Jump to content

List of named differential equations

From Wikipedia, the free encyclopedia

Differential equations play a prominent role in many scientific areas: mathematics, physics, engineering, chemistry, biology, medicine, economics, etc. This list presents differential equations that have received specific names, area by area.

Mathematics

[edit]

Algebraic geometry

[edit]

Complex analysis

[edit]

Differential geometry

[edit]

Dynamical systems and Chaos theory

[edit]

Mathematical physics

[edit]

Ordinary Differential Equations (ODEs)

[edit]

Riemannian geometry

[edit]

Physics

[edit]

Astrophysics

[edit]

Classical mechanics

[edit]

Electromagnetism

[edit]

Fluid dynamics and hydrology

[edit]

General relativity

[edit]

Materials science

[edit]

Nuclear physics

[edit]

Plasma physics

[edit]

Quantum mechanics and quantum field theory

[edit]

Thermodynamics and statistical mechanics

[edit]

Waves (mechanical or electromagnetic)

[edit]

Engineering

[edit]

Electrical and Electronic Engineering

[edit]

Game theory

[edit]

Mechanical engineering

[edit]

Nuclear engineering

[edit]

Optimal control

[edit]

Orbital mechanics

[edit]

Signal processing

[edit]

Transportation engineering

[edit]

Chemistry

[edit]

Biology and medicine

[edit]

Population dynamics

[edit]

Economics and finance

[edit]

Linguistics

[edit]

Military strategy

[edit]

References

[edit]
  1. ^ Zebiak, Stephen E.; Cane, Mark A. (1987). "A Model El Niño–Southern Oscillation". Monthly Weather Review. 115 (10): 2262–2278. doi:10.1175/1520-0493(1987)115<2262:AMENO>2.0.CO;2. ISSN 1520-0493.
  2. ^ Griffiths, David J. (2004), Introduction to Quantum Mechanics (2nd ed.), Prentice Hall, pp. 1–2, ISBN 0-13-111892-7
  3. ^ Ragheb, M. (2017). "Neutron Diffusion Theory" (PDF).
  4. ^ Choi, Youngsoo (2011). "PDE-constrained Optimization and Beyond" (PDF).
  5. ^ Heinkenschloss, Matthias (2008). "PDE Constrained Optimization" (PDF). SIAM Conference on Optimization.
  6. ^ Rudin, Leonid I.; Osher, Stanley; Fatemi, Emad (1992). "Nonlinear total variation based noise removal algorithms". Physica D. 60 (1–4): 259–268. Bibcode:1992PhyD...60..259R. CiteSeerX 10.1.1.117.1675. doi:10.1016/0167-2789(92)90242-F.
  7. ^ Murray, James D. (2002). Mathematical Biology I: An Introduction (PDF). Interdisciplinary Applied Mathematics. Vol. 17 (3rd ed.). New York: Springer. pp. 395–417. doi:10.1007/b98868. ISBN 978-0-387-95223-9.
  8. ^ Fernández-Villaverde, Jesús (2010). "The econometrics of DSGE models" (PDF). SERIEs. 1 (1–2): 3–49. doi:10.1007/s13209-009-0014-7. S2CID 8631466.
  9. ^ Piazzesi, Monika (2010). "Affine Term Structure Models" (PDF).
  10. ^ Cardaliaguet, Pierre (2013). "Notes on Mean Field Games (from P.-L. Lions' lectures at Collège de France)" (PDF).