Jump to content

Pterobilin

From Wikipedia, the free encyclopedia
Pterobilin
Identifiers
3D model (JSmol)
ChemSpider
UNII
  • InChI=1S/C23H21N3O2S2/c1-15-3-5-19(16(2)11-15)20-14-30-23(26-20)29-13-18-4-6-21(28-18)22(27)25-12-17-7-9-24-10-8-17/h3-11,14H,12-13H2,1-2H3,(H,25,27)
    Key: QWUAUCVIVCXEEL-UHFFFAOYSA-N
  • CC1=C(CCC(=O)O)\C(=C\c2[nH]c(\C=C/3\N=C(\C=C\4/NC(=O)C(=C4C)CCC(=O)O)C(=C3C)C=C)c(C=C)c2C)\NC1=O
Properties
C33H34N4O6
Molar mass 582.6536
Density 1.3±0.1 g/cm3[1]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Graphium sarpedon which contains pterobilin

Pterobilin also called biliverdin IXγ in the Fischer nomenclature,[2] is a blue bile pigment found in Nessaea spp.,[3] Graphium agamemnon, G. antiphates, G. doson, and G. sarpedon.[4] It is one of only a few blue pigments found in any animal species, as most animals use iridescence to create blue coloration. Other blue pigments of animal origin include phorcabilin, used by other butterflies in Graphium and Papilio (specifically P. phorcas and P. weiskei), and sarpedobilin, which is used by Graphium sarpedon.[4]

Synthetic pathways

[edit]

Pterobilin is a chemical precursor to sarpedobilin in the larvae of the fourth instar of G. sarpedon through a double cyclisation of the central vinyl groups of the adjacent nitrogens.[5] In the butterfly species Pieris brassicae, it is produced starting with acetate and then proceeding to glycin, then δ-aminolevulinic acid, then coproporphyrinogen III, to protoporphyrin IX and finally into pterobilin.[5][6]

Pterobilin can be phototransformed into phorcabilin and sarpedobilin in vitro.[5] Pterobilin can also be thermally rearranged in vitro into phorcabilin.[5][7]

Biochemical roles

[edit]

Pterobilin in P. brassicae[8][9][10] is thought to play a role in photoreception for the different instars for metering diapause.[5] In adult P. brassicae butterflies the compound is thought to have a role in heat transfer,[11] as the wing scales where pterobilin accumulates differ morphologically in a way that would facilitate photoreception.[5]

See also

[edit]


References

[edit]
  1. ^ "Pterobilin (Found by synonym)". ChemSpider. Retrieved 21 January 2020.
  2. ^ Moss, Gerard P. (1986). "IUPAC-IUB Joint Commission on Biochemical Nomenclauture (JCBN), Nomenclature of tetrapyrroles, Recommendations 1986". European Journal of Biochemistry. 178 (2). FEBSPress: 277–328. doi:10.1111/j.1432-1033.1988.tb14453.x. PMID 3208761.
  3. ^ Vane-Wright, Richard I. (22 February 1979). "The coloration, identification and phylogeny of Nessaea butterflies (Lepidoptera : Nymphalidae)" (PDF). Bulletin of the British Museum (Natural History). Entomology Series. 38 (2): 27–56. OCLC 5510989. Retrieved 8 February 2018.
  4. ^ a b Simonis, Priscilla; Serge, Berthier (30 March 2012). "Chapter number 1 How Nature produces blue color". In Massaro, Alessandro (ed.). Photonic Crystals - Introduction, Applications and Theory. InTech. ISBN 978-953-51-0431-5. Retrieved 8 February 2018.
  5. ^ a b c d e f Bois-Choussy, Michèle; Barbier, Michel (10 February 1983). "Biosynthesis of the bile pigment sarpedobilin from [14C]pterobilin by Papilio sarpedon (lepidoptera)". Biochemical and Biophysical Research Communications. 100 (3). Elsevier: 779–782. doi:10.1016/0006-291X(83)91029-X. ISSN 0006-291X. OCLC 4922987039. PMID 6838551.
  6. ^ Rüdiger, W., Klose, W., Vuillaume, M., and Barbier, M. (1969). Experimentia, 25, 487-488.
  7. ^ Bois-Choussy, Michèle; Barbier, Michel (1978). Heterocycles 9, 677-690.
  8. ^ Barbier, Michel, Bergerard, J., Hurpin, B., and Vuillaume, M. (1970). Comptes rendus de l'Académie des Sciences Paris, 271, 342-345.
  9. ^ Vuillaume, M., and Bergerard, J. (1978). Chronobiologia, 5, 286-292.
  10. ^ Vuillaume, M., and Dattée, Y. (1980). Archives de zoologie expérimentale et générale, 121, 159-164.
  11. ^ Allyn, A. C., Barbier, Michel, Bois-Choussy, Michèle, and Rothschild, M. (1981). Antenna, Londres, 29-31.