Wikipedia:Reference desk/Archives/Mathematics/2010 May 8
Mathematics desk | ||
---|---|---|
< May 7 | << Apr | May | Jun >> | May 9 > |
Welcome to the Wikipedia Mathematics Reference Desk Archives |
---|
The page you are currently viewing is an archive page. While you can leave answers for any questions shown below, please ask new questions on one of the current reference desk pages. |
May 8
[edit]sin(sin t)?
[edit]What is the solution to t = sin(sin t)? In other words, how can I find all points common to the helices C_1 and C_2 where C_1(t) = (cos t, sin t, t), t is real; and C_2(s) = (cos s, s, sin s), s is real? 60.240.101.246 (talk) 03:23, 8 May 2010 (UTC)
- t=0 is the obvious one... 69.228.170.24 (talk) 04:53, 8 May 2010 (UTC)
- ...and t=0 is the only solution (assuming t is in radians), because
- which is 0 at t=0, and
- which is also 0 when t=0, but positive away from t=0, so slope of t-sin(sin(t)) increases as you move away from 0 in either direction. So helices only intersect at (1,0,0). Gandalf61 (talk) 09:26, 8 May 2010 (UTC)
- (EC) And note that for t≠0 |sin(sin(t))|≤|sin(t)|<|t|, so there's no other solution.--84.221.69.102 (talk) 10:33, 8 May 2010 (UTC)
- ...and t=0 is the only solution (assuming t is in radians), because
If we write
and take "arcsin" to mean the "multiple-valued" arcsine, and look at the two graphs superimposed on each other, it becomes obvious that they intersect only once. Therefore only the trivial solution t = 0 exists. Michael Hardy (talk) 03:37, 10 May 2010 (UTC)
- The function is an odd function: , and the function value of the complex conjugate argument is the complex conjugate function value of the argument: . This implies that if is a root, , then so is and and . Some nonzero roots are ±1.7856225020975647±2.8984466947375185i, ±2.2559594166866765±1.7316525254965243i, ±4.9222858483025655±3.1622510760997686i, and ±36.13956703186652±6.6383288953460431i. Bo Jacoby (talk) 13:29, 12 May 2010 (UTC).
The armed force of Ghana ...
[edit]QUESTION 1
The armed forces of Ghana want an algorithm that can efficiently solve a particular decision problem T in the worst –case.Three algorithms are currently available .They are A,B and C with running times , T_A (n)={█(4T_A (n-1) + Ѳ(2^n) , n>0@6 , n=0 )┤ T_B (n)={█(Ѳ(1) if 1≤n<3@2T_B (⌊n/3⌋) + Ѳ(T_A (n) ) if n≥3)┤ T_C (n)={█(Ѳ(1) if 1≤n≤3@2T(⌈n/3⌉ ) + Ѳ(n) if n≥3)┤ (i) Explain why B should not be in the list (ii) Which program ( A,B or C ) would you recommend to the armed forces .Justify your answer.
QUESTION 2
The population at time N U {0} of two nations Messi and Xavi , are noted by the recurrence relation ,
X(n)={█(rX(n-1) + g(n) if n>0@a if n=0)┤ and M(n) ={█(3T(⌈n/3⌉ ) + n√(n+1) if n>1@2 if 0≤n≤1 )┤respectively where a , r ∈ N and g is defined on the positive integers .Show that X(n) = r^n a + ⋋∑_(i=1)^n▒r^(n-1) g(i) for some constant ⋋ ∈ R . Hence or otherwise determine the value of lim┬(n⟶∞)〖(M(n))/(X(n))〗 if r=4 a=6 and g(n)=2^(n ).
Find Big-oh expression for X(n) and M(n) . —Preceding unsigned comment added by Waslimp (talk • contribs) 12:00, 8 May 2010 (UTC)
- Please explain what aspect of these problems you are needing help with. How far have you got with your analysis? BTW I see a big black square between the { and the ( in X(n)={█(rX(n-1). What is it meant to be? -- SGBailey (talk) 14:31, 8 May 2010 (UTC)
- This post is just a repetition of a "Discrete_maths" question above dated May 7 (maybe both could be removed) --pma 07:04, 9 May 2010 (UTC)