Jump to content

HSPA1B

From Wikipedia, the free encyclopedia
(Redirected from Hspa1b)
HSPA1B
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesHSPA1B, HSP70-1B, HSP70-2, HSP70.2, heat shock protein family A (Hsp70) member 1B, HSX70, HSPA1, HSP70-1, HSP72, HSP70.1
External IDsOMIM: 603012; MGI: 96244; HomoloGene: 74294; GeneCards: HSPA1B; OMA:HSPA1B - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_005346

NM_010479

RefSeq (protein)

NP_005337
NP_005336
NP_005336
NP_005336.3
NP_005337.2

NP_034609

Location (UCSC)Chr 6: 31.83 – 31.83 MbChr 17: 35.19 – 35.19 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Human gene HSPA1B is an intron-less gene which encodes for the heat shock protein HSP70-2, a member of the Hsp70 family of proteins.[5] The gene is located in the major histocompatibility complex, on the short arm of chromosome 6, in a cluster with two paralogous genes, HSPA1A and HSPA1L.[6][7][8] HSPA1A and HSPA1B produce nearly identical proteins because the few differences in their DNA sequences are almost exclusively synonymous substitutions or in the three prime untranslated region, heat shock 70kDa protein 1A, from HSPA1A, and heat shock 70kDa protein 1B, from HSPA1B.[6] A third, more modified paralog to these genes exists in the same region, HSPA1L, which shares a 90% homology with the other two.[8]

Function

[edit]

Heat shock 70kDa protein 1B is a chaperone protein, cooperating with other heat shock proteins and chaperone systems to maintain proteostasis by stabilizing the structural conformation of other proteins in the cell and protecting against stress-induced aggregation.[9] Hsp70s have also been shown to bind and stabilize mRNA rich in adenine and uracil bases, independent of the occupational states of its other binding sites.[10] This protein is deactivated by binding ATP, and activated by its dephosphorylation to ADP, which requires a potassium ion to facilitate the hydrolysis, or ATP-ADP exchange.[11]

Hsp70-2 specifically is developmentally expressed in male germ line cells during meiosis, where it is necessary for the formation of the complex between CDC2 and cyclin B1.[12] It later becomes incorporated into the CatSper complex, a specialized calcium ion channel that enables spermatozoa motility.[13]

Clinical significance

[edit]

Infertility has been observed in mice when HSA1B expression is disrupted, as CDC2 in unable to form the required heterodimer with cyclin B1 for the meiotic cell cycle to progress beyond S phase.[12]

Expression of heat shock protein 70kDa protein 2 in transformed tumor cells has been implicated in the rapid proliferation, metastasis, and inhibition of apoptosis in ovarian, bladder urothelial, and breast cancers.[14][15][16] Patients with chronic hepatitis B or hepatitis C virus infection who harbor a HSPA1B-1267 single nucleotide polymorphism have a higher risk for developing hepatocellular carcinoma.[17]

Interactions

[edit]

Interactions have been characterized between Hsp70-2 and the following proteins:

See also

[edit]

References

[edit]
  1. ^ a b c ENSG00000224501, ENSG00000212866, ENSG00000204388, ENSG00000231555 GRCh38: Ensembl release 89: ENSG00000232804, ENSG00000224501, ENSG00000212866, ENSG00000204388, ENSG00000231555Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000091971Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Milner CM, Campbell RD (1990). "Structure and expression of the three MHC-linked HSP70 genes". Immunogenetics. 32 (4): 242–251. doi:10.1007/BF00187095. PMID 1700760. S2CID 9531492.
  6. ^ a b "Entrez Gene: HSPA1A heat shock 70kDa protein 1B".
  7. ^ Ito Y, Ando A, Ando H, Ando J, Saijoh Y, Inoko H, Fujimoto H (August 1998). "Genomic structure of the spermatid-specific hsp70 homolog gene located in the class III region of the major histocompatibility complex of mouse and man". Journal of Biochemistry. 124 (2): 347–353. doi:10.1093/oxfordjournals.jbchem.a022118. PMID 9685725.
  8. ^ a b Sargent CA, Dunham I, Trowsdale J, Campbell RD (March 1989). "Human major histocompatibility complex contains genes for the major heat shock protein HSP70". Proceedings of the National Academy of Sciences of the United States of America. 86 (6): 1968–1972. Bibcode:1989PNAS...86.1968S. doi:10.1073/pnas.86.6.1968. PMC 286826. PMID 2538825.
  9. ^ Rosenzweig R, Nillegoda NB, Mayer MP, Bukau B (November 2019). "The Hsp70 chaperone network". Nature Reviews. Molecular Cell Biology. 20 (11): 665–680. doi:10.1038/s41580-019-0133-3. PMID 31253954. S2CID 195739183.
  10. ^ Kishor A, White EJ, Matsangos AE, Yan Z, Tandukar B, Wilson GM (August 2017). "Hsp70's RNA-binding and mRNA-stabilizing activities are independent of its protein chaperone functions". The Journal of Biological Chemistry. 292 (34): 14122–14133. doi:10.1074/jbc.M117.785394. PMC 5572911. PMID 28679534.
  11. ^ Arakawa A, Handa N, Shirouzu M, Yokoyama S (August 2011). "Biochemical and structural studies on the high affinity of Hsp70 for ADP". Protein Science. 20 (8): 1367–1379. doi:10.1002/pro.663. PMC 3189522. PMID 21608060.
  12. ^ a b Eddy EM (January 1999). "Role of heat shock protein HSP70-2 in spermatogenesis". Reviews of Reproduction. 4 (1): 23–30. doi:10.1530/ror.0.0040023. PMID 10051099. S2CID 13035273.
  13. ^ a b Liu J, Xia J, Cho KH, Clapham DE, Ren D (June 2007). "CatSperbeta, a novel transmembrane protein in the CatSper channel complex". The Journal of Biological Chemistry. 282 (26): 18945–18952. doi:10.1074/jbc.M701083200. PMID 17478420.
  14. ^ Gupta N, Jagadish N, Surolia A, Suri A (2017). "Heat shock protein 70-2 (HSP70-2) a novel cancer testis antigen that promotes growth of ovarian cancer". American Journal of Cancer Research. 7 (6): 1252–1269. PMC 5489776. PMID 28670489.
  15. ^ Garg M, Kanojia D, Seth A, Kumar R, Gupta A, Surolia A, Suri A (January 2010). "Heat-shock protein 70-2 (HSP70-2) expression in bladder urothelial carcinoma is associated with tumour progression and promotes migration and invasion". European Journal of Cancer. 46 (1): 207–215. doi:10.1016/j.ejca.2009.10.020. PMID 19914824.
  16. ^ Rohde M, Daugaard M, Jensen MH, Helin K, Nylandsted J, Jäättelä M (March 2005). "Members of the heat-shock protein 70 family promote cancer cell growth by distinct mechanisms". Genes & Development. 19 (5): 570–582. doi:10.1101/gad.305405. PMC 551577. PMID 15741319.
  17. ^ Jeng JE, Tsai JF, Chuang LY, Ho MS, Lin ZY, Hsieh MY, et al. (March 2008). "Heat shock protein A1B 1267 polymorphism is highly associated with risk and prognosis of hepatocellular carcinoma: a case-control study". Medicine. 87 (2): 87–98. doi:10.1097/MD.0b013e31816be95c. PMID 18344806. S2CID 26906991.
  18. ^ Liu X, Liu D, Qian D, Dai J, An Y, Jiang S, et al. (June 2012). "Nucleophosmin (NPM1/B23) interacts with activating transcription factor 5 (ATF5) protein and promotes proteasome- and caspase-dependent ATF5 degradation in hepatocellular carcinoma cells". The Journal of Biological Chemistry. 287 (23): 19599–19609. doi:10.1074/jbc.M112.363622. PMC 3365995. PMID 22528486.
  19. ^ a b c d Rauch JN, Gestwicki JE (January 2014). "Binding of human nucleotide exchange factors to heat shock protein 70 (Hsp70) generates functionally distinct complexes in vitro". The Journal of Biological Chemistry. 289 (3): 1402–1414. doi:10.1074/jbc.M113.521997. PMC 3894324. PMID 24318877.
  20. ^ Zhu D, Dix DJ, Eddy EM (August 1997). "HSP70-2 is required for CDC2 kinase activity in meiosis I of mouse spermatocytes". Development. 124 (15): 3007–3014. doi:10.1242/dev.124.15.3007. PMID 9247342.
  21. ^ Darshi M, Mendiola VL, Mackey MR, Murphy AN, Koller A, Perkins GA, et al. (January 2011). "ChChd3, an inner mitochondrial membrane protein, is essential for maintaining crista integrity and mitochondrial function". The Journal of Biological Chemistry. 286 (4): 2918–2932. doi:10.1074/jbc.M110.171975. PMC 3024787. PMID 21081504.
  22. ^ Brychzy A, Rein T, Winklhofer KF, Hartl FU, Young JC, Obermann WM (July 2003). "Cofactor Tpr2 combines two TPR domains and a J domain to regulate the Hsp70/Hsp90 chaperone system". The EMBO Journal. 22 (14): 3613–3623. doi:10.1093/emboj/cdg362. PMC 165632. PMID 12853476.
  23. ^ Moffatt NS, Bruinsma E, Uhl C, Obermann WM, Toft D (August 2008). "Role of the cochaperone Tpr2 in Hsp90 chaperoning". Biochemistry. 47 (31): 8203–8213. doi:10.1021/bi800770g. PMID 18620420.
  24. ^ Ito N, Kamiguchi K, Nakanishi K, Sokolovskya A, Hirohashi Y, Tamura Y, et al. (June 2016). "A novel nuclear DnaJ protein, DNAJC8, can suppress the formation of spinocerebellar ataxia 3 polyglutamine aggregation in a J-domain independent manner". Biochemical and Biophysical Research Communications. 474 (4): 626–633. doi:10.1016/j.bbrc.2016.03.152. PMID 27133716.
  25. ^ Han C, Chen T, Li N, Yang M, Wan T, Cao X (February 2007). "HDJC9, a novel human type C DnaJ/HSP40 member interacts with and cochaperones HSP70 through the J domain". Biochemical and Biophysical Research Communications. 353 (2): 280–285. doi:10.1016/j.bbrc.2006.12.013. PMID 17182002.
  26. ^ Hammond CM, Bao H, Hendriks IA, Carraro M, García-Nieto A, Liu Y, et al. (June 2021). "DNAJC9 integrates heat shock molecular chaperones into the histone chaperone network". Molecular Cell. 81 (12): 2533–2548.e9. doi:10.1016/j.molcel.2021.03.041. PMC 8221569. PMID 33857403.
  27. ^ Chen Z, Barbi J, Bu S, Yang HY, Li Z, Gao Y, et al. (August 2013). "The ubiquitin ligase Stub1 negatively modulates regulatory T cell suppressive activity by promoting degradation of the transcription factor Foxp3". Immunity. 39 (2): 272–285. doi:10.1016/j.immuni.2013.08.006. PMC 3817295. PMID 23973223.
  28. ^ a b c d e f Seo JH, Park JH, Lee EJ, Vo TT, Choi H, Kim JY, et al. (October 2016). "ARD1-mediated Hsp70 acetylation balances stress-induced protein refolding and degradation". Nature Communications. 7: 12882. Bibcode:2016NatCo...712882S. doi:10.1038/ncomms12882. PMC 5059642. PMID 27708256.
  29. ^ Haag Breese E, Uversky VN, Georgiadis MM, Harrington MA (December 2006). "The disordered amino-terminus of SIMPL interacts with members of the 70-kDa heat-shock protein family". DNA and Cell Biology. 25 (12): 704–714. doi:10.1089/dna.2006.25.704. PMID 17233114.
  30. ^ Jakobsson ME, Moen A, Bousset L, Egge-Jacobsen W, Kernstock S, Melki R, Falnes PØ (September 2013). "Identification and characterization of a novel human methyltransferase modulating Hsp70 protein function through lysine methylation". The Journal of Biological Chemistry. 288 (39): 27752–27763. doi:10.1074/jbc.M113.483248. PMC 3784692. PMID 23921388.
  31. ^ Fang CT, Kuo HH, Pan TS, Yu FC, Yih LH (October 2016). "HSP70 regulates the function of mitotic centrosomes". Cellular and Molecular Life Sciences. 73 (20): 3949–3960. doi:10.1007/s00018-016-2236-8. PMC 11108311. PMID 27137183. S2CID 14824854.
  32. ^ Mohanan V, Grimes CL (July 2014). "The molecular chaperone HSP70 binds to and stabilizes NOD2, an important protein involved in Crohn disease". The Journal of Biological Chemistry. 289 (27): 18987–18998. doi:10.1074/jbc.M114.557686. PMC 4081938. PMID 24790089.
  33. ^ Zeke T, Morrice N, Vázquez-Martin C, Cohen PT (January 2005). "Human protein phosphatase 5 dissociates from heat-shock proteins and is proteolytically activated in response to arachidonic acid and the microtubule-depolymerizing drug nocodazole". The Biochemical Journal. 385 (Pt 1): 45–56. doi:10.1042/BJ20040690. PMC 1134672. PMID 15383005. (This paper currently has an expression of concern, see doi:10.1042/BJ20040690_EOC, PMID 34813651. If this is an intentional citation to a such a paper, please replace {{expression of concern|...}} with {{expression of concern|...|intentional=yes}}.)
  34. ^ Hasson SA, Kane LA, Yamano K, Huang CH, Sliter DA, Buehler E, et al. (December 2013). "High-content genome-wide RNAi screens identify regulators of parkin upstream of mitophagy". Nature. 504 (7479): 291–295. Bibcode:2013Natur.504..291H. doi:10.1038/nature12748. PMC 5841086. PMID 24270810.
  35. ^ Shang Y, Xu X, Duan X, Guo J, Wang Y, Ren F, et al. (March 2014). "Hsp70 and Hsp90 oppositely regulate TGF-β signaling through CHIP/Stub1". Biochemical and Biophysical Research Communications. 446 (1): 387–392. doi:10.1016/j.bbrc.2014.02.124. PMID 24613385.
  36. ^ Forsythe HL, Jarvis JL, Turner JW, Elmore LW, Holt SE (May 2001). "Stable association of hsp90 and p23, but Not hsp70, with active human telomerase". The Journal of Biological Chemistry. 276 (19): 15571–15574. doi:10.1074/jbc.C100055200. PMID 11274138.
  37. ^ Hwang CY, Holl J, Rajan D, Lee Y, Kim S, Um M, et al. (March 2010). "Hsp70 interacts with the retroviral restriction factor TRIM5alpha and assists the folding of TRIM5alpha". The Journal of Biological Chemistry. 285 (10): 7827–7837. doi:10.1074/jbc.M109.040618. PMC 2844226. PMID 20053985.
  38. ^ Nellist M, Burgers PC, van den Ouweland AM, Halley DJ, Luider TM (August 2005). "Phosphorylation and binding partner analysis of the TSC1-TSC2 complex". Biochemical and Biophysical Research Communications. 333 (3): 818–826. doi:10.1016/j.bbrc.2005.05.175. PMID 15963462.
[edit]

This article incorporates text from the United States National Library of Medicine, which is in the public domain.