Jump to content

Rutherford (rocket engine)

From Wikipedia, the free encyclopedia

Rutherford
Sea-level Rutherford engine
Country of origin United States
 New Zealand
DesignerRocket Lab
ManufacturerRocket Lab
ApplicationFirst- and second-stage
StatusActive
Liquid-fuel engine
PropellantLOX / RP-1
CycleElectric-pump-fed
Pumps2
Configuration
Chamber1
Performance
Thrust, vacuum
  • Original: 24 kN (5,500 lbf)
  • Updated: 26 kN (5,800 lbf)
Thrust, sea-level
  • Original: 24 kN (5,500 lbf)
  • Updated: 25 kN (5,600 lbf)
Thrust-to-weight ratio72.8
Specific impulse, vacuum343 s (3.36 km/s)
Specific impulse, sea-level311 s (3.05 km/s)
Dimensions
Diameter.25 m (9.8 in)
Dry mass35 kg (77 lb)
Used in
Electron, HASTE
References
References[1][2][3][4][5][6][7]

Rutherford is a liquid-propellant rocket engine designed by aerospace company Rocket Lab[8] and manufactured in Long Beach, California.[9] The engine is used on the company's own rocket, Electron. It uses LOX (liquid oxygen) and RP-1 (refined kerosene) as its propellants and is the first flight-ready engine to use the electric-pump-fed cycle. The rocket uses a similar engine arrangement to the Falcon 9; a two-stage rocket using a cluster of nine identical engines on the first stage, and one vacuum-optimized version with a longer nozzle on the second stage. This arrangement is also known as an octaweb.[10][5][6] The sea-level version produces 24.9 kN (5,600 lbf) of thrust and has a specific impulse of 311 s (3.05 km/s), while the vacuum optimized-version produces 25.8 kN (5,800 lbf) of thrust and has a specific impulse of 343 s (3.36 km/s).[11]

First test-firing took place in 2013.[12] The engine was qualified for flight in March 2016[13] and had its first flight on 25 May 2017.[14] As of April 2024, the engine has powered 47 Electron flights in total, making the count of flown engines 369, including one engine flown twice.[15]

Description

[edit]

Rutherford is named after renowned New Zealand-born scientist Ernest Rutherford. It is a small liquid-propellant rocket engine designed to be simple and cheap to produce. It is used as both a first-stage and a second-stage engine, which simplifies logistics and improves economies of scale.[5][6] To reduce its cost, it uses the electric-pump feed cycle, being the first flight-ready engine of such type.[4] It is fabricated largely by 3D printing, using a method called laser powder bed fusion, and more specifically Direct Metal Laser Solidification (DMLS®). Its combustion chamber, injectors, pumps, and main propellant valves are all 3D-printed.[16][17][18]

As with all pump-fed engines, the Rutherford uses a rotodynamic pump to increase the pressure from the tanks to that needed by the combustion chamber.[4] The use of a pump avoids the need for heavy tanks capable of holding high pressures and the high amounts of inert gas needed to keep the tanks pressurized during flight.[19]

The pumps (one for the fuel and one for the oxidizer) in electric-pump feed engines are driven by an electric motor.[19] The Rutherford engine uses dual brushless DC electric motors and a lithium polymer battery. It is claimed that this improves efficiency from the 50% of a typical gas-generator cycle to 95%.[20] However, the battery pack increases the weight of the complete engine and presents an energy conversion issue.[19]

Each engine has two small motors that generate 37 kW (50 hp) while spinning at 40 000 rpm.[20] The first-stage battery, which has to power the pumps of nine engines simultaneously, can provide over 1 MW (1,300 hp) of electric power.[21]

The engine is regeneratively cooled, meaning that before injection some of the cold RP-1 is passed through cooling channels embedded in the combustion chamber and nozzle structure, transferring heat away from them, before finally being injected into the combustion chamber.

See also

[edit]

References

[edit]
  1. ^ "Electron". Rocket Lab. Retrieved 24 July 2017.
  2. ^ "rocket lab reach 500 rutherford engine test fires".
  3. ^ Brügge, Norbert (11 July 2016). "Asian space-rocket liquid-propellant engines". B14643.de. Retrieved 20 September 2016.
  4. ^ a b c "Propulsion". Rocket Lab. Archived from the original on 19 September 2016. Retrieved 19 September 2016.
  5. ^ a b c Brügge, Norbert. "Electron NLV". B14643.de. Archived from the original on 27 September 2016. Retrieved 20 September 2016.
  6. ^ a b c Brügge, Norbert. "Electron Propulsion". B14643.de. Archived from the original on 27 September 2016. Retrieved 20 September 2016.
  7. ^ "Rocket Lab Increases Electron Payload Capacity, Enabling Interplanetary Missions and Reusability". Rocket Lab. Retrieved 6 August 2020.
  8. ^ "Rocket Lab Reveals First Battery-Powered Rocket for Commercial Launches to Space | Rocket Lab". Rocket Lab. Retrieved 25 May 2017.
  9. ^ Knapp, Alex (21 May 2017). "Rocket Lab Becomes A Space Unicorn With A $75 Million Funding Round". Forbes. Retrieved 25 May 2017.
  10. ^ "Meet the Octaweb – SpaceX". blogs.nasa.gov. Retrieved 18 September 2020.
  11. ^ "Electron". Rocket Lab. Archived from the original on 7 May 2021. Retrieved 1 February 2018.
  12. ^ "10 things about Rocket Lab". 27 May 2017. Archived from the original on 21 May 2021. Retrieved 25 November 2019.
  13. ^ "Rutherford Engine Qualified for Flight". Rocket Lab. March 2016. Archived from the original on 25 April 2016. Retrieved 19 September 2016.
  14. ^ "New Zealand space launch is first from a private site". BBC News. 25 May 2017. Retrieved 25 May 2017.
  15. ^ @RocketLab (23 August 2023). "260 399 Rutherford engines launched to space" (Tweet) – via Twitter.
  16. ^ Bradley, Grant (15 April 2015). "Rocket Lab unveils world's first battery rocket engine". The New Zealand Herald. Retrieved 20 September 2016.
  17. ^ Grush, Loren (15 April 2015). "A 3D-Printed, Battery-Powered Rocket Engine". Popular Science. Archived from the original on 31 January 2016. Retrieved 20 September 2016.
  18. ^ "Propulsion". Rocket Lab. Archived from the original on 10 September 2015. Retrieved 19 September 2016.
  19. ^ a b c Rachov, Pablo; Tacca, Hernán; Lentini, Diego (2013). "Electric Feed Systems for Liquid-Propellant Rockets" (PDF). Journal of Propulsion and Power. 29 (5). AIAA: 1171–1180. doi:10.2514/1.B34714. Retrieved 16 September 2016.
  20. ^ a b Morring, Frank Jr.; Norris, Guy (14 April 2015). "Rocket Lab Unveils Battery-Powered Turbomachinery". Aviation Week & Space Technology. Archived from the original on 4 March 2016. Retrieved 16 September 2016.
  21. ^ "Rocket Lab Introduction" (PDF). Rocket Lab. Archived from the original (PDF) on 20 September 2016. Retrieved 20 September 2016.
[edit]