Jump to content

Orthotransversal

From Wikipedia, the free encyclopedia
Orthotransversal

In Euclidean geometry, the orthotransversal of a point is the line defined as follows.[1][2]

For a triangle ABC and a point P, three orthotraces, intersections of lines BC, CA, AB and perpendiculars of AP, BP, CP through P respectively are collinear. The line which includes these three points is called the orthotransversal of P.

Existence of it can proved by various methods such as a pole and polar, the dual of Desargues' involution theorem [ru] , and the Newton line theorem.[3][4]

The tripole of the orthotransversal is called the orthocorrespondent of P,[5][6] And the transformation PP, the orthocorrespondent of P is called the orthocorrespondence.[7]

Example

[edit]

Properties

[edit]

where SA,SB,SC are Conway notation.

Orthopivotal cubic

[edit]

The Locus of points P that P, P, and Q are collinear is a cubic curve. This is called the orthopivotal cubic of Q, O(Q).[15] Every orthopivotal cubic passes through two Fermat points.

Example

[edit]

See also

[edit]

Notes

[edit]
  1. ^ a b c Gibert, Bernard (2003). "Orthocorrespondence and Orthopivotal Cubics" (PDF). Forum Geometricorum. 3.
  2. ^ Eliud Lozada, César. "Extended glossary". faculty.evansville.edu.
  3. ^ Cohl, Telv. "Extension of orthotransversal". AoPS.
  4. ^ "Existence of Orthotransversal". AoPS.
  5. ^ Bernard, Gibert (2003). "Antiorthocorrespondents of Circumconics". Forum Geometricorum. 3.
  6. ^ Gibert, Bernard; van Lamoen, Floor (2003). "The Parasix Configuration and Orthocorrespondence". Forum Geometricorum. 3: 173.
  7. ^ Evers, Manfred (2012). "Generalizing Orthocorrespondence". Forum Geometricorum. 12.
  8. ^ Li4; S⊗; 和輝. "幾何引理維基" (PDF) (in Chinese).{{cite web}}: CS1 maint: numeric names: authors list (link)
  9. ^ a b Mathworld Orthocorrespondent.
  10. ^ dagezjm. "Pedal triangle". AoPS.
  11. ^ Li4. "圓錐曲線" (PDF) (in Chinese).{{cite web}}: CS1 maint: numeric names: authors list (link)
  12. ^ Li4; S. "張志煥截線" (PDF) (in Chinese).{{cite web}}: CS1 maint: numeric names: authors list (link)
  13. ^ S. "正交截線" (PDF) (in Chinese).
  14. ^ "QA-Tf14: QA-Orthotransversal Point". ENCYCLOPEDIA OF QUADRI-FIGURES (EQF). Retrieved 2024-11-02.
  15. ^ "Orthopivotal Cubics". Catalogue of Triangle Cubics.
  16. ^ Gibert, Bernard. "Neuberg Cubics" (PDF).
  17. ^ "K053". Cubic in Triangle Plane.

References

[edit]
[edit]