Jump to content

Weak order unit

From Wikipedia, the free encyclopedia

In mathematics, specifically in order theory and functional analysis, an element of a vector lattice is called a weak order unit in if and also for all [1]

Examples

[edit]

See also

[edit]

Citations

[edit]
  1. ^ Schaefer & Wolff 1999, pp. 234–242.
  2. ^ Schaefer & Wolff 1999, pp. 204–214.

References

[edit]
  • Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN 978-1584888666. OCLC 144216834.
  • Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135.