Jump to content

User talk:68.81.2.180

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia

The example below that purports to show why the second restriction is needed is wrong because \forall u\,(u\not =x) would also be faulty universal generalization, so overloading the name x is not the only logical error in the example. The first restriction needs to be restated because it seems to allow the following invalid reasoning:\\ Assume ∃z P(z) \\ P(x)\\ ∀y P(y) \\ The second restriction needs a new example where the only error is overloading the bound variable name, e.g.,\\ Let x be arbitrary\\ Assume ∀z P(z,y)\\ P(x,y)\\ ∀y P(y,y)\\

Without the second restriction, one could make the following deduction:\\ {\displaystyle \exists z\,\exists w\,(z\not =w)} {\displaystyle \exists z\,\exists w\,(z\not =w)} (Hypothesis)\\ {\displaystyle \exists w\,(y\not =w)} {\displaystyle \exists w\,(y\not =w)} (Existential instantiation)\\ {\displaystyle y\not =x} y \not = x (Existential instantiation)\\ {\displaystyle \forall x\,(x\not =x)} {\displaystyle \forall x\,(x\not =x)} (Faulty universal generalization)\\

Welcome to this talk page

Start a discussion