Jump to content

Template:Regular hyperbolic tiling table

From Wikipedia, the free encyclopedia
Regular hyperbolic tiling table
Spherical (improper/Platonic)/Euclidean/hyperbolic (Poincaré disc: compact/paracompact/noncompact) tessellations with their Schläfli symbol
p \ q 2 3 4 5 6 7 8 ... ... iπ/λ
2
{2,2}

{2,3}

{2,4}

{2,5}

{2,6}

{2,7}

{2,8}

{2,∞}

{2,iπ/λ}
3

{3,2}

(tetrahedron)
{3,3}

(octahedron)
{3,4}

(icosahedron)
{3,5}

(deltille)
{3,6}


{3,7}


{3,8}


{3,∞}


{3,iπ/λ}
4

{4,2}

(cube)
{4,3}

(quadrille)
{4,4}


{4,5}


{4,6}


{4,7}


{4,8}


{4,∞}

{4,iπ/λ}
5

{5,2}

(dodecahedron)
{5,3}


{5,4}


{5,5}


{5,6}


{5,7}


{5,8}


{5,∞}

{5,iπ/λ}
6

{6,2}

(hextille)
{6,3}


{6,4}


{6,5}


{6,6}


{6,7}


{6,8}


{6,∞}

{6,iπ/λ}
7 {7,2}

{7,3}

{7,4}

{7,5}

{7,6}

{7,7}

{7,8}

{7,∞}
{7,iπ/λ}
8 {8,2}

{8,3}

{8,4}

{8,5}

{8,6}

{8,7}

{8,8}

{8,∞}
{8,iπ/λ}
...

{∞,2}

{∞,3}

{∞,4}

{∞,5}

{∞,6}

{∞,7}

{∞,8}

{∞,∞}

{∞,iπ/λ}
...
iπ/λ
{iπ/λ,2}

{iπ/λ,3}

{iπ/λ,4}

{iπ/λ,5}

{iπ/λ,6}
{iπ/λ,7}
{iπ/λ,8}

{iπ/λ,∞}

{iπ/λ, iπ/λ}