Weyl–Lewis–Papapetrou coordinates
Appearance
This article may be too technical for most readers to understand.(October 2013) |
General relativity |
---|
In general relativity, the Weyl–Lewis–Papapetrou coordinates are used in solutions to the vacuum region surrounding an axisymmetric distribution of mass–energy. They are named for Hermann Weyl, Thomas Lewis, and Achilles Papapetrou.[1][2][3]
Details
[edit]The square of the line element is of the form:[4]
where are the cylindrical Weyl–Lewis–Papapetrou coordinates in -dimensional spacetime, and , , , and , are unknown functions of the spatial non-angular coordinates and only. Different authors define the functions of the coordinates differently.
See also
[edit]- Introduction to the mathematics of general relativity
- Stress–energy tensor
- Metric tensor (general relativity)
- Relativistic angular momentum
- Weyl metrics
References
[edit]- ^ Weyl, Hermann (1917). "Zur Gravitationstheorie". Annalen der Physik (in German). 359 (18): 117–145. Bibcode:1917AnP...359..117W. doi:10.1002/andp.19173591804. ISSN 0003-3804.
- ^ Lewis, T. (1932). "Some special solutions of the equations of axially symmetric gravitational fields". Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. 136 (829): 176–192. Bibcode:1932RSPSA.136..176L. doi:10.1098/rspa.1932.0073. ISSN 0950-1207.
- ^ Papapetrou, A. (1948). "A static solution of the equations of the gravitatinal field for an arbitrary charge-distribution". Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences. 52: 191–204. JSTOR 20488481.
- ^ Bičák, Jiří; Semerák, O.; Podolský, Jiří; Žofka, Martin (2002). Bičák, Jiří; Semerák, O.; Podolský, J.; Žofka, M. (eds.). Gravitation, following the Prague inspiration: a volume in celebration of the 60th birthday of Jiří Bičák. River Edge, N.J: World Scientific. p. 122. ISBN 978-981-238-093-7. OCLC 51260088.
Further reading
[edit]Selected papers
[edit]- Marek, J.; Sloane, A. (May 1979). "A finite rotating body in general relativity". Il Nuovo Cimento B Series 11. 51 (1): 45–52. Bibcode:1979NCimB..51...45M. doi:10.1007/BF02743695. ISSN 1826-9877. S2CID 125042609.
- Richterek, L.; Novotný, J.; Horský, J. (2002). "Einstein-Maxwell fields generated from the gamma-metric and their limits". Czechoslovak Journal of Physics. 52 (9): 1021–1040. arXiv:gr-qc/0209094v1. Bibcode:2002CzJPh..52.1021R. doi:10.1023/A:1020581415399. S2CID 18982611.
- Sharif, M. (December 2007). "Energy-momentum distribution of the Weyl-Lewis-Papapetrou and the Levi-Civita metrics" (PDF). Brazilian Journal of Physics. 37 (4): 1292–1300. arXiv:0711.2721. Bibcode:2007BrJPh..37.1292S. doi:10.1590/S0103-97332007000800017. ISSN 0103-9733. S2CID 15915449.
- Sloane, A (1978). "The Axially Symmetric Stationary Vacuum Field Equations in Einstein's Theory of General Relativity". Australian Journal of Physics. 31 (5): 429. Bibcode:1978AuJPh..31..427S. doi:10.1071/PH780427. ISSN 0004-9506.
Selected books
[edit]- Friedman, John L.; Stergioulas, Nikolaos (2013). Rotating relativistic stars. Cambridge monographs on mathematical physics. Cambridge University Press. p. 151. ISBN 978-0-521-87254-6.
- Macías, A.; Cervantes-Cota, J. L.; Lämmerzahl, C. (2001). Macías, A.; Cervantes Cota, Jorge Luis; Lämmerzahl, C. (eds.). Exact solutions and scalar fields in gravity: recent developments. New York: Kluwer Academic/Plenum Publishers. p. 39. ISBN 978-0-306-46618-2.
- Das, Anadijiban; DeBenedictis, Andrew (2012). The general theory of relativity: a mathematical exposition. New York London: Springer Publishing. p. 317. ISBN 978-1-4614-3658-4.
- Hall, G. S.; Pulham, J. R. (1996). Hall, G. S.; Pulham, J. R. (eds.). General relativity: proceedings of the forty sixth Scottish Universities summer school in physics, Aberdeen, July 1995. SUSSP publications. Vol. 46. Scottish Universities Summer Schools in Physics ; Institute of Physics Publishing. pp. 65, 73, 78. ISBN 978-0-7503-0395-8.