Jump to content

Tzitzeica equation

From Wikipedia, the free encyclopedia

The Tzitzeica equation is a nonlinear partial differential equation devised by Gheorghe Țițeica in 1907 in the study of differential geometry, describing surfaces of constant affine curvature.[1] The Tzitzeica equation has also been used in nonlinear physics, being an integrable 1+1 dimensional Lorentz invariant system.[2]

On substituting

the equation becomes

.

One obtains the traveling solution of the original equation by the reverse transformation .

References

[edit]
  1. ^ Tzitzéica, G. (1907). "Sur une nouvelle classes de surfaces". Comptes rendus de l'Académie des Sciences. 144: 1257–1259. JFM 38.0642.01.
  2. ^ Polyanin, Andrei D.; Zaitsev, Valentin F. (2016-04-19). Handbook of Nonlinear Partial Differential Equations (2nd ed.). Chapman & Hall/CRC. pp. 540–542. doi:10.1201/b11412. ISBN 978-0-429-15037-1.

Further reading

[edit]
  • Griffiths, Graham W.; Schiesser, William E. (2012). "Introduction to Traveling Wave Analysis". Traveling Wave Analysis of Partial Differential Equations. Amsterdam: Elsevier/Academic Press. doi:10.1016/b978-0-12-384652-5.00001-7. ISBN 978-0-12-384652-5.
  • Enns, Richard H.; McGuire, George C. (1997). Nonlinear physics with Maple for scientists and engineers. Boston: Birkhäuser. ISBN 0-8176-3838-5. OCLC 36130678.
  • Shingareva, Inna; Lizárraga-Celaya, Carlos (2011). Solving nonlinear partial differential equations with Maple and Mathematica. Vienna: Springer. ISBN 978-3-7091-0517-7. OCLC 755068833.
  • Eryk Infeld and George Rowlands, Nonlinear Waves, Solitons and Chaos, Cambridge 2000
  • Saber Elaydi, An Introduction to Difference Equationns, Springer 2000
  • Dongming Wang, Elimination Practice, Imperial College Press 2004
  • David Betounes, Partial Differential Equations for Computational Science: With Maple and Vector Analysis Springer, 1998 ISBN 9780387983004
  • George Articolo Partial Differential Equations & Boundary Value Problems with Maple V Academic Press 1998 ISBN 9780120644759