From Wikipedia, the free encyclopedia
The Lagrangian is given by
L
=
kinetic energy
−
potential energy
=
1
2
m
(
v
1
2
+
v
2
2
)
+
1
2
I
(
θ
˙
1
2
+
θ
˙
2
2
)
−
m
g
(
y
1
+
y
2
)
=
1
2
m
(
x
˙
1
2
+
y
˙
1
2
+
x
˙
2
2
+
y
˙
2
2
)
+
1
2
I
(
θ
˙
1
2
+
θ
˙
2
2
)
−
m
g
(
y
1
+
y
2
)
{\displaystyle {\begin{aligned}L&={\text{kinetic energy}}-{\text{potential energy}}\\&={\tfrac {1}{2}}m\left(v_{1}^{2}+v_{2}^{2}\right)+{\tfrac {1}{2}}I\left({\dot {\theta }}_{1}^{2}+{\dot {\theta }}_{2}^{2}\right)-mg\left(y_{1}+y_{2}\right)\\&={\tfrac {1}{2}}m\left({\dot {x}}_{1}^{2}+{\dot {y}}_{1}^{2}+{\dot {x}}_{2}^{2}+{\dot {y}}_{2}^{2}\right)+{\tfrac {1}{2}}I\left({\dot {\theta }}_{1}^{2}+{\dot {\theta }}_{2}^{2}\right)-mg\left(y_{1}+y_{2}\right)\end{aligned}}}
The first term is the linear kinetic energy of the center of mass of the bodies and the second term is the rotational kinetic energy around the center of mass of each rod. The last term is the potential energy of the bodies in a uniform gravitational field. The dot-notation indicates the time derivative of the variable in question.
Using the values of
x
1
{\displaystyle x_{1}}
and
y
1
{\displaystyle y_{1}}
defined above, we have
x
˙
1
=
θ
˙
1
(
1
2
ℓ
cos
θ
1
)
y
˙
1
=
θ
˙
1
(
1
2
ℓ
sin
θ
1
)
{\displaystyle {\begin{aligned}{\dot {x}}_{1}&={\dot {\theta }}_{1}\left({\tfrac {1}{2}}\ell \cos \theta _{1}\right)\\[1ex]{\dot {y}}_{1}&={\dot {\theta }}_{1}\left({\tfrac {1}{2}}\ell \sin \theta _{1}\right)\end{aligned}}}
which leads to
v
1
2
=
x
˙
1
2
+
y
˙
1
2
=
1
4
θ
˙
1
2
ℓ
2
(
cos
2
θ
1
+
sin
2
θ
1
)
=
1
4
ℓ
2
θ
˙
1
2
.
{\displaystyle v_{1}^{2}={\dot {x}}_{1}^{2}+{\dot {y}}_{1}^{2}={\tfrac {1}{4}}{\dot {\theta }}_{1}^{2}\ell ^{2}\left(\cos ^{2}\theta _{1}+\sin ^{2}\theta _{1}\right)={\tfrac {1}{4}}\ell ^{2}{\dot {\theta }}_{1}^{2}.}
Similarly, for
x
2
{\displaystyle x_{2}}
and
y
2
{\displaystyle y_{2}}
we have
x
˙
2
=
ℓ
(
θ
˙
1
cos
θ
1
+
1
2
θ
˙
2
cos
θ
2
)
y
˙
2
=
ℓ
(
θ
˙
1
sin
θ
1
+
1
2
θ
˙
2
sin
θ
2
)
{\displaystyle {\begin{aligned}{\dot {x}}_{2}&=\ell \left({\dot {\theta }}_{1}\cos \theta _{1}+{\tfrac {1}{2}}{\dot {\theta }}_{2}\cos \theta _{2}\right)\\{\dot {y}}_{2}&=\ell \left({\dot {\theta }}_{1}\sin \theta _{1}+{\tfrac {1}{2}}{\dot {\theta }}_{2}\sin \theta _{2}\right)\end{aligned}}}
and therefore
v
2
2
=
x
˙
2
2
+
y
˙
2
2
=
ℓ
2
(
θ
˙
1
2
cos
2
θ
1
+
θ
˙
1
2
sin
2
θ
1
+
1
4
θ
˙
2
2
cos
2
θ
2
+
1
4
θ
˙
2
2
sin
2
θ
2
+
θ
˙
1
θ
˙
2
cos
θ
1
cos
θ
2
+
θ
˙
1
θ
˙
2
sin
θ
1
sin
θ
2
)
=
ℓ
2
(
θ
˙
1
2
+
1
4
θ
˙
2
2
+
θ
˙
1
θ
˙
2
cos
(
θ
1
−
θ
2
)
)
.
{\displaystyle {\begin{aligned}v_{2}^{2}&={\dot {x}}_{2}^{2}+{\dot {y}}_{2}^{2}\\[1ex]&=\ell ^{2}\left({\dot {\theta }}_{1}^{2}\cos ^{2}\theta _{1}+{\dot {\theta }}_{1}^{2}\sin ^{2}\theta _{1}+{\tfrac {1}{4}}{\dot {\theta }}_{2}^{2}\cos ^{2}\theta _{2}+{\tfrac {1}{4}}{\dot {\theta }}_{2}^{2}\sin ^{2}\theta _{2}+{\dot {\theta }}_{1}{\dot {\theta }}_{2}\cos \theta _{1}\cos \theta _{2}+{\dot {\theta }}_{1}{\dot {\theta }}_{2}\sin \theta _{1}\sin \theta _{2}\right)\\[1ex]&=\ell ^{2}\left({\dot {\theta }}_{1}^{2}+{\tfrac {1}{4}}{\dot {\theta }}_{2}^{2}+{\dot {\theta }}_{1}{\dot {\theta }}_{2}\cos \left(\theta _{1}-\theta _{2}\right)\right).\end{aligned}}}
Substituting the coordinates above into the definition of the Lagrangian, and rearranging the equation, gives
L
=
1
2
m
ℓ
2
(
θ
˙
1
2
+
1
4
θ
˙
1
2
+
1
4
θ
˙
2
2
+
θ
˙
1
θ
˙
2
cos
(
θ
1
−
θ
2
)
)
+
1
24
m
ℓ
2
(
θ
˙
1
2
+
θ
˙
2
2
)
−
m
g
(
y
1
+
y
2
)
=
1
6
m
ℓ
2
(
θ
˙
2
2
+
4
θ
˙
1
2
+
3
θ
˙
1
θ
˙
2
cos
(
θ
1
−
θ
2
)
)
+
1
2
m
g
ℓ
(
3
cos
θ
1
+
cos
θ
2
)
.
{\displaystyle {\begin{aligned}L&={\tfrac {1}{2}}m\ell ^{2}\left({\dot {\theta }}_{1}^{2}+{\tfrac {1}{4}}{\dot {\theta }}_{1}^{2}+{\tfrac {1}{4}}{\dot {\theta }}_{2}^{2}+{\dot {\theta }}_{1}{\dot {\theta }}_{2}\cos \left(\theta _{1}-\theta _{2}\right)\right)+{\tfrac {1}{24}}m\ell ^{2}\left({\dot {\theta }}_{1}^{2}+{\dot {\theta }}_{2}^{2}\right)-mg\left(y_{1}+y_{2}\right)\\[1ex]&={\tfrac {1}{6}}m\ell ^{2}\left({\dot {\theta }}_{2}^{2}+4{\dot {\theta }}_{1}^{2}+3{{\dot {\theta }}_{1}}{{\dot {\theta }}_{2}}\cos(\theta _{1}-\theta _{2})\right)+{\tfrac {1}{2}}mg\ell \left(3\cos \theta _{1}+\cos \theta _{2}\right).\end{aligned}}}
The equations of motion can now be derived using the Euler–Lagrange equations , which are given by
d
d
t
∂
L
∂
θ
˙
i
−
∂
L
∂
θ
i
=
0
,
i
=
1
,
2.
{\displaystyle {\frac {d}{dt}}{\frac {\partial L}{\partial {\dot {\theta }}_{i}}}-{\frac {\partial L}{\partial \theta _{i}}}=0,\quad i=1,2.}
We begin with the equation of motion for
θ
1
{\displaystyle \theta _{1}}
. The derivatives of the Lagrangian are given by
∂
L
∂
θ
1
=
−
1
2
m
ℓ
2
θ
˙
1
θ
˙
2
sin
(
θ
1
−
θ
2
)
−
3
2
m
g
ℓ
sin
θ
1
{\displaystyle {\frac {\partial L}{\partial \theta _{1}}}=-{\tfrac {1}{2}}m\ell ^{2}{\dot {\theta }}_{1}{\dot {\theta }}_{2}\sin(\theta _{1}-\theta _{2})-{\tfrac {3}{2}}mg\ell \sin \theta _{1}}
and
∂
L
∂
θ
˙
1
=
4
3
m
ℓ
2
θ
˙
1
+
1
2
θ
˙
2
cos
(
θ
1
−
θ
2
)
.
{\displaystyle {\frac {\partial L}{\partial {\dot {\theta }}_{1}}}={\tfrac {4}{3}}m\ell ^{2}{\dot {\theta }}_{1}+{\tfrac {1}{2}}{\dot {\theta }}_{2}\cos(\theta _{1}-\theta _{2}).}
Thus
d
d
t
∂
L
∂
θ
˙
1
=
4
3
m
ℓ
2
θ
¨
1
+
1
2
m
ℓ
2
θ
¨
2
cos
(
θ
1
−
θ
2
)
−
1
2
m
ℓ
2
θ
˙
2
(
θ
˙
1
−
θ
˙
2
)
sin
(
θ
1
−
θ
2
)
.
{\displaystyle {\frac {d}{dt}}{\frac {\partial L}{\partial {\dot {\theta }}_{1}}}={\tfrac {4}{3}}m\ell ^{2}{\ddot {\theta }}_{1}+{\tfrac {1}{2}}m\ell ^{2}{\ddot {\theta }}_{2}\cos(\theta _{1}-\theta _{2})-{\tfrac {1}{2}}m\ell ^{2}{\dot {\theta }}_{2}({\dot {\theta }}_{1}-{\dot {\theta }}_{2})\sin(\theta _{1}-\theta _{2}).}
Combining these results and simplifying yields the first equation of motion,
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle \tfrac{4}{3} \ell \ddot{\theta}_1 + \tfrac{1}{2} \ddot{\theta}_2 \cos(\theta_1 - \theta_2) + \tfrac{1}{2} \ell \dot{\theta}_2^2 \sin(\theta_1-\theta_2) + \tfrac{3}{2} g \sin\theta_1 = 0. }
No closed form solutions for θ 1 and θ 2 as functions of time are known, therefore the system can only be solved numerically , using the Runge Kutta method or similar techniques .
Parametric plot for the time evolution of the angles of a double pendulum. It can be noticed that the graph resembles a Brownian motion .