From Wikipedia, the free encyclopedia
In geometry , the Conway triangle notation , named after John Horton Conway , allows trigonometric functions of a triangle to be managed algebraically. Given a reference triangle whose sides are a , b and c and whose corresponding internal angles are A , B , and C then the Conway triangle notation is simply represented as follows:
S
=
b
c
sin
A
=
a
c
sin
B
=
a
b
sin
C
{\displaystyle S=bc\sin A=ac\sin B=ab\sin C\,}
where S = 2 × area of reference triangle and
S
φ
=
S
cot
φ
.
{\displaystyle S_{\varphi }=S\cot \varphi .\,}
in particular
S
A
=
S
cot
A
=
b
c
cos
A
=
b
2
+
c
2
−
a
2
2
{\displaystyle S_{A}=S\cot A=bc\cos A={\frac {b^{2}+c^{2}-a^{2}}{2}}\,}
S
B
=
S
cot
B
=
a
c
cos
B
=
a
2
+
c
2
−
b
2
2
{\displaystyle S_{B}=S\cot B=ac\cos B={\frac {a^{2}+c^{2}-b^{2}}{2}}\,}
S
C
=
S
cot
C
=
a
b
cos
C
=
a
2
+
b
2
−
c
2
2
{\displaystyle S_{C}=S\cot C=ab\cos C={\frac {a^{2}+b^{2}-c^{2}}{2}}\,}
S
ω
=
S
cot
ω
=
a
2
+
b
2
+
c
2
2
{\displaystyle S_{\omega }=S\cot \omega ={\frac {a^{2}+b^{2}+c^{2}}{2}}\,}
where
ω
{\displaystyle \omega \,}
is the Brocard angle . The law of cosines is used:
a
2
=
b
2
+
c
2
−
2
b
c
cos
A
{\displaystyle a^{2}=b^{2}+c^{2}-2bc\cos A}
.
S
π
3
=
S
cot
π
3
=
S
3
3
{\displaystyle S_{\frac {\pi }{3}}=S\cot {\frac {\pi }{3}}=S{\frac {\sqrt {3}}{3}}\,}
S
2
φ
=
S
φ
2
−
S
2
2
S
φ
S
φ
2
=
S
φ
+
S
φ
2
+
S
2
{\displaystyle S_{2\varphi }={\frac {S_{\varphi }^{2}-S^{2}}{2S_{\varphi }}}\quad \quad S_{\frac {\varphi }{2}}=S_{\varphi }+{\sqrt {S_{\varphi }^{2}+S^{2}}}\,}
for values of
φ
{\displaystyle \varphi }
where
0
<
φ
<
π
{\displaystyle 0<\varphi <\pi \,}
S
ϑ
+
φ
=
S
ϑ
S
φ
−
S
2
S
ϑ
+
S
φ
S
ϑ
−
φ
=
S
ϑ
S
φ
+
S
2
S
φ
−
S
ϑ
.
{\displaystyle S_{\vartheta +\varphi }={\frac {S_{\vartheta }S_{\varphi }-S^{2}}{S_{\vartheta }+S_{\varphi }}}\quad \quad S_{\vartheta -\varphi }={\frac {S_{\vartheta }S_{\varphi }+S^{2}}{S_{\varphi }-S_{\vartheta }}}\,.}
Furthermore the convention uses a shorthand notation for
S
ϑ
S
φ
=
S
ϑ
φ
{\displaystyle S_{\vartheta }S_{\varphi }=S_{\vartheta \varphi }\,}
and
S
ϑ
S
φ
S
ψ
=
S
ϑ
φ
ψ
.
{\displaystyle S_{\vartheta }S_{\varphi }S_{\psi }=S_{\vartheta \varphi \psi }\,.}
Hence:
sin
A
=
S
b
c
=
S
S
A
2
+
S
2
cos
A
=
S
A
b
c
=
S
A
S
A
2
+
S
2
tan
A
=
S
S
A
{\displaystyle \sin A={\frac {S}{bc}}={\frac {S}{\sqrt {S_{A}^{2}+S^{2}}}}\quad \quad \cos A={\frac {S_{A}}{bc}}={\frac {S_{A}}{\sqrt {S_{A}^{2}+S^{2}}}}\quad \quad \tan A={\frac {S}{S_{A}}}\,}
a
2
=
S
B
+
S
C
b
2
=
S
A
+
S
C
c
2
=
S
A
+
S
B
.
{\displaystyle a^{2}=S_{B}+S_{C}\quad \quad b^{2}=S_{A}+S_{C}\quad \quad c^{2}=S_{A}+S_{B}\,.}
Some important identities:
∑
cyclic
S
A
=
S
A
+
S
B
+
S
C
=
S
ω
{\displaystyle \sum _{\text{cyclic}}S_{A}=S_{A}+S_{B}+S_{C}=S_{\omega }\,}
S
2
=
b
2
c
2
−
S
A
2
=
a
2
c
2
−
S
B
2
=
a
2
b
2
−
S
C
2
{\displaystyle S^{2}=b^{2}c^{2}-S_{A}^{2}=a^{2}c^{2}-S_{B}^{2}=a^{2}b^{2}-S_{C}^{2}\,}
S
B
C
=
S
B
S
C
=
S
2
−
a
2
S
A
S
A
C
=
S
A
S
C
=
S
2
−
b
2
S
B
S
A
B
=
S
A
S
B
=
S
2
−
c
2
S
C
{\displaystyle S_{BC}=S_{B}S_{C}=S^{2}-a^{2}S_{A}\quad \quad S_{AC}=S_{A}S_{C}=S^{2}-b^{2}S_{B}\quad \quad S_{AB}=S_{A}S_{B}=S^{2}-c^{2}S_{C}\,}
S
A
B
C
=
S
A
S
B
S
C
=
S
2
(
S
ω
−
4
R
2
)
S
ω
=
s
2
−
r
2
−
4
r
R
{\displaystyle S_{ABC}=S_{A}S_{B}S_{C}=S^{2}(S_{\omega }-4R^{2})\quad \quad S_{\omega }=s^{2}-r^{2}-4rR\,}
where R is the circumradius and abc = 2SR and where r is the incenter ,
s
=
a
+
b
+
c
2
{\displaystyle s={\frac {a+b+c}{2}}\,}
and
a
+
b
+
c
=
S
r
.
{\displaystyle a+b+c={\frac {S}{r}}\,.}
Some useful trigonometric conversions:
sin
A
sin
B
sin
C
=
S
4
R
2
cos
A
cos
B
cos
C
=
S
ω
−
4
R
2
4
R
2
{\displaystyle \sin A\sin B\sin C={\frac {S}{4R^{2}}}\quad \quad \cos A\cos B\cos C={\frac {S_{\omega }-4R^{2}}{4R^{2}}}}
∑
cyclic
sin
A
=
S
2
R
r
=
s
R
∑
cyclic
cos
A
=
r
+
R
R
∑
cyclic
tan
A
=
S
S
ω
−
4
R
2
=
tan
A
tan
B
tan
C
.
{\displaystyle \sum _{\text{cyclic}}\sin A={\frac {S}{2Rr}}={\frac {s}{R}}\quad \quad \sum _{\text{cyclic}}\cos A={\frac {r+R}{R}}\quad \quad \sum _{\text{cyclic}}\tan A={\frac {S}{S_{\omega }-4R^{2}}}=\tan A\tan B\tan C\,.}
Some useful formulas:
∑
cyclic
a
2
S
A
=
a
2
S
A
+
b
2
S
B
+
c
2
S
C
=
2
S
2
∑
cyclic
a
4
=
2
(
S
ω
2
−
S
2
)
{\displaystyle \sum _{\text{cyclic}}a^{2}S_{A}=a^{2}S_{A}+b^{2}S_{B}+c^{2}S_{C}=2S^{2}\quad \quad \sum _{\text{cyclic}}a^{4}=2(S_{\omega }^{2}-S^{2})\,}
∑
cyclic
S
A
2
=
S
ω
2
−
2
S
2
∑
cyclic
S
B
C
=
∑
cyclic
S
B
S
C
=
S
2
∑
cyclic
b
2
c
2
=
S
ω
2
+
S
2
.
{\displaystyle \sum _{\text{cyclic}}S_{A}^{2}=S_{\omega }^{2}-2S^{2}\quad \quad \sum _{\text{cyclic}}S_{BC}=\sum _{\text{cyclic}}S_{B}S_{C}=S^{2}\quad \quad \sum _{\text{cyclic}}b^{2}c^{2}=S_{\omega }^{2}+S^{2}\,.}
Some examples using Conway triangle notation:
Let D be the distance between two points P and Q whose trilinear coordinates are p a : p b : p c and q a : q b : q c . Let K p = ap a + bp b + cp c and let K q = aq a + bq b + cq c . Then D is given by the formula:
D
2
=
∑
cyclic
a
2
S
A
(
p
a
K
p
−
q
a
K
q
)
2
.
{\displaystyle D^{2}=\sum _{\text{cyclic}}a^{2}S_{A}\left({\frac {p_{a}}{K_{p}}}-{\frac {q_{a}}{K_{q}}}\right)^{2}\,.}
Using this formula it is possible to determine OH, the distance between the circumcenter and the orthocenter as follows:
For the circumcenter p a = aS A and for the orthocenter q a = S B S C /a
K
p
=
∑
cyclic
a
2
S
A
=
2
S
2
K
q
=
∑
cyclic
S
B
S
C
=
S
2
.
{\displaystyle K_{p}=\sum _{\text{cyclic}}a^{2}S_{A}=2S^{2}\quad \quad K_{q}=\sum _{\text{cyclic}}S_{B}S_{C}=S^{2}\,.}
Hence:
D
2
=
∑
cyclic
a
2
S
A
(
a
S
A
2
S
2
−
S
B
S
C
a
S
2
)
2
=
1
4
S
4
∑
cyclic
a
4
S
A
3
−
S
A
S
B
S
C
S
4
∑
cyclic
a
2
S
A
+
S
A
S
B
S
C
S
4
∑
cyclic
S
B
S
C
=
1
4
S
4
∑
cyclic
a
2
S
A
2
(
S
2
−
S
B
S
C
)
−
2
(
S
ω
−
4
R
2
)
+
(
S
ω
−
4
R
2
)
=
1
4
S
2
∑
cyclic
a
2
S
A
2
−
S
A
S
B
S
C
S
4
∑
cyclic
a
2
S
A
−
(
S
ω
−
4
R
2
)
=
1
4
S
2
∑
cyclic
a
2
(
b
2
c
2
−
S
2
)
−
1
2
(
S
ω
−
4
R
2
)
−
(
S
ω
−
4
R
2
)
=
3
a
2
b
2
c
2
4
S
2
−
1
4
∑
cyclic
a
2
−
3
2
(
S
ω
−
4
R
2
)
=
3
R
2
−
1
2
S
ω
−
3
2
S
ω
+
6
R
2
=
9
R
2
−
2
S
ω
.
{\displaystyle {\begin{aligned}D^{2}&{}=\sum _{\text{cyclic}}a^{2}S_{A}\left({\frac {aS_{A}}{2S^{2}}}-{\frac {S_{B}S_{C}}{aS^{2}}}\right)^{2}\\&{}={\frac {1}{4S^{4}}}\sum _{\text{cyclic}}a^{4}S_{A}^{3}-{\frac {S_{A}S_{B}S_{C}}{S^{4}}}\sum _{\text{cyclic}}a^{2}S_{A}+{\frac {S_{A}S_{B}S_{C}}{S^{4}}}\sum _{\text{cyclic}}S_{B}S_{C}\\&{}={\frac {1}{4S^{4}}}\sum _{\text{cyclic}}a^{2}S_{A}^{2}(S^{2}-S_{B}S_{C})-2(S_{\omega }-4R^{2})+(S_{\omega }-4R^{2})\\&{}={\frac {1}{4S^{2}}}\sum _{\text{cyclic}}a^{2}S_{A}^{2}-{\frac {S_{A}S_{B}S_{C}}{S^{4}}}\sum _{\text{cyclic}}a^{2}S_{A}-(S_{\omega }-4R^{2})\\&{}={\frac {1}{4S^{2}}}\sum _{\text{cyclic}}a^{2}(b^{2}c^{2}-S^{2})-{\frac {1}{2}}(S_{\omega }-4R^{2})-(S_{\omega }-4R^{2})\\&{}={\frac {3a^{2}b^{2}c^{2}}{4S^{2}}}-{\frac {1}{4}}\sum _{\text{cyclic}}a^{2}-{\frac {3}{2}}(S_{\omega }-4R^{2})\\&{}=3R^{2}-{\frac {1}{2}}S_{\omega }-{\frac {3}{2}}S_{\omega }+6R^{2}\\&{}=9R^{2}-2S_{\omega }.\end{aligned}}}
This gives:
O
H
=
9
R
2
−
2
S
ω
.
{\displaystyle OH={\sqrt {9R^{2}-2S_{\omega }\,}}.}