Jump to content

WD 2317+1830

From Wikipedia, the free encyclopedia
WD 2317+1830

Artist's impression of a white dwarf with a disk
Credit: NOIRLab/NSF/AURA/J. da Silva
Image processing: M. Zamani and M. Kosari (NSF NOIRLab)
Observation data
Epoch J2000      Equinox J2000
Constellation Pegasus
Right ascension 23h 17m 26.74s
Declination +18° 30′ 52.76″
Characteristics
Evolutionary stage white dwarf
Spectral type DZ[1]
Apparent magnitude (G) 19.35[2]
Astrometry
Radial velocity (Rv)25 ±31[3] km/s
Proper motion (μ) RA: -33.855 ±0.317 mas/yr[2]
Dec.: -452.811 ±0.263 mas/yr[2]
Parallax (π)26.4097 ± 0.3090 mas[2]
Distance123 ± 1 ly
(37.9 ± 0.4 pc)
Details
Mass1.076+0.007
−0.008
[4] M
Radius0.00793 ±0.00021[3] R
Surface gravity (log g)8.64 ±0.03[3] cgs
Temperature4557 ±63[4] K
Agecooling age: 6.388[4] Gyr
Other designations
SDSS J231726.72+183049.6, EQ J2317+1830, Gaia DR2 2818957013992481280
Database references
SIMBADdata

WD 2317+1830 (SDSS J231726.72+183049.6) is one of the first white dwarfs with lithium detected in its atmosphere. The white dwarf is surrounded by a debris disk and is actively accreting material. Researchers suggest that the presence of alkali metals indicates the accretion of crust material.[5][3] Another work however cautions to use alkali metals as a single indicator of crust material. They suggest that such objects could be polluted by mantle material instead.[6][7]

WD 2317+1830 was first discovered in 2021 from Gaia and SDSS data as a candidate white dwarf.[8] A first spectral analysis was published in 2020, identifying it as a DZ white dwarf.[1] In 2021 observations with the Gran Telescopio Canarias were published. The white dwarf is massive and has a mass of 1.00 ± 0.02 M. The cooling age was determined to be 9.5±0.2 Gyrs and the total age is 9.7±0.2 Gyrs.[3] A more recent work found a higher temperature and younger cooling age of about 6.4 Gyrs.[4] The researchers detected sodium, lithium and weak calcium absorption. The researchers also detected infrared excess, indicative of a debris disk, around this white dwarf. The disk is inclined by 70°, has an inner disk temperature of 1,500 K and an outer disk temperature of 500 K. In the past WD 2317+1830 had a mass of 4.8 ± 0.2 M and was likely a B-type star.[3]

See also

[edit]

References

[edit]
  1. ^ a b Tremblay, P. -E.; Hollands, M. A.; Gentile Fusillo, N. P.; McCleery, J.; Izquierdo, P.; Gänsicke, B. T.; Cukanovaite, E.; Koester, D.; Brown, W. R.; Charpinet, S.; Cunningham, T.; Farihi, J.; Giammichele, N.; van Grootel, V.; Hermes, J. J. (2020-09-01). "Gaia white dwarfs within 40 pc - I. Spectroscopic observations of new candidates". Monthly Notices of the Royal Astronomical Society. 497 (1): 130–145. arXiv:2006.00965. Bibcode:2020MNRAS.497..130T. doi:10.1093/mnras/staa1892. ISSN 0035-8711.
  2. ^ a b c Brown, A. G. A.; et al. (Gaia collaboration) (2021). "Gaia Early Data Release 3: Summary of the contents and survey properties". Astronomy & Astrophysics. 649: A1. arXiv:2012.01533. Bibcode:2021A&A...649A...1G. doi:10.1051/0004-6361/202039657. S2CID 227254300. (Erratum: doi:10.1051/0004-6361/202039657e). Gaia EDR3 record for this source at VizieR.
  3. ^ a b c d e f Hollands, Mark A.; Tremblay, Pier-Emmanuel; Gänsicke, Boris T.; Koester, Detlev; Gentile-Fusillo, Nicola Pietro (2021-05-01). "Alkali metals in white dwarf atmospheres as tracers of ancient planetary crusts". Nature Astronomy. 5 (5): 451–459. arXiv:2101.01225. Bibcode:2021NatAs...5..451H. doi:10.1038/s41550-020-01296-7. ISSN 2397-3366.
  4. ^ a b c d Bergeron, P.; Kilic, Mukremin; Blouin, Simon; Bédard, A.; Leggett, S. K.; Brown, Warren R. (2022-07-01). "On the Nature of Ultracool White Dwarfs: Not so Cool after All". The Astrophysical Journal. 934 (1): 36. arXiv:2206.03174. Bibcode:2022ApJ...934...36B. doi:10.3847/1538-4357/ac76c7. ISSN 0004-637X.
  5. ^ University of Warwick. "Vaporised crusts of Earth-like planets found in dying stars". warwick.ac.uk. Retrieved 2024-09-16.
  6. ^ Putirka, Keith D.; Xu, Siyi (2021-11-01). "Polluted white dwarfs reveal exotic mantle rock types on exoplanets in our solar neighborhood". Nature Communications. 12 (1): 6168. arXiv:2111.03124. Bibcode:2021NatCo..12.6168P. doi:10.1038/s41467-021-26403-8. ISSN 2041-1723. PMC 8563750. PMID 34728614.
  7. ^ info@noirlab.edu. "Rocky Exoplanets Are Even Stranger Than We Thought - A new astrogeology study suggests that most nearby rocky exoplanets are quite unlike anything in our Solar System". www.noirlab.edu. Retrieved 2024-09-16.
  8. ^ Gentile Fusillo, N. P.; Tremblay, P. -E.; Cukanovaite, E.; Vorontseva, A.; Lallement, R.; Hollands, M.; Gänsicke, B. T.; Burdge, K. B.; McCleery, J.; Jordan, S. (2021-12-01). "A catalogue of white dwarfs in Gaia EDR3". Monthly Notices of the Royal Astronomical Society. 508 (3): 3877–3896. arXiv:2106.07669. Bibcode:2021MNRAS.508.3877G. doi:10.1093/mnras/stab2672. ISSN 0035-8711.