Jump to content

Wikipedia:Reference desk/Archives/Mathematics/2013 December 16

From Wikipedia, the free encyclopedia
Mathematics desk
< December 15 << Nov | December | Jan >> December 17 >
Welcome to the Wikipedia Mathematics Reference Desk Archives
The page you are currently viewing is an archive page. While you can leave answers for any questions shown below, please ask new questions on one of the current reference desk pages.


December 16

[edit]

all-invertible subspace

[edit]

What is the largest dimension of a subspace of in which all matrices except 0 are invertible? --18:57, 16 December 2013 (UTC) — Preceding unsigned comment added by 85.65.26.40 (talk)

One dimensional. The determinant defines a homogeneous polynomial of degree 31 on the projective space of M_31. Restricting this to a line in the projective space (which is a 2-plane in M_31) gives a real polynomial of degree 31 in a real variable. Since every real polynomial of odd degree has a root, the determinant must vanish somewhere on this line. So the only linear sub spaces of the projective space in which the determinant is never zero are just the points (that is, the 1d sub spaces of M_31). Sławomir Biały (talk) 19:34, 16 December 2013 (UTC)[reply]
Interestingly, this problem seems to get much more difficult in even dimensions. In with , the identity and a complex structure on span a two-dimensional subspace containing no nonzero singular matrix. If then a quaternionic structure on defines a four-dimensional subspace containing no nonzero singular matrix. More generally, when divides n, there is a faithful representation of a -dimensional Clifford algebra on . The degree one elements of this algebra act as invertible linear transformations (they are elements of the Pin group plus dilations). Conjecturally, this is the optimal situation, modulo details, but I don't have a proof of this. Sławomir Biały (talk) 00:17, 18 December 2013 (UTC)[reply]