Jump to content

User:Eas4200c.f08.nine.s/Lecture 2

From Wikipedia, the free encyclopedia

Homework 1

Homework 2

Homework 3

Homework 4

Homework 5

Homework 6

Group nine - Week 2

___________________________________________________________________________________________________________________________________________________________

Second Moment of Inertia

[edit]
Moment of inertia of different stringers

"The second moment of area, also known as the area moment of inertia or second moment of inertia, is a property of a shape that is used to predict its resistance to bending and deflection which are directly proportional. This is why beams with higher area moments of inertia, such as I-beams, are so often seen in building construction as opposed to other beams with the same area."[1]

A good example of second moment of inertia would be a persons attempt to prevent a force from turning a large lever. The ferther the person puts his or her hand from the pivot the easier it is to keep the lever from moveing. The persons hand can be thought of as the sum of all of the small parts makeing up the object. The position of the persons hand is proportional to the squar of the distance from the pivot. Each part of the object adds its own contribution depending on its shape, size and position. Each part can be cut into smaller parts and then be summed up until the infinitesimal size is reached and the result is accurate.[2] The basic equation for the second moment of inertia is as follows.

Ix=y2dA[3]

The figure to the right shows different types of stringers. The moment of inertia will be calculated assuming the areas of a,b,c and d are the same.

Mohr's Circle

[edit]

Mohr's Circle (FELIX)

Mohr’s circle is a graphical tool that can express a plane stresses as a function of the angle theta.

The creation of a Mohr’s circle takes few simple steps.

  1. Create a coordinate axis in which the horizontal axis represents the normal stress and the vertical axis will represent the shear stress.
  2. In an x-y coordinate system plot and a on the numerical position on the normal stress axis on the y-face of the object.
  3. The next point is the x-y coordinate of and noting that tension and clockwise shear on the x-face.
  4. Mark the midpoint of the line between the points described in steps 2 & 3. Refer to Figure 2 for a reference
  5. Create a circle as shown in Figure 2.
  6. With the circle now constructed each point on the circle represents a normal/shear stress combination. The line that was drawn in Figure 2 represents the principal axis of the stress. In Figure 3 the horizontal axis of the Mohr's circle represents the two principal stresses in which all he stress on an object represents a normal stress.
Figure 1 
Figure 2 
Figure 3 


In reading a Mohr's circle the primary consideration comes from the angle which is measured off the principal axis. a rotation of 2 represents a rotation of in the element. [4]

Brief History of Mohr's Circle

[edit]

In 1885 Christian Otto Mohr, a German civil Engineer proposed a graphical representation of two and three-dimensional stresses. Mohr was born on October 8, 1835 and died October 2, 1918 in the town of Dresden.[5]



___________________________________________________________________________________________________________________________________________________________


___________________________________________________________________________________________________________________________________________________________

___________________________________________________________________________________________________________________________________________________________

___________________________________________________________________________________________________________________________________________________________

References

[edit]

Contributing Team Members

[edit]

The following students contributed to this report:

David Phillips Eas4200C.f08.nine.d (talk) 18:34, 26 September 2008 (UTC)

Oliver Watmough Eas4200c.f08.nine.o 10:07, 26 September 2008 (UTC)

Stephen Featherman Eas4200c.f08.nine.s 11:48, 26 September 2008 (UTC)

Ricardo Albuquerque Eas4200c.f08.nine.r 4:30, 26 September 2008 (UTC)

Felix Izquierdo Eas4200c.f08.nine.F 4:34, 26 September 2008 (UTC)