Jump to content

Well-pointed category

From Wikipedia, the free encyclopedia

In category theory, a category with a terminal object is well-pointed if for every pair of arrows such that , there is an arrow such that . (The arrows are called the global elements or points of the category; a well-pointed category is thus one that has "enough points" to distinguish non-equal arrows.)

See also

[edit]

References

[edit]
  • Pitts, Andrew M. (2013). Nominal Sets: Names and Symmetry in Computer Science. Cambridge Tracts in Theoretical Computer Science. Vol. 57. Cambridge University Press. p. 16. ISBN 978-1107017788.