Jump to content

Talk:Darrieus wind turbine

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia

Self starting?

[edit]

The cant also makes the turbine self-starting from any position

Can you provide a reference to this, or explain it to me? I can't see how this helps. Since at zero rotational speed there is no "airspeed" over the blades, there can't be any lift, so it won't start moving. Any airspeed due to the wind alone will surely be cancelled by the drag on the rest of the structure - it's not enough to get it started. I may have missed something howevr; I'd be very interested to know about it if I have because I'm interested in building some turbines like this. Graham 05:08, 29 January 2006 (UTC)[reply]

To GrahamUK: A 2-bladed giromill or eggbeater probably won't self-start if the blades are aligned with the wind, but may do so otherwise. Having more blades increases the chances of a suitably placed blade, but it may just move to a less favourable position, before another blade comes into a good position. I think thicker blades start better, but run slower. The camber line should follow the turbine's curvature, to reduce parasitic drag.

The cant also makes the turbine self-starting from any position

I have removed this, after reading Turby's website. I think a helical turbine would self-start at any position if the flow rate were large enough; otherwise it can be motor-started at a flow rate at which it can then sustain the rotation. The Turby wind turbine claims "Starting is achieved by the generator in motor operation" [1]

Can you provide a reference to this, or explain it to me?

The helical Gorlov turbines claim "Self-starting in water current flows as low as two ft/s" [2].

I can't see how this helps. Since at zero rotational speed there is no "airspeed" over the blades, there can't be any lift, so it won't start moving. Any airspeed due to the wind alone will surely be cancelled by the drag on the rest of the structure - it's not enough to get it started. I may have missed something howevr; I'd be very interested to know about it if I have because I'm interested in building some turbines like this.

There is airflow over the blades from the wind. Admittedly some of it is in unfortunate directions, and will cause negative torque. However, I think the net torque will be positive at any wind speed (but it has to overcome friction and generator cogging). Turby claim "cut-in wind speed 4 m/s". This may mean the self-starting speed, or the self-sustaining speed.

Relative to the blade (or cross-section at one point if helical), the airflow is the vector sum of oncoming air plus rotating wind, giving a varying angle-of-attack and magnitude as the blade rotates. At standstill, there is simply the wind vector, which effectively comes from all angles because of the canted blades.

Importantly, owing to a fluid's flexibility and, for a gas, compressibility, we cannot add the forces due to these two causes, or resolve the relative flow into tangential, radial and axial components, although we can do this with the resultant force.

At every point around the turbine, the line-of-action of the resultant force (after resolving onto the radial plane if there is any axial component) can be projected inwards, past the turbine axis at a certain perpendicular distance, giving a positive or negative torque to the shaft. The net torque is the sum of these.

The aeronautical terms lift and drag are, strictly speaking, forces across and along the approaching relative airflow respectively, so they are not useful here. We really want to know the tangential force pulling the blade around, and the radial and axial forces acting against the bearings. Sometimes the tangential force is called thrust, but for a HAWT this means the axial force on the bearings (as in a propeller).

Some people talk about using just one single blade, or blades within blades, or twin blades side-by-side, or a cylindrical "distributor" within the turbine, or an external duct to funnel the air.

See these websites for info: [3] [4] [5]

Melilot 02:13, 20 February 2006 (UTC) Melilot 16:06, 24 February 2006 (UTC)[reply]

The way I think about the self-starting issue (though I could certainly be wrong) is as follows: The blades are airfoils, and if there is a wind across them, they will produce lift. However, if the rotor is stationary and the blade is pointed directly into the wind, the lift it generates (just like a plane wing) is directly away from the rotational axis, and doesn't do any good as far as rotating the assembly. When the rotor is turning, however, the actual wind combines with the APPARENT wind due to the rotation of the rotor, which results in a lift vector which points in a different direction...it points somewhat forward, which results in a net force continuing to drive the rotor. I don't think having more or fewer blades helps, it's the lack of the apparent wind that keeps the rotor from self-starting. However strong the wind is, the lift force generated by the blades will be directly away from the rotational axis and doesn't have any forward component. Middlenamefrank 00:59, 22 July 2007 (UTC)[reply]

Self Starting has been solved by S1210 Airfoil in the past according to Kirke, his Thesis is posted here. http://www4.gu.edu.au:8080/adt-root/public/adt-QGU20050916.120408/index.html

This is in fact the airfoil the inventor of Turby helical twist VAWT "gyromill" has referenced in his own academic work. The camber of the equatorial centre of the rotor mid section should match the equatorial turbine radius with a chord angle of attack which is recommended at 3 degrees (diving inward). The S 1210 air foil shape has a biased camber at 30% chord or slightly more and the chord iunderside from 40 to 100% chord is concave. Because of the S designation it is likely the S1210 belongs to or is the work of D. Somer of www.airfoils.com, which is beleived to have been originally developed for slow speed subsonic RC controlled aircraft. Rightly so Kirke points out this form of airfoil may not be ideal at higher speeds for the gyromill rotor or Darrieus rotor Mid Section in order generate the necessary rpm for best Cp at high end Reynolds numbers. Kirke also points out the entire transmission must be taken into account. As all alternators are not create equally, low cogging and low initial interia are important aspects of altenator or dynamo design in making the gyromill or DArrieus work so it competes with hawts. So I agree prior art Darrieus's have a start problem per this wikipedia (please add prior art), and yes "current art" use a motor to assist start (Turby, Cleanfield and other gyromills), however, when you factor in the above and add multiple blades (5 or more) to improve positive drag, then the negative lift characteristics in the early cycle of rotation, 0 to 15 degrees is eliminated completely, and DArrieus systems in smaller sizes with solidity over 40% can most certainly be self starting and accelerate beyond a Cp to TSR ration well beyond 1:1 without experiencing over speeding and without requiring a heavy brake and dead stop at 15 of 16 m/s which is the case with current helical gyromill vendors Quiet Revolution and Turby. R2 (talk) 13:25, 13 September 2009 (UTC)robert.reive@gmail.com —Preceding unsigned comment added by Rreive (talkcontribs) 13:23, 13 September 2009 (UTC)[reply]

Reversing the motor for rotor startup

[edit]

Hello, just about the thinking of ""Starting is achieved by the generator in motor operation" [1] ... Can you provide a reference to this, or explain it to me?"

...Electric Motors are working on a very similar way as generators. A basic electo-motor has permanent magnets, so any (let it be a rotation-) part of the equipment which has a coil (current through that) can generate also magnetic field to pull itselves to the permanent magnet. This is the way the motors try to turn the axis. In addition; if you move the coil (this is a long wire rendered in an efficient way, looking like a life belt) near to the permanent magnet(s), there you will recognise some (potential), electic current, or electric power on the coil. So in this case your Motor works as a Generator.

I tryed to make it simple, as I can... SO, You can use a simple Electric Motor for the purpose of Generator, and in this case you can gain electric power from the motors (electrical) connectors. Regards, Csaba (mailto:CsabaBalog@hotmail.com)

Very simply, electric motors and electric generators are very similar devices, just run in reverse of each other. The motor provides motive power when electrically energized; the generator provides electricity when driven. Some designs work very poorly in the opposite mode, but some are designed to work at least acceptably well in both modes. Pumped-storage hydroelectricity discusses a reversible pump/generator application that shows decent efficiency on an enormous scale. Middlenamefrank 01:09, 22 July 2007 (UTC)[reply]

Lower tip speed

[edit]

I removed text which says that darreus turbine uses lower tip speed than normal HAWT, both use same wing-tip-ratio so there is no difference in bird safety or noise. I have heard just some darreus or gyromills rotating and both where very noisy, I think that noise came from guy-wires.

I think that there should be reference that there is no any commercial Darreus any more.

I don't think that's correct, I do believe the HAWT has a higher tip speed than the Darreus. The blades on a propeller-type turbine are arranged radially out from the axis, so the tips of the blades move much faster than points closer to the center, and considerably faster than the average blade speed. The Darreus' maximum blade speed is at the center for an 'egg beater' type, or uniform for the straight-blade type. Also, you should remember to sign your posts (four tildes does the trick) so we know who we're talking to. Middlenamefrank 00:44, 22 July 2007 (UTC)[reply]

Figures 3 & 4

[edit]

Where are they? Too Old 18:26, 25 April 2006 (UTC)[reply]

They were removed because they were not tagged properly or had copyright issues. I've removed the text that references them for now - it's not too much of a loss for a general article, though if someone who knows more about this type of design wants to add it back (and sort out the image issues) then I wouldn't stand in their way. Graham 05:00, 26 April 2006 (UTC)[reply]

Figure in explanation is partially wrong

[edit]

I really think this figure is wrong. Indeed, the tangential velocityfor the blade in the back is in the inverse direction, so the aerodynamical force is also in a wrong direction. With the opposite tangential direction lift changes, but drag does not, thus, the total aerodynamical force only changes its vertical component which has to be pointing to the front of the apparatus. Carlos 00:22, 4 March 2008 (UTC)[reply]

Canadian Contribution?

[edit]

I would rather not edit directly into the page, instead flesh out the idea here and then edit.

Although Darrieus pantented the Darrieus type wind turbine in 1931 - filed 1925 (US pat 1,835,018) no actual invention came from the patent. It was not until the 1960s when two researchers at the National Research Council of Canada (NRC) "re-discovered" the Darrieus type wind turbine. In an effort to create a realiable and maintainable power supply for developing regaions, Raj Rangi and Peter South, tested a model of vertical axis wind turbine (VAWT) in the National Research Council of Canada Aerodynamics laboratry. It was only when applying for a patent in 1967 did they become aware of the Darrieus patent. Modern Darrieus type VAWT systems derive from this re-discovery of technology. —Preceding unsigned comment added by 142.46.198.195 (talk) 18:50, 15 April 2009 (UTC)[reply]

  • Please respect that building a device after Darrieus' actual inventing does not constitute "invention" but rather building that which had been invented. For your case, you would have to prove that no one ever built until your two researchers; that proof would be a tall order; the blindness of two researchers does not remove the high right of invention that Darrieus held. How many people saw and understood Darrieus invention may well be very much greater than what you suppose; the invention occurred; and then others had access; that access meanders its way via many avenues, some of which may have influenced the two researchers whom you wish to have invention credit. Joefaust (talk) 21:54, 4 December 2010 (UTC)[reply]

Need reliable citation and proof of the fuzzy statement

[edit]

On Dec. 5, 2009, is found: "just as efficient as the propeller". That statement is in need of attention. We are not having "propeller" in a wind turbine; nothing is being propelled; autorotation is occurring. And where is there citation of efficiency ...efficient for what? The return phase of the Darrieus blades is a costing sector of the motion. Differently, a HAWT blade has no such return phase, but is working with lift in all angles of rotation. Something is needed here. Joefaust (talk) 08:15, 6 December 2009 (UTC)[reply]

Move

[edit]
The following is a closed discussion of the proposal. Please do not modify it. Subsequent comments should be made in a new section on the talk page. No further edits should be made to this section.

The result of the proposal was: Not Moved. A redirect has been created. Station1 (talk) 06:59, 29 September 2009 (UTC)[reply]


Darrieus wind turbineDarrieus WECS—Preceding unsigned comment added by 91.182.179.23 (talk) 07:15, 21 September 2009 (UTC)[reply]

Oppose Darrieus wind turbine is a perfectly good title - Darrieus (name of inventor) wind turbine (what it is). I don't understand what is meant by "WECS". Perhapes it would be better to convert the requested destination title into a redirect instead. Mjroots (talk) 17:14, 22 September 2009 (UTC)[reply]
WECS means wind energy conversion system, the idea here is that the article could then be used to describe the Darrieus design, which can function to power wind turbines (electrical), aswell as simple mechanical devices.
The above discussion is preserved as an archive of the proposal. Please do not modify it. Subsequent comments should be made in a new section on this talk page. No further edits should be made to this section.

pitching aerofoils..

[edit]

made this little animation while trying to understand the aerodynamics https://www.youtube.com/watch?v=ne5Yv0uOre4 i have set it to CC, maybe you want me to make a special version for wikipedia.

I see a lot Darrieus wind turbines with ordinary "airplane" wings, even those that pitch its wing into the wind (http://www.srf.ch/player/tv/einstein/video/schweizer-erfindet-neuartiges-windrad?id=6109bc24-c926-474a-9fde-ac66c2a7071a). Okay, a little bent outwards would compensate the circular motion of the aerofoils. But this effect gets less the wider the diameter becomes. In my understanding, the aerofoil should even be bent inwards when in front of the wind.

I am also sceptical on the "Fig 4: Schematic of mass-stabilised pitch control system." (https://en.wikipedia.org/wiki/File:Massstab.windturbine.jpg). When the wind is used to pitch the wings, the wing will always be a "little to late" as the tilt becomes only a reaction to the wind. With that fast changing wind direction in the turbine, i am unsure if that will give some extra energy. Who uploaded that Image ? Any prototype having proved that concept ?

--Verlierer (talk) 11:17, 3 December 2015 (UTC)[reply]