Jump to content

Template:Regular hyperbolic tiling table/sandbox

From Wikipedia, the free encyclopedia
Regular hyperbolic tiling table
Spherical (improper/Platonic)/Euclidean/hyperbolic (Poincaré disc: compact/paracompact/noncompact) tessellations with their Schläfli symbol
p \ q 1 2 3 4 5 6 7 8 ... ... iπ/λ
1
{1,1}
 

{1,2}
 


 {1,3}
 


 {1,4}
 


 {1,5}
 


 {1,6}
 


 {1,7}
 


 {1,8}
 


 {1,∞}
 


 {1,iπ/λ}
 
2
{2,1}
 

{2,2}

{2,3}

{2,4}

{2,5}

{2,6}

{2,7}

{2,8}

{2,∞}

{2,iπ/λ}
3
{3,1}
 

{3,2}

{3,3}

{3,4}

{3,5}

{3,6}

{3,7}

{3,8}

{3,∞}

{3,iπ/λ}
4
{4,1}
 

{4,2}

{4,3}

{4,4}

{4,5}

{4,6}

{4,7}

{4,8}

{4,∞}

{4,iπ/λ}
5
{5,1}
 

{5,2}

{5,3}

{5,4}

{5,5}

{5,6}

{5,7}

{5,8}

{5,∞}

{5,iπ/λ}
6 {6,1}
 

{6,2}

{6,3}

{6,4}

{6,5}

{6,6}

{6,7}

{6,8}

{6,∞}

{6,iπ/λ}
7 {7,1}
 
{7,2}

{7,3}

{7,4}

{7,5}

{7,6}

{7,7}

{7,8}

{7,∞}
{7,iπ/λ}
8 {8,1}
 
{8,2}

{8,3}

{8,4}

{8,5}

{8,6}

{8,7}

{8,8}

{8,∞}
{8,iπ/λ}
...
{∞,1}
 

{∞,2}

{∞,3}

{∞,4}

{∞,5}

{∞,6}

{∞,7}

{∞,8}

{∞,∞}

{∞,iπ/λ}
...
iπ/λ {iπ/λ,1}
 

{iπ/λ,2}

{iπ/λ,3}

{iπ/λ,4}

{iπ/λ,5}

{iπ/λ,6}
{iπ/λ,7}
{iπ/λ,8}

{iπ/λ,∞}

{iπ/λ,iπ/λ}