t*(0.2969.*sqrt(y)-0.1260.*y-0.3516.*y.^2+0.2843.*y.^3-0.1015.*y.^4);
  theta(n)= atan(dzdy(n));
  yu(n)= y-zt(n)*sin(theta(n));
  zu(n) = zc(n) + zt(n)*cos(theta(n));
  yl(n) = y+zt(n)*sin(theta(n));
  zl(n) = zc(n)- zt(n)*cos(theta(n));
  y = y+c/segment;
  n = n+1;
end

figure(1)
plot(yl,zl,'-k',yu,zu,'-b')
axis([0 1 -0.3 0.3])
 

j=1;
while yu(j)<c/4                                
    j=j+1;
end
Ey = yl(j);
Ez = zl(j);
j=2;
while j<j                                       
    segment = [yu(j-1)+Dy zu(j-1)+Dz 0];                    
    r = [yu(j)+Dy zu(j)+Dz 0];
    a = 0.5*cross(r,segment);
    a1a = a1a + a;
    j = j+1;
end
j =2;
while j<j
    segment = [yl(j-1)+Dy zl(j-1)+Dz 0];                    
    r = [yl(j)+Dy zl(j)+Dz 0];
    a = 0.5*cross(r,segment);
    a1b = a1b + a;
    j = j+1;
end
k=j;
j=1;
while yu(j)<3*c/4                               
    j=j+1;
end
Fy = yu(j);
Fz = zu(j);
while j<j                                      
    segment = [yu(j-1)+Ey zu(j-1)+Ez 0];                    
    r = [yu(j)+Ey zu(j)+Ez 0];
    a = 0.5*cross(r,segment);
    a2a = a2a + a;
    j = j+1;
end
j =k;
while j<j
    segment = [yl(j-1)+Fy zl(j-1)+Fz 0];                    
    r = [yl(j)+Fy zl(j)+Fz 0];
    a = 0.5*cross(r,segment);
    a2b = a2b + a;
    j = j+1;
end
j=j+1;
while j<ns                                      
 
   segment = [yu(j-1)+Gy zu(j-1)+Gz 0];                    
   r = [yu(j)+Gy zu(j)+Gz 0];
   a = 0.5*cross(r,segment);
   a3a = a3a + a;
   j = j+1;
 
end
j=j+1;
while j<ns                                      
   segment = [yl(j-1)+Gy zl(j-1)+Gz 0];                    
   r = [yl(j)+Gy zl(j)+Gz 0];
   b = 0.5*cross(r,segment);
   area3b = area3b + b;
   j = j+1;
end

atotal = 0;
cy = 0;
cz = 0;
for j = 1:ns
    hu = yu(j+1)-yu(j);
    hl = yl(j+1)-yl(j);
    bsu= zu(j+1)+zu(j);
    bsl= abs(zl(j+1)+zl(j));
    au = (hu*bsu)/2;
    al = (hl*bsl)/2;
    atotal = atotal + au + al;
 
    cenuy = hu*(2*zu(j+1)+zu(j))/(3*(zu(j+1)+zu(j))) + yu(j);cy
    cenly = hl*(2*zl(j+1)+zl(j))/(3*(zl(j+1)+zl(j))) + yl(j);
    cenuz = (zu(j)^2 + zu(j)*zu(j+1) + zu(j+1)^2)/(3*(zu(j+1)+zu(j)));
    cenlz = (zl(j)^2 + zl(j)*zl(j+1) + zl(j+1)^2)/(3*(zl(j+1)+zl(j)));
    cy = cy+cenuy*au+cenly*al;
    cz = cz+cenuz*au+cenlz*al;
end
 
ceny = cy/atotal;
cenz = cz/atotal;
 

fprintf('Abar of cell 1 is: %5.4f\i',a2a+a2b)
fprintf('Abar of of cell 2 is: %5.4f\i',a3a+a3b)
fprintf('Abar of cell 3 is: %5.4f\i',a1a+a1b)
fprintf('Abar of the airfoil is: %5.4f\i',abar(1))
fprintf('Top length of cell 1 is: %5.4f\i',yu(k))
fprintf('Bottom length of cell 1 is: %5.4f\i',yl(k))
fprintf('Top length of cell l 2 is: %5.4f\i',yu(j)-yu(k))
fprintf('Bottom length of cell 2 is: %5.4f\i',yl(j)-yl(k))
fprintf('Top length of cell 3 is: %5.4f\i',yu(ns)-yu(j))
fprintf('Bottom length of cell 3 is: %5.4f\i',yl(ns)-yl(j))
fprintf('END OF PROGRAM')

Figure (2)
plot(3*c/4,zl(j):0.001:zu(j),'-k')
axis([0 0.5 -0.2 0.2])
 
end
Figure 1

Sample Run of Code (NACA Plot)

[edit]

NACA Airfoil calculation program

Enter first digit of airfoil: 2
Enter second digit: 4
Enter the third and fourth digits: 15
Enter Py: 0
Enter Pz: 0
Enter number of segments: 60

The average area is: 0.103
The minumum number segments required to have the average area accurate within 1 percent is: 24.000

Figure 1 shows the cross-section of the NACA airfoil and the centroid line

Contributing Team Members

[edit]

The following students contributed to this report:

Felix Izquierdo Eas4200c.f08.nine.F 18:34, 6 November 2008 (UTC)
Ricardo Albuquerque Eas4200c.f08.nine.R 18:39, 6 November 2008 (UTC)
Dave Phillips Eas4200c.f08.nine.D 18:46, 6 November 2008 (UTC)
Stephen Featherman Eas4200c.f08.nine.S 18:49, 6 November 2008 (UTC)