Jump to content

User:Battloglio/Gammaproteobacteria

From Wikipedia, the free encyclopedia

Battloglio/Gammaproteobacteria
Vibrio cholerae
Scientific classification Edit this classification
Domain: Bacteria
Phylum: Pseudomonadota
Class: Gammaproteobacteria
Orders

Acidiferrobacterales
Aeromonadales
Alteromonadales
Arenicellales
Cardiobacteriales
Cellvibrionales
Chromatiales
Enterobacterales
Immundisolibacterales
Legionellales
Methylococcales
Nevskiales
Oceanospirillales
Orbales
Pasteurellales
Pseudomonadales
Salinisphaerales
Thiotrichales
Vibrionales
Xanthomonadales

The Class Gammaproteobacteria belongs to the Proteobacteria phylum and contains about 250 genera, which makes it the most genera-rich taxa of the Prokaryotes.[1] Several medically, ecologically, and scientifically important groups of bacteria belong to this class. It is composed by all Gram-negative microbes and is the most phylogenetically and physiologically diverse class of Proteobacteria[2]. The word Gammaproteobacteria comes from three Greek words: the Greek letter "gamma" (γ) meaning "changeable", the word proteakos (πρωτεϊκός) "little stick", and βακτήριον, that means "bacterium", so it means "changeable little stick bacterium". The name is refered to Proteus, the Greek sea god who could change his shape.[3] These microorganisms can live in several terrestrial and marine environments, in which they play various important roles, including extreme environments like the hydrotermal vents. They generally have different shapes, like rods, curved rods, cocci, spirilla, and filaments[4] and include free living bacteria, biofilm formers, commensals and symbionts[5], some also have the distinctive trait of being bioluminescent. [6] Metabolisms found in the different genera are very different; there are both aerobic and anaerobic (obligate or facultative) species, chemolithoautotrophics, chemoorganotrophics, photoautotrophs and heterotrophs. [7]

Phylogeny

[edit]

Currently there are many different classifications based on different approaches, like NCBI (National Center for Biotechnology Information)  based on genomic, LPSN (List of Prokaryotic names with Standing in Nomenclature) , ARB-Silva Database[8] based on ribosomal RNA, or a multiprotein approach. It is still very difficult to resolve the phylogeny of this bacterial class.[9]

Here, it is reported a clade based on a set of 356 protein families for the class of Gammaproteobacteria.

Phylogeny of Gammaproteobacteria

Betaproteobacteria

Phylogeny of Gammaproteobacteria after[10] Not all orders are monophyletic, consequently families or genera are shown for the Pseudomonadales, Oceanospirillales, and Alteromonadales. In the case of singleton orders, the genus is shown. (In bacterial taxonomy, orders have the suffix -ales, while families have -aceae.)

A number of bacteria have been described as members of the Gammaproteobacteria, but have not yet been assigned an order or family. These include bacteria of the genera Alkalimarinus, Alkalimonas, Arenicella, Gallaecimonas, Ignatzschineria, Litorivivens, Marinicella, Methylohalomonas, Methylonatrum, Plasticicumulans, Pseudohongiella, Sedimenticola, Thiohalobacter, Thiohalomonas, Thiohalorhabdus, Thiolapillus, and Wohlfahrtiimonas.[11]

Significance and applications

[edit]

Gammaproteobacteria, especially the orders Alteromonadales and Vibrionales, are fundamental in marine and coastal ecosystems because they are the major groups involved in the nutrients cycling[12] and despite their fame as pathogens, they find application in a huge number of fields, such as bioremediation and biosynthesis.

Gammaproteobacteria can be used as a microbial fuel cell (MFC)[13] element that applies their ability to dissimilate various metals[14]. The produced energy could be collected as one of the most environmentally friendly and sustainable energy production systems.[15] They are also used as biological methane filters[16]. Phototrophic purple sulfur bacteria are used in wastewater treatment processes[17] and the ability of some Gammaproteobacteria (e.g. the genus Alcanivorax[18]) to bioremediate oil is becoming increasingly important to degrade crude oil after oil spills.[19] Some species from the family Chromatiaceae are notable because might be involved in the production of vitamin B12.[20] Another application of some Gammaproteobacteria is their ability to synthesize Poly-b-hydroxyalkanoate (PHA)[21] which is a polymer that is used in the production of biodegradable plastics. Also lots of Gammaproteobacteria species are able to generate secondary metabolites with antibacterial properties.[22]

Ecology

[edit]

Gammaproteobacteria are widely distributed and abundant in various ecosystems such as soil, freshwater lakes and rivers, oceans and salt lakes. For example, Gammaproteobacteria constitute about 6–20% (average of 14%) of bacterioplankton in different oceans[23]; plus, current researches have revealed their worldwide propagation in deep-sea and coastal sediments.[24] In seawater, Bacterial community composition could be shaped by miscellaneous environmental parameters, such as phosphorus, total organic carbon contents, salinity, and pH, [25] and the higher is the soil pH, the higher is the relative abundance of Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria. [26] The relative abundance of Betaproteobacteria and Gammaproteobacteria is also positively correlated to the dissolved organic carbon (DOC) concentration, which is a key environmental parameter shaping bacterial community composition.[27] Gammaproteobacteria are also key players in the dark carbon fixation in coastal sediments, which are the largest carbon sink on Earth and the majority of these bacteria have not been cultured yet.[28] The deep-sea hydrothermal system is one of the most extreme environments on Earth. Almost all vent-endemic animals are strongly associated with the primary production of the endo- and/or episymbiotic chemoautotrophic microorganisms.[29] Analyses of the both symbiotic and free-living microbial communities in the various deep-sea hydrothermal environments have revealed a predominance in biomass of members of the Gammaproteobacteria[30].

Gammaproteobacteria have a wide diversity, metabolic versatility, and functional redundancy in the hydrothermal sediments, and they are responsible for the important organic carbon turnover and nitrogen and sulfur cycling processes. [31]Anoxic hydrothermal fluids contain several reduced compounds such as H2, CH4, and reduced metal ions in addition to H2S. It has been proposed that hydrogen sulfide-oxidizing and oxygen- reducing chemoautotrophs potentially sustain the primary production in these unique ecosystems.[32] In the last decades, it has been found that orders belonging to Gammaproteobacteria, like Pseudomonas, Moraxella, are able to degrade different types of plastics and these microbes might have a key role in plastic biodegradation[33].

Metabolism

[edit]

In the class of Gammaproteobacteria there is a wide diversity of metabolisms.

Some groups are nitrite-oxidizers[34] and ammonia oxidizers like the members of  Nitrosococcus - with the exception of Nitrosococcus mobilis -  and they are also obligate halophilic bacteria. [35]

Among Gammaproteobacteria there are chemoautotrophic sulfur-oxidizing groups, like Thiotrichales, which are found as microbial biofilm filamentous communities in the Tor Caldara shallow-water gas vent in the Tyrrhenian sea [36]. Moreover, thanks to 16S rRNA gene analysis, different sulfide oxidizers in the Gammaporteobacteria class have been detected, and the most important among them are Beggiatoa,Thioploca and Thiomargarita; besides, large amounts of hydrogen sulfide are produced by sulfate-reducing bacteria in organic-rich coastal sediments.[37]

Marine Gammaproteobacteria also include aerobic anoxygenic phototrophic bacteria (AAP) that use bacteriochlorophyll to support the electron transport chain. They are believed to be an essential community in the oceans and are also well spread all around. [38]

Another type of metabolism carried out by Gammaproteobacteria is the methanogenesis, carried out by the order Methylococcales. They metabolize methane as sole energy source and are very important in the global carbon cycle. They are found in any site where methane sources are, like gas reserves, soils, wastewaters.   [39]

Purple sulfur bacteria are anoxygenic phototrophic iron‐oxidizers and they are part of the genus[40] Acidithiobacillus but, there are also two strains of Thiodictyon (Chromatiales order) -strain L7 and strain F4- and few species within the genus Thermomonas (order Lysobacter) that carry out the same metabolism. [41]

In this class, there are numerous genera of obligate and generalist hydrocarbonclastic bacteria. The obligate hydrocarbonoclastic bacteria (OHCB) share the ability to utilize hydrocarbons almost exclusively as a carbon source and until now they have been found only in the marine enviroment. The genera carring out this metabolism are Alcanivorax, Oleiphilus, Oleispira, Thalassolitus, Cycloclasticus and Neptunomonas. Subsequently, additional species such as Polycyclovorans, Algiphilus of the order Xanthomonadales and Porticoccus hydrocarbonoclasticus of the order Cellvibrionales that were isolated from phytoplankton. While, groups of aerobic “generalist” hydrocarbon degraders can utilize hydrocarbons and nonhydrocarbon substratesas as source of carbon and energy and are members within the genera Acinetobacter, Colwellia, Glaciecola, Halomonas, Marinobacter, Marinomonas, Methylomonas, Pseudoalteromonas, Pseudomonas, Rhodanobacter, Shewanella, Stenotrophomonas, and Vibrio.[42]

The most frequent pathway to synthesize glucose among Gammaporteobacteria members is Calvin–Benson–Bassham (CBB) cycle but, a minority of species of the this class may use the rTCA cycle.[43] Thioflavicoccus mobilis (free living gammaproteobacteria) and "Candidatus Endoriftia persephone" (symbiont of the giant tubeworm Riftia pachyptila), present the possibility of using the rTCA cycle in addition to the CBB cycle. It has been showed that some species of Gammaproteobacteria may express two different carbon fixation pathways simultaneously.[44]

Symbiosis

[edit]

Symbiosis is a close and a long-term biological interaction between two different biological organisms. A large number of Gammaproteobacteria are able to join in a close endosymbiosis with various species. Evidence for this can be found in a wide variety of ecological niches: on the ground[45][46], underground[47], or deep on the ocean floor[48]. On the land, it has been reported that Gammaproteobacteria species have been isolated from Robinia pseudoacacia[49] and other plants[50][51], while in the deep sea a sulfur-oxidizing gammaproteobacteria was found in a hydrothermal vent chimney[52]; by entering into symbiotic relationships in deep sea areas, sulfur-oxidizing chemolithotrophic microbes receive additional organic hydrocarbons in hydrothermal ecosystems. Some Gammaproteobacteria are symbiotic with geothermic ocean vent-downwelling animals[53], and in addition, Gammaproteobacteria can have complex relationships with other species that live around thermal springs[54] , for example, with the shrimp Rimicaris exoculata living from hydrothermal vents on the Mid-Atlantic Ridge.

Regarding the endosymbionts, most of them lack many of their family characteristics due to significant genome reduction.[55][56]

Pathogens

[edit]

Gammaproteobacteria comprise several medically and scientifically important groups of bacteria, such as the Enterobacteriaceae, Vibrionaceae, and Pseudomonadaceae. A number of important human pathogens belong to this class, e.g. Salmonella spp. (enteritis and typhoid fever), Yersinia pestis (plague), Vibrio cholerae (cholera), Pseudomonas aeruginosa (lung infections in hospitalized or cystic fibrosis patients), and Escherichia coli (food poisoning).There are also plant pathogens such as Xanthomonas axonopodis pv. citri (citrus canker), Pseudomonas syringae pv. actinidiae (kiwifruit Psa outbreak), and Xylella fastidiosa. Also in the marine environment we can found pathogens that belong to Gammaproteobacteria class, such as several species in genus Vibrio, that can infect different marine organisms, such as fish, shrimp, corals or oysters[57], and species of Salmonella that can also infect grey seals (Halichoerus grypus)[58].

Below there is the description of some of the most famous human pathogens belonging to the class Gammaproteobacteria[59].

  • E. coli is the most well known microorganism and it can have pathogenic and non pathogenic strains, and it is the most common responsible for human diseases. For example, among all the pathogens belonging to the genus Escherichia, the strain E. coli O157:H7 is transmitted to humans by ingesting contaminated water, beef or vegetables that have not been properly sanitized and it is responsible of the hemorrhagic enteritis
  • In the genus Salmonella we can found two most important pathogens: Salmonella typhi and Salmonella paratyphi. We can found the Salmonella in a wide variety of animals, reptile included and it can induce the Typhoid fever that is a severe gastroenteritis, usually accompanied by a high fever.
  • The most known pathogens in genus Yersinia are Yersinia pestis that caused in past three major plague pandemic: the Justinian Plague, the Black Death and the Modern Plague[60]. This disease can be diffused by infected fleas, through direct contact with infected materials or by inhalation and can be very severe in people. We have mainly 3 forms: bubonic plague, septicemic plague and Pneumonic plague.
  • In Pseudomonadaceae family there is the genus Pseudomonas, which can grow as biofilms and contains an excreted exopolysaccharide that can interfere with the disinfection of colonized surfaces. The most common microbe that belong to Pseudomonas genus is Pseudomonas aeruginosa[61], that can induce serious infections include malignant external otitis, endophthalmitis, endocarditis, meningitis, pneumonia, and septicemia.
  • In the order Vibrionales and in the family of Vibrionaceae there is the genus Vibrio. Many species of genus Vibrio are pathogens not only for human but also for fish and crustaceans. The most known disease of this genus is cholera, caused by the species Vibrio cholerae. Cholera is a waterborne disease and is particularly associated with poverty and poor sanitation[62]; Besides V. cholerae, in genus Vibrio there is also Vibrio parahaemolyticus that can infect human through the consumption of raw or under cooked shellfish, contaminated food, and exposure of wounds to warm seawater, and it can induct, in the most of the cases, gastroenteritis, but it can cause also wound infections and septicemia.[63]

See also

[edit]

References

[edit]
  1. ^ Garrity GM, Bell JA, Lilburn TG . (2005). Class III. Gammaproteobacteria class. Nov. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey's Manual of Systematic Bacteriology 2nd edn, vol. 2 Springer: New York, p 1
  2. ^ T. Gutierrez – 2019 - Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
  3. ^ Stackebrandt, E.; Murray, R. G. E.; Truper, H. G. (1988-07-01). "Proteobacteria classis nov., a Name for the Phylogenetic Taxon That Includes the "Purple Bacteria and Their Relatives"". International Journal of Systematic Bacteriology. 38 (3): 321–325. doi:10.1099/00207713-38-3-321. ISSN 0020-7713.
  4. ^ Schulz, H. N. (1999-04-16). "Dense Populations of a Giant Sulfur Bacterium in Namibian Shelf Sediments". Science. 284 (5413): 493–495. doi:10.1126/science.284.5413.493.
  5. ^ Williams, Kelly P.; Gillespie, Joseph J.; Sobral, Bruno W. S.; Nordberg, Eric K.; Snyder, Eric E.; Shallom, Joshua M.; Dickerman, Allan W. (2010-05-01). "Phylogeny of Gammaproteobacteria". Journal of Bacteriology. 192 (9): 2305–2314. doi:10.1128/JB.01480-09. ISSN 0021-9193. PMC 2863478. PMID 20207755.{{cite journal}}: CS1 maint: PMC format (link)
  6. ^ Munn, Colin B. (2019-11-26). Marine Microbiology: Ecology & Applications. CRC Press. ISBN 978-0-429-59236-2.
  7. ^ "Proteobacteria | Microbiology". courses.lumenlearning.com. Retrieved 2020-11-19.
  8. ^ "Silva". www.arb-silva.de. Retrieved 2020-11-22.
  9. ^ Williams, Kelly P.; Gillespie, Joseph J.; Sobral, Bruno W. S.; Nordberg, Eric K.; Snyder, Eric E.; Shallom, Joshua M.; Dickerman, Allan W. (2010-05-01). "Phylogeny of Gammaproteobacteria". Journal of Bacteriology. 192 (9): 2305–2314. doi:10.1128/JB.01480-09. ISSN 0021-9193. PMC 2863478. PMID 20207755.{{cite journal}}: CS1 maint: PMC format (link)
  10. ^ Williams, K. P.; Gillespie, J. J.; Sobral, B. W. S.; Nordberg, E. K.; Snyder, E. E.; Shallom, J. M.; Dickerman, A. W. (2010). "Phylogeny of Gammaproteobacteria". Journal of Bacteriology. 192 (9): 2305–2314. doi:10.1128/JB.01480-09. PMC 2863478. PMID 20207755.
  11. ^ "Classification of domains and phyla - Hierarchical classification of prokaryotes (bacteria) - Gammaproteobacteria". List of Prokaryotic Names with Standing in Nomenclature. Retrieved 13 January 2017.
  12. ^ Evans, Flavia F.; Egan, Suhelen; Kjelleberg, Staffan (2008). "Ecology of type II secretion in marine gammaproteobacteria". Environmental Microbiology. 10 (5): 1101–1107. doi:10.1111/j.1462-2920.2007.01545.x. ISSN 1462-2920.
  13. ^ Qian, Fang; Morse, Daniel E. (2011-02). "Miniaturizing microbial fuel cells". Trends in Biotechnology. 29 (2): 62–69. doi:10.1016/j.tibtech.2010.10.003. ISSN 0167-7799. {{cite journal}}: Check date values in: |date= (help)
  14. ^ Gorby, Yuri A.; Yanina, Svetlana; McLean, Jeffrey S.; Rosso, Kevin M.; Moyles, Dianne; Dohnalkova, Alice; Beveridge, Terry J.; Chang, In Seop; Kim, Byung Hong; Kim, Kyung Shik; Culley, David E. (2006-07-25). "Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms". Proceedings of the National Academy of Sciences of the United States of America. 103 (30): 11358–11363. doi:10.1073/pnas.0604517103. ISSN 0027-8424. PMC 1544091. PMID 16849424.
  15. ^ Hau, Heidi H.; Gralnick, Jeffrey A. (2007-10). "Ecology and Biotechnology of the Genus Shewanella". Annual Review of Microbiology. 61 (1): 237–258. doi:10.1146/annurev.micro.61.080706.093257. ISSN 0066-4227. {{cite journal}}: Check date values in: |date= (help)
  16. ^ Rosenberg, Eugene; DeLong, Edward F.; Lory, Stephen; Stackebrandt, Erko; Thompson, Fabiano, eds. (2014). The Prokaryotes: Gammaproteobacteria. The Prokaryotes (4 ed.). Berlin Heidelberg: Springer-Verlag. p. 434. ISBN 978-3-642-38921-4.
  17. ^ Kobayashi, Michiharu; Tchan, Y. T. (1973-08-01). "Treatment of industrial waste solutions and production of useful by-products using a photosynthetic bacterial method". Water Research. 7 (8): 1219–1224. doi:10.1016/0043-1354(73)90075-4. ISSN 0043-1354.
  18. ^ Harayama, S.; Kishira, H.; Kasai, Y.; Shutsubo, K. (1999-08). "Petroleum biodegradation in marine environments". Journal of Molecular Microbiology and Biotechnology. 1 (1): 63–70. ISSN 1464-1801. PMID 10941786. {{cite journal}}: Check date values in: |date= (help)
  19. ^ Kasai, Y.; Kishira, H.; Syutsubo, K.; Harayama, S. (2001-04). "Molecular detection of marine bacterial populations on beaches contaminated by the Nakhodka tanker oil-spill accident". Environmental Microbiology. 3 (4): 246–255. doi:10.1046/j.1462-2920.2001.00185.x. ISSN 1462-2912. PMID 11359510. {{cite journal}}: Check date values in: |date= (help)
  20. ^ Koppenhagen, V. B.; Schlingmann, G.; Schaer, W.; Dresow, B. (1981-01-01), Moo-young, MURRAY; Vezina, CLAUDE; Singh, KARTAR (eds.), "40 - EXTRACELLULAR METABOLITES FROM PHOTOTROPHIC BACTERIA AS POSSIBLE INTERMEDIATES IN THE BIOSYNTHESIS OF VITAMIN B12", Fermentation Products, Pergamon, pp. 247–252, ISBN 978-0-08-025385-5, retrieved 2020-11-20
  21. ^ de la Haba, Rafael R.; Sánchez-Porro, Cristina; Márquez, M. Carmen; Ventosa, Antonio (2010-04). "Taxonomic study of the genus Salinicola: transfer of Halomonas salaria and Chromohalobacter salarius to the genus Salinicola as Salinicola salarius comb. nov. and Salinicola halophilus nom. nov., respectively". International Journal of Systematic and Evolutionary Microbiology. 60 (Pt 4): 963–971. doi:10.1099/ijs.0.014480-0. ISSN 1466-5026. PMID 19661506. {{cite journal}}: Check date values in: |date= (help)
  22. ^ "Marine bacteria associated with marine macroorganisms: The potential antimicrobial resources - AMiner". www.aminer.org. Retrieved 2020-11-20.
  23. ^ Broszat M, Nacke H, Blasi R, Siebe C, Huebner J, Daniel R, Grohmann E. 2014. Wastewater irrigation increases the abundance of potentially harmful Gammaproteobacteria in soils in Mezquital Valley, Mexico. Appl Environ Microbiol.
  24. ^ Bienhold, Christina; Zinger, Lucie; Boetius, Antje; Ramette, Alban (2016-01-27). "Diversity and Biogeography of Bathyal and Abyssal Seafloor Bacteria". PLOS ONE. 11 (1): e0148016. doi:10.1371/journal.pone.0148016. ISSN 1932-6203. PMC 4731391. PMID 26814838.{{cite journal}}: CS1 maint: PMC format (link) CS1 maint: unflagged free DOI (link)
  25. ^ Jiang, Hongchen; Dong, Hailiang; Ji, Shanshan; Ye, Ying; Wu, Nengyou (2007-09-26). "Microbial Diversity in the Deep Marine Sediments from the Qiongdongnan Basin in South China Sea". Geomicrobiology Journal. 24 (6): 505–517. doi:10.1080/01490450701572473. ISSN 0149-0451.
  26. ^ Rousk J, Ba a  th E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N. 2010. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 4:1340–1351. doi:10.1038/ ismej.2010.58
  27. ^ Li D, Sharp JO, Saikaly PE, Ali S, Alidina M, Alarawi MS, Keller S, HoppeJones C, Drewes JE. 2012. Dissolved organic carbon influences microbial community composition and diversity in managed aquifer recharge systems. Appl Environ Microbiol. 78:6819–6828. doi:10.1128/ AEM.01223-12.
  28. ^ Hedges JI, Keil RG. (1995). Sedimentary organic matter preservation: an assessment and speculative synthesis. Mar Chem 49: 81–115.
  29. ^ Jeanthon,C.(2000).Molecularecol- ogyofhydrothermalventmicrobial communities. AntonieVanLeeuwen- hoek 77, 117–133.
  30. ^ Stewart,F.J.,Newton,I.L.,and Cavanaugh,C.M.(2005). Chemosynthetic endosym- bioses: adaptationstooxic-anoxic interfaces. TrendsMicrobiol. 13, 439–448
  31. ^ Baker BJ, Lazar CS, Teske AP, Dick GJ. 2015. Genomic resolution of linkages in carbon, nitrogen, and sulfur cycling among widespread estuary sediment bacteria. Microbiome. 3:14. doi:10.1186/s40168-015-0077-6.
  32. ^ Jannasch,H.W.,andMottl,M.J. (1985). Geomicrobiologyofdeep- sea hydrothermalvents. Science 229, 717–725
  33. ^ soixanteseize (2015-01-06). "Explore to understand, share to bring about change". Fondation Tara Océan. Retrieved 2020-11-22.
  34. ^ Han, Shun; Li, Xiang; Luo, Xuesong; Wen, Shilin; Chen, Wenli; Huang, Qiaoyun (2018). "Nitrite-Oxidizing Bacteria Community Composition and Diversity Are Influenced by Fertilizer Regimes, but Are Independent of the Soil Aggregate in Acidic Subtropical Red Soil". Frontiers in Microbiology. 9. doi:10.3389/fmicb.2018.00885. ISSN 1664-302X. PMC 5951965. PMID 29867799.{{cite journal}}: CS1 maint: PMC format (link) CS1 maint: unflagged free DOI (link)
  35. ^ Cesar Mota, Jennifer Ridenoure, Jiayang Cheng, Francis L. de los Reyes, High levels of nitrifying bacteria in intermittently aerated reactors treating high ammonia wastewater. FEMS Microbiology Ecology, Volume 54, Issue 3, November 2005, Pages 391–400
  36. ^ Patwardhan, Sushmita; Foustoukos, Dionysis I.; Giovannelli, Donato; Yücel, Mustafa; Vetriani, Costantino (2018). "Ecological Succession of Sulfur-Oxidizing Epsilon- and Gammaproteobacteria During Colonization of a Shallow-Water Gas Vent". Frontiers in Microbiology. 9. doi:10.3389/fmicb.2018.02970. ISSN 1664-302X. PMC 6291522. PMID 30574130.{{cite journal}}: CS1 maint: PMC format (link) CS1 maint: unflagged free DOI (link)
  37. ^ Sabine Lenk, Julia Arnds, Katrice Zerjatke, Niculina Musat, Rudolf Amann and Marc Mußmann* Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany. Novel groups of Gammaproteobacteria catalyse sulfur oxidation and carbon fixation in a coastal, intertidal sediment. (2011)
  38. ^ Cho, Jang-Cheon; Stapels, Martha D.; Morris, Robert M.; Vergin, Kevin L.; Schwalbach, Michael S.; Givan, Scott A.; Barofsky, Douglas F.; Giovannoni, Stephen J. (2007). "Polyphyletic photosynthetic reaction centre genes in oligotrophic marine Gammaproteobacteria". Environmental Microbiology. 9 (6): 1456–1463. doi:10.1111/j.1462-2920.2007.01264.x. ISSN 1462-2920.
  39. ^ Orata, Fabini D.; Meier-Kolthoff, Jan P.; Sauvageau, Dominic; Stein, Lisa Y. (2018). "Phylogenomic Analysis of the Gammaproteobacterial Methanotrophs (Order Methylococcales) Calls for the Reclassification of Members at the Genus and Species Levels". Frontiers in Microbiology. 9. doi:10.3389/fmicb.2018.03162. ISSN 1664-302X. PMC 6315193. PMID 30631317.{{cite journal}}: CS1 maint: PMC format (link) CS1 maint: unflagged free DOI (link)
  40. ^ Bryce, Casey; Blackwell, Nia; Schmidt, Caroline; Otte, Julia; Huang, Yu-Ming; Kleindienst, Sara; Tomaszewski, Elizabeth; Schad, Manuel; Warter, Viola; Peng, Chao; Byrne, James M. (2018). "Microbial anaerobic Fe(II) oxidation – Ecology, mechanisms and environmental implications". Environmental Microbiology. 20 (10): 3462–3483. doi:10.1111/1462-2920.14328. ISSN 1462-2920.
  41. ^ Sabrina Hedrich,Michael Schlomann and D. Barrie Johnson. The iron-oxidizing proteobacteria. School of Biological Sciences, College of Natural Sciences, Bangor University, Deiniol Road, Bangor LL57 2UW, UK 2 Interdisciplinary Ecological Center, TU Bergakademie Freiberg, Leipziger Strasse 29, 09599 Freiberg, Germany. (2011)
  42. ^ Terry J. McGenity, Taxonomy, Genomics and Ecophysiology of Hydrocarbon-Degrading Microbes, 2019 143-152; 181-189; 191-205.
  43. ^ Markert, Stephanie; Arndt, Cordelia; Felbeck, Horst; Becher, Dörte; Sievert, Stefan M.; Hügler, Michael; Albrecht, Dirk; Robidart, Julie; Bench, Shellie; Feldman, Robert A.; Hecker, Michael (2007-01-12). "Physiological Proteomics of the Uncultured Endosymbiont of Riftia pachyptila". Science. 315 (5809): 247–250. doi:10.1126/science.1132913. ISSN 0036-8075. PMID 17218528.
  44. ^ Rubin-Blum, Maxim; Dubilier, Nicole; Kleiner, Manuel (2019-01-02). "Genetic Evidence for Two Carbon Fixation Pathways (the Calvin-Benson-Bassham Cycle and the Reverse Tricarboxylic Acid Cycle) in Symbiotic and Free-Living Bacteria". mSphere. 4 (1). doi:10.1128/mSphere.00394-18. ISSN 2379-5042. PMC 6315080. PMID 30602523.
  45. ^ Karamipour, Naeime; Fathipour, Yaghoub; Mehrabadi, Mohammad (2016-09-09). "Gammaproteobacteria as essential primary symbionts in the striped shield bug, Graphosoma Lineatum (Hemiptera: Pentatomidae)". Scientific Reports. 6 (1): 33168. doi:10.1038/srep33168. ISSN 2045-2322.
  46. ^ Kikuchi, Yoshitomo; Hosokawa, Takahiro; Nikoh, Naruo; Fukatsu, Takema (2012-02-01). "Gut symbiotic bacteria in the cabbage bugs Eurydema rugosa and Eurydema dominulus (Heteroptera: Pentatomidae)". Applied Entomology and Zoology. 47 (1): 1–8. doi:10.1007/s13355-011-0081-7. ISSN 1347-605X.
  47. ^ Tannenbaum, Ian; Kaur, Jatinder; Mann, Ross; Sawbridge, Timothy; Rodoni, Brendan; Spangenberg, German (2020-01-01). "Profiling the Lolium perenne Microbiome: From Seed to Seed". Phytobiomes Journal. 4 (3): 281–289. doi:10.1094/PBIOMES-03-20-0026-R.
  48. ^ Breusing, Corinna; Schultz, Darrin T.; Sudek, Sebastian; Worden, Alexandra Z.; Young, Curtis Robert (2020). "High-contiguity genome assembly of the chemosynthetic gammaproteobacterial endosymbiont of the cold seep tubeworm Lamellibrachia barhami". Molecular Ecology Resources. 20 (5): 1432–1444. doi:10.1111/1755-0998.13220. ISSN 1755-0998. PMC 7540712.{{cite journal}}: CS1 maint: PMC format (link)
  49. ^ Shiraishi, Ayami; Matsushita, Norihisa; Hougetsu, Taizo (2010-08-01). "Nodulation in black locust by the Gammaproteobacteria Pseudomonas sp. and the Betaproteobacteria Burkholderia sp". Systematic and Applied Microbiology. 33 (5): 269–274. doi:10.1016/j.syapm.2010.04.005. ISSN 0723-2020.
  50. ^ Ghosh, Pallab Kumar; De, Tarun Kumar; Maiti, Tushar Kanti (2015-04-01). "Ascorbic acid production in root, nodule and Enterobacter spp. (Gammaproteobacteria) isolated from root nodule of the legume Abrus precatorius L." Biocatalysis and Agricultural Biotechnology. 4 (2): 127–134. doi:10.1016/j.bcab.2014.11.006. ISSN 1878-8181.
  51. ^ Benhizia, Yacine; Benhizia, Hayet; Benguedouar, Ammar; Muresu, Rosella; Giacomini, Alessio; Squartini, Andrea (2004-01-01). "Gamma Proteobacteria Can Nodulate Legumes of the Genus Hedysarum". Systematic and Applied Microbiology. 27 (4): 462–468. doi:10.1078/0723202041438527. ISSN 0723-2020.
  52. ^ Nunoura, Takuro; Takaki, Yoshihiro; Kazama, Hiromi; Kakuta, Jungo; Shimamura, Shigeru; Makita, Hiroko; Hirai, Miho; Miyazaki, Masayuki; Takai, Ken (2014-08-18). "Physiological and Genomic Features of a Novel Sulfur-Oxidizing Gammaproteobacterium Belonging to a Previously Uncultivated Symbiotic Lineage Isolated from a Hydrothermal Vent". PLOS ONE. 9 (8): e104959. doi:10.1371/journal.pone.0104959. ISSN 1932-6203. PMC 4136832. PMID 25133584.{{cite journal}}: CS1 maint: PMC format (link) CS1 maint: unflagged free DOI (link)
  53. ^ Holt JR (6 February 2013). "Description of the Phylum Gammaproteobacteria". Susquehanna University - Systematic Biology Course Website. Retrieved 17 April 2018.
  54. ^ Petersen, Jillian M.; Ramette, Alban; Lott, Christian; Cambon‐Bonavita, Marie-Anne; Zbinden, Magali; Dubilier, Nicole (2010). "Dual symbiosis of the vent shrimp Rimicaris exoculata with filamentous gamma- and epsilonproteobacteria at four Mid-Atlantic Ridge hydrothermal vent fields". Environmental Microbiology. 12 (8): 2204–2218. doi:10.1111/j.1462-2920.2009.02129.x. ISSN 1462-2920.
  55. ^ Shigenobu, S.; Watanabe, H.; Hattori, M.; Sakaki, Y.; Ishikawa, H. (2000-09-07). "Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS". Nature. 407 (6800): 81–86. doi:10.1038/35024074. ISSN 0028-0836. PMID 10993077.
  56. ^ Burke, Gaelen R.; Moran, Nancy A. (2011). "Massive genomic decay in Serratia symbiotica, a recently evolved symbiont of aphids". Genome Biology and Evolution. 3: 195–208. doi:10.1093/gbe/evr002. ISSN 1759-6653. PMC 3056288. PMID 21266540.
  57. ^ Evans, Flavia F.; Egan, Suhelen; Kjelleberg, Staffan (2008-05). "Ecology of type II secretion in marine gammaproteobacteria". Environmental Microbiology. 10 (5): 1101–1107. doi:10.1111/j.1462-2920.2007.01545.x. ISSN 1462-2912. {{cite journal}}: Check date values in: |date= (help)
  58. ^ Baily, Johanna L.; Foster, Geoffrey; Brown, Derek; Davison, Nicholas J.; Coia, John E.; Watson, Eleanor; Pizzi, Romain; Willoughby, Kim; Hall, Ailsa J.; Dagleish, Mark P. (2016-03). "S almonella infection in grey seals ( H alichoerus grypus ), a marine mammal sentinel species: pathogenicity and molecular typing of S almonella strains compared with human and livestock isolates: Salmonella in grey seals". Environmental Microbiology. 18 (3): 1078–1087. doi:10.1111/1462-2920.13219. {{cite journal}}: Check date values in: |date= (help)
  59. ^ J.J. Berman: Taxonomic Guide to Infectious Diseases.(2012) DOI: http://dx.doi.org/10.1016/B978-0-12-415895-5.00007-6
  60. ^ "Yersinia pestis, a problem of the past and a re-emerging threat". Biosafety and Health. 1 (2): 65–70. 2019-09-01. doi:10.1016/j.bsheal.2019.09.001. ISSN 2590-0536.
  61. ^ Bodey, G. P.; Bolivar, R.; Fainstein, V.; Jadeja, L. (1983-03-01). "Infections Caused by Pseudomonas aeruginosa". Clinical Infectious Diseases. 5 (2): 279–313. doi:10.1093/clinids/5.2.279. ISSN 1058-4838.
  62. ^ Faruque, Shah M.; Albert, M. John; Mekalanos, John J. (1998-12-01). "Epidemiology, Genetics, and Ecology of ToxigenicVibrio cholerae". Microbiology and Molecular Biology Reviews. 62 (4): 1301–1314. doi:10.1128/MMBR.62.4.1301-1314.1998. ISSN 1098-5557.
  63. ^ Nicholas A. Daniels, Linda MacKinnon, Richard Bishop, Sean Altekruse, Beverly Ray, Roberta M. Hammond, Sharon Thompson, Susan Wilson, Nancy H. Bean, Patricia M. Griffin, Laurence Slutsker, Vibrio parahaemolyticus Infections in the United States, 1973–1998, The Journal of Infectious Diseases, Volume 181, Issue 5, May 2000, Pages 1661–1666, https://doi.org/10.1086/315459
[edit]

Category:Proteobacteria