Denote q = 2 ( 7290000 ( a + 1 10 ) 2 + ( 2700 a u f + 1 10 + 9 10 ) 2 + 729 2500 ) 3 27 − ( 7290000 ( a + 1 10 ) 2 + ( 2700 a u f + 1 10 + 9 10 ) 2 + 729 2500 ) ( 2125764 ( a + 1 10 ) 2 + 729 ( 2700 a u f + 1 10 + 9 10 ) 2 2500 + 7290000 ( 2700 a u f + 1 10 + 9 10 ) 2 ( a + 1 10 ) 2 ) 3 + 2125764 ( 2700 a u f + 1 10 + 9 10 ) 2 ( a + 1 10 ) 2 − 2500 ( 4345080004734585 r 8 68719476736 + 384160000 a 4 a r a 4 ( 181 a r a 2 81 + 4525 324 ) 2 + 1 ) a 2 ( 21778071482940061661655974875633165533184 r 8 53817251171012308427455331739009 + 10000 a 4 a r a 4 ( 181 a r a 2 81 + 4525 324 ) 2 + 1 ) {\displaystyle q={\frac {2\,{\left({\frac {7290000}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}+{\frac {729}{2500}}\right)}^{3}}{27}}-{\frac {\left({\frac {7290000}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}+{\frac {729}{2500}}\right)\,\left({\frac {2125764}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\frac {729\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{2500}}+{\frac {7290000\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{{\left(a+{\frac {1}{10}}\right)}^{2}}}\right)}{3}}+{\frac {2125764\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{{\left(a+{\frac {1}{10}}\right)}^{2}}}-{\frac {2500\,\left({\frac {4345080004734585\,r^{8}}{68719476736}}+{\frac {384160000\,a^{4}\,{\mathrm {ara} }^{4}}{{\left({\frac {181\,{\mathrm {ara} }^{2}}{81}}+{\frac {4525}{324}}\right)}^{2}}}+1\right)}{a^{2}\,\left({\frac {21778071482940061661655974875633165533184\,r^{8}}{53817251171012308427455331739009}}+{\frac {10000\,a^{4}\,{\mathrm {ara} }^{4}}{{\left({\frac {181\,{\mathrm {ara} }^{2}}{81}}+{\frac {4525}{324}}\right)}^{2}}}+1\right)}}}
p = 2125764 ( a + 1 10 ) 2 + 729 ( 2700 a u f + 1 10 + 9 10 ) 2 2500 − ( 7290000 ( a + 1 10 ) 2 + ( 2700 a u f + 1 10 + 9 10 ) 2 + 729 2500 ) 2 3 + 7290000 ( 2700 a u f + 1 10 + 9 10 ) 2 ( a + 1 10 ) 2 {\displaystyle p={\frac {2125764}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\frac {729\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{2500}}-{\frac {{\left({\frac {7290000}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}+{\frac {729}{2500}}\right)}^{2}}{3}}+{\frac {7290000\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{{\left(a+{\frac {1}{10}}\right)}^{2}}}}
Δ = ( 2 ( 7290000 ( a + 1 10 ) 2 + ( 2700 a u f + 1 10 + 9 10 ) 2 + 729 2500 ) 3 27 − ( 7290000 ( a + 1 10 ) 2 + ( 2700 a u f + 1 10 + 9 10 ) 2 + 729 2500 ) ( 2125764 ( a + 1 10 ) 2 + 729 ( 2700 a u f + 1 10 + 9 10 ) 2 2500 + 7290000 ( 2700 a u f + 1 10 + 9 10 ) 2 ( a + 1 10 ) 2 ) 3 + 2125764 ( 2700 a u f + 1 10 + 9 10 ) 2 ( a + 1 10 ) 2 − 2500 ( 4345080004734585 r 8 68719476736 + 384160000 a 4 a r a 4 ( 181 a r a 2 81 + 4525 324 ) 2 + 1 ) a 2 ( 21778071482940061661655974875633165533184 r 8 53817251171012308427455331739009 + 10000 a 4 a r a 4 ( 181 a r a 2 81 + 4525 324 ) 2 + 1 ) ) 2 4 + ( 2125764 ( a + 1 10 ) 2 + 729 ( 2700 a u f + 1 10 + 9 10 ) 2 2500 − ( 7290000 ( a + 1 10 ) 2 + ( 2700 a u f + 1 10 + 9 10 ) 2 + 729 2500 ) 2 3 + 7290000 ( 2700 a u f + 1 10 + 9 10 ) 2 ( a + 1 10 ) 2 ) 3 27 {\displaystyle \Delta ={\frac {{\left({\frac {2\,{\left({\frac {7290000}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}+{\frac {729}{2500}}\right)}^{3}}{27}}-{\frac {\left({\frac {7290000}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}+{\frac {729}{2500}}\right)\,\left({\frac {2125764}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\frac {729\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{2500}}+{\frac {7290000\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{{\left(a+{\frac {1}{10}}\right)}^{2}}}\right)}{3}}+{\frac {2125764\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{{\left(a+{\frac {1}{10}}\right)}^{2}}}-{\frac {2500\,\left({\frac {4345080004734585\,r^{8}}{68719476736}}+{\frac {384160000\,a^{4}\,{\mathrm {ara} }^{4}}{{\left({\frac {181\,{\mathrm {ara} }^{2}}{81}}+{\frac {4525}{324}}\right)}^{2}}}+1\right)}{a^{2}\,\left({\frac {21778071482940061661655974875633165533184\,r^{8}}{53817251171012308427455331739009}}+{\frac {10000\,a^{4}\,{\mathrm {ara} }^{4}}{{\left({\frac {181\,{\mathrm {ara} }^{2}}{81}}+{\frac {4525}{324}}\right)}^{2}}}+1\right)}}\right)}^{2}}{4}}+{\frac {{\left({\frac {2125764}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\frac {729\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{2500}}-{\frac {{\left({\frac {7290000}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}+{\frac {729}{2500}}\right)}^{2}}{3}}+{\frac {7290000\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{{\left(a+{\frac {1}{10}}\right)}^{2}}}\right)}^{3}}{27}}} 总存在震动周期。但是当 q < 0 {\displaystyle q<0} 时存在震动周期为负数或者周期==0,从而在实际过程中出现不震动现象(左行解不能向右延拓)。
if q > 0 {\displaystyle q>0}
Δ ≥ 0 ⟹ {\displaystyle \Delta \geq 0\Longrightarrow } 1个振动中心
此时有周期== 2 π ( ( 2 ( 7290000 ( a + 1 10 ) 2 + ( 2700 a u f + 1 10 + 9 10 ) 2 + 729 2500 ) 3 27 − ( 7290000 ( a + 1 10 ) 2 + ( 2700 a u f + 1 10 + 9 10 ) 2 + 729 2500 ) ( 2125764 ( a + 1 10 ) 2 + 729 ( 2700 a u f + 1 10 + 9 10 ) 2 2500 + 7290000 ( 2700 a u f + 1 10 + 9 10 ) 2 ( a + 1 10 ) 2 ) 3 + 2125764 ( 2700 a u f + 1 10 + 9 10 ) 2 ( a + 1 10 ) 2 − 2500 ( 4345080004734585 r 8 68719476736 + 384160000 a 4 a r a 4 ( 181 a r a 2 81 + 4525 324 ) 2 + 1 ) a 2 ( 21778071482940061661655974875633165533184 r 8 53817251171012308427455331739009 + 10000 a 4 a r a 4 ( 181 a r a 2 81 + 4525 324 ) 2 + 1 ) ) 2 4 + ( 2125764 ( a + 1 10 ) 2 + 729 ( 2700 a u f + 1 10 + 9 10 ) 2 2500 − ( 7290000 ( a + 1 10 ) 2 + ( 2700 a u f + 1 10 + 9 10 ) 2 + 729 2500 ) 2 3 + 7290000 ( 2700 a u f + 1 10 + 9 10 ) 2 ( a + 1 10 ) 2 ) 3 27 − ( 7290000 ( a + 1 10 ) 2 + ( 2700 a u f + 1 10 + 9 10 ) 2 + 729 2500 ) 3 27 + ( 7290000 ( a + 1 10 ) 2 + ( 2700 a u f + 1 10 + 9 10 ) 2 + 729 2500 ) ( 2125764 ( a + 1 10 ) 2 + 729 ( 2700 a u f + 1 10 + 9 10 ) 2 2500 + 7290000 ( 2700 a u f + 1 10 + 9 10 ) 2 ( a + 1 10 ) 2 ) 6 − 1062882 ( 2700 a u f + 1 10 + 9 10 ) 2 ( a + 1 10 ) 2 + 1250 ( 4345080004734585 r 8 68719476736 + 384160000 a 4 a r a 4 ( 181 a r a 2 81 + 4525 324 ) 2 + 1 ) a 2 ( 21778071482940061661655974875633165533184 r 8 53817251171012308427455331739009 + 10000 a 4 a r a 4 ( 181 a r a 2 81 + 4525 324 ) 2 + 1 ) ) 1 3 + ( ( 7290000 ( a + 1 10 ) 2 + ( 2700 a u f + 1 10 + 9 10 ) 2 + 729 2500 ) ( 2125764 ( a + 1 10 ) 2 + 729 ( 2700 a u f + 1 10 + 9 10 ) 2 2500 + 7290000 ( 2700 a u f + 1 10 + 9 10 ) 2 ( a + 1 10 ) 2 ) 6 − ( 7290000 ( a + 1 10 ) 2 + ( 2700 a u f + 1 10 + 9 10 ) 2 + 729 2500 ) 3 27 − ( 2 ( 7290000 ( a + 1 10 ) 2 + ( 2700 a u f + 1 10 + 9 10 ) 2 + 729 2500 ) 3 27 − ( 7290000 ( a + 1 10 ) 2 + ( 2700 a u f + 1 10 + 9 10 ) 2 + 729 2500 ) ( 2125764 ( a + 1 10 ) 2 + 729 ( 2700 a u f + 1 10 + 9 10 ) 2 2500 + 7290000 ( 2700 a u f + 1 10 + 9 10 ) 2 ( a + 1 10 ) 2 ) 3 + 2125764 ( 2700 a u f + 1 10 + 9 10 ) 2 ( a + 1 10 ) 2 − 2500 ( 4345080004734585 r 8 68719476736 + 384160000 a 4 a r a 4 ( 181 a r a 2 81 + 4525 324 ) 2 + 1 ) a 2 ( 21778071482940061661655974875633165533184 r 8 53817251171012308427455331739009 + 10000 a 4 a r a 4 ( 181 a r a 2 81 + 4525 324 ) 2 + 1 ) ) 2 4 + ( 2125764 ( a + 1 10 ) 2 + 729 ( 2700 a u f + 1 10 + 9 10 ) 2 2500 − ( 7290000 ( a + 1 10 ) 2 + ( 2700 a u f + 1 10 + 9 10 ) 2 + 729 2500 ) 2 3 + 7290000 ( 2700 a u f + 1 10 + 9 10 ) 2 ( a + 1 10 ) 2 ) 3 27 − 1062882 ( 2700 a u f + 1 10 + 9 10 ) 2 ( a + 1 10 ) 2 + 1250 ( 4345080004734585 r 8 68719476736 + 384160000 a 4 a r a 4 ( 181 a r a 2 81 + 4525 324 ) 2 + 1 ) a 2 ( 21778071482940061661655974875633165533184 r 8 53817251171012308427455331739009 + 10000 a 4 a r a 4 ( 181 a r a 2 81 + 4525 324 ) 2 + 1 ) ) 1 3 {\displaystyle {\frac {2\,\pi }{{\left({\sqrt {{\frac {{\left({\frac {2\,{\left({\frac {7290000}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}+{\frac {729}{2500}}\right)}^{3}}{27}}-{\frac {\left({\frac {7290000}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}+{\frac {729}{2500}}\right)\,\left({\frac {2125764}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\frac {729\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{2500}}+{\frac {7290000\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{{\left(a+{\frac {1}{10}}\right)}^{2}}}\right)}{3}}+{\frac {2125764\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{{\left(a+{\frac {1}{10}}\right)}^{2}}}-{\frac {2500\,\left({\frac {4345080004734585\,r^{8}}{68719476736}}+{\frac {384160000\,a^{4}\,{\mathrm {ara} }^{4}}{{\left({\frac {181\,{\mathrm {ara} }^{2}}{81}}+{\frac {4525}{324}}\right)}^{2}}}+1\right)}{a^{2}\,\left({\frac {21778071482940061661655974875633165533184\,r^{8}}{53817251171012308427455331739009}}+{\frac {10000\,a^{4}\,{\mathrm {ara} }^{4}}{{\left({\frac {181\,{\mathrm {ara} }^{2}}{81}}+{\frac {4525}{324}}\right)}^{2}}}+1\right)}}\right)}^{2}}{4}}+{\frac {{\left({\frac {2125764}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\frac {729\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{2500}}-{\frac {{\left({\frac {7290000}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}+{\frac {729}{2500}}\right)}^{2}}{3}}+{\frac {7290000\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{{\left(a+{\frac {1}{10}}\right)}^{2}}}\right)}^{3}}{27}}}}-{\frac {{\left({\frac {7290000}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}+{\frac {729}{2500}}\right)}^{3}}{27}}+{\frac {\left({\frac {7290000}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}+{\frac {729}{2500}}\right)\,\left({\frac {2125764}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\frac {729\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{2500}}+{\frac {7290000\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{{\left(a+{\frac {1}{10}}\right)}^{2}}}\right)}{6}}-{\frac {1062882\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\frac {1250\,\left({\frac {4345080004734585\,r^{8}}{68719476736}}+{\frac {384160000\,a^{4}\,{\mathrm {ara} }^{4}}{{\left({\frac {181\,{\mathrm {ara} }^{2}}{81}}+{\frac {4525}{324}}\right)}^{2}}}+1\right)}{a^{2}\,\left({\frac {21778071482940061661655974875633165533184\,r^{8}}{53817251171012308427455331739009}}+{\frac {10000\,a^{4}\,{\mathrm {ara} }^{4}}{{\left({\frac {181\,{\mathrm {ara} }^{2}}{81}}+{\frac {4525}{324}}\right)}^{2}}}+1\right)}}\right)}^{\frac {1}{3}}+{\left({\frac {\left({\frac {7290000}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}+{\frac {729}{2500}}\right)\,\left({\frac {2125764}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\frac {729\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{2500}}+{\frac {7290000\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{{\left(a+{\frac {1}{10}}\right)}^{2}}}\right)}{6}}-{\frac {{\left({\frac {7290000}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}+{\frac {729}{2500}}\right)}^{3}}{27}}-{\sqrt {{\frac {{\left({\frac {2\,{\left({\frac {7290000}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}+{\frac {729}{2500}}\right)}^{3}}{27}}-{\frac {\left({\frac {7290000}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}+{\frac {729}{2500}}\right)\,\left({\frac {2125764}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\frac {729\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{2500}}+{\frac {7290000\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{{\left(a+{\frac {1}{10}}\right)}^{2}}}\right)}{3}}+{\frac {2125764\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{{\left(a+{\frac {1}{10}}\right)}^{2}}}-{\frac {2500\,\left({\frac {4345080004734585\,r^{8}}{68719476736}}+{\frac {384160000\,a^{4}\,{\mathrm {ara} }^{4}}{{\left({\frac {181\,{\mathrm {ara} }^{2}}{81}}+{\frac {4525}{324}}\right)}^{2}}}+1\right)}{a^{2}\,\left({\frac {21778071482940061661655974875633165533184\,r^{8}}{53817251171012308427455331739009}}+{\frac {10000\,a^{4}\,{\mathrm {ara} }^{4}}{{\left({\frac {181\,{\mathrm {ara} }^{2}}{81}}+{\frac {4525}{324}}\right)}^{2}}}+1\right)}}\right)}^{2}}{4}}+{\frac {{\left({\frac {2125764}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\frac {729\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{2500}}-{\frac {{\left({\frac {7290000}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}+{\frac {729}{2500}}\right)}^{2}}{3}}+{\frac {7290000\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{{\left(a+{\frac {1}{10}}\right)}^{2}}}\right)}^{3}}{27}}}}-{\frac {1062882\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\frac {1250\,\left({\frac {4345080004734585\,r^{8}}{68719476736}}+{\frac {384160000\,a^{4}\,{\mathrm {ara} }^{4}}{{\left({\frac {181\,{\mathrm {ara} }^{2}}{81}}+{\frac {4525}{324}}\right)}^{2}}}+1\right)}{a^{2}\,\left({\frac {21778071482940061661655974875633165533184\,r^{8}}{53817251171012308427455331739009}}+{\frac {10000\,a^{4}\,{\mathrm {ara} }^{4}}{{\left({\frac {181\,{\mathrm {ara} }^{2}}{81}}+{\frac {4525}{324}}\right)}^{2}}}+1\right)}}\right)}^{\frac {1}{3}}}}} 周期对于ara的导数== − 2 π ( ( 2500 ( 1536640000 a 4 a r a 3 ( 181 a r a 2 81 + 4525 324 ) 2 − 278131840000 a 4 a r a 5 81 ( 181 a r a 2 81 + 4525 324 ) 3 ) a 2 ( 21778071482940061661655974875633165533184 r 8 53817251171012308427455331739009 + 10000 a 4 a r a 4 ( 181 a r a 2 81 + 4525 324 ) 2 + 1 ) − 2500 ( 40000 a 4 a r a 3 ( 181 a r a 2 81 + 4525 324 ) 2 − 7240000 a 4 a r a 5 81 ( 181 a r a 2 81 + 4525 324 ) 3 ) ( 4345080004734585 r 8 68719476736 + 384160000 a 4 a r a 4 ( 181 a r a 2 81 + 4525 324 ) 2 + 1 ) a 2 ( 21778071482940061661655974875633165533184 r 8 53817251171012308427455331739009 + 10000 a 4 a r a 4 ( 181 a r a 2 81 + 4525 324 ) 2 + 1 ) 2 ) ( 2 ( 7290000 ( a + 1 10 ) 2 + ( 2700 a u f + 1 10 + 9 10 ) 2 + 729 2500 ) 3 27 − ( 7290000 ( a + 1 10 ) 2 + ( 2700 a u f + 1 10 + 9 10 ) 2 + 729 2500 ) ( 2125764 ( a + 1 10 ) 2 + 729 ( 2700 a u f + 1 10 + 9 10 ) 2 2500 + 7290000 ( 2700 a u f + 1 10 + 9 10 ) 2 ( a + 1 10 ) 2 ) 3 + 2125764 ( 2700 a u f + 1 10 + 9 10 ) 2 ( a + 1 10 ) 2 − 2500 ( 4345080004734585 r 8 68719476736 + 384160000 a 4 a r a 4 ( 181 a r a 2 81 + 4525 324 ) 2 + 1 ) a 2 ( 21778071482940061661655974875633165533184 r 8 53817251171012308427455331739009 + 10000 a 4 a r a 4 ( 181 a r a 2 81 + 4525 324 ) 2 + 1 ) ) 4 ( 2 ( 7290000 ( a + 1 10 ) 2 + ( 2700 a u f + 1 10 + 9 10 ) 2 + 729 2500 ) 3 27 − ( 7290000 ( a + 1 10 ) 2 + ( 2700 a u f + 1 10 + 9 10 ) 2 + 729 2500 ) ( 2125764 ( a + 1 10 ) 2 + 729 ( 2700 a u f + 1 10 + 9 10 ) 2 2500 + 7290000 ( 2700 a u f + 1 10 + 9 10 ) 2 ( a + 1 10 ) 2 ) 3 + 2125764 ( 2700 a u f + 1 10 + 9 10 ) 2 ( a + 1 10 ) 2 − 2500 ( 4345080004734585 r 8 68719476736 + 384160000 a 4 a r a 4 ( 181 a r a 2 81 + 4525 324 ) 2 + 1 ) a 2 ( 21778071482940061661655974875633165533184 r 8 53817251171012308427455331739009 + 10000 a 4 a r a 4 ( 181 a r a 2 81 + 4525 324 ) 2 + 1 ) ) 2 4 + ( 2125764 ( a + 1 10 ) 2 + 729 ( 2700 a u f + 1 10 + 9 10 ) 2 2500 − ( 7290000 ( a + 1 10 ) 2 + ( 2700 a u f + 1 10 + 9 10 ) 2 + 729 2500 ) 2 3 + 7290000 ( 2700 a u f + 1 10 + 9 10 ) 2 ( a + 1 10 ) 2 ) 3 27 + 1250 ( 1536640000 a 4 a r a 3 ( 181 a r a 2 81 + 4525 324 ) 2 − 278131840000 a 4 a r a 5 81 ( 181 a r a 2 81 + 4525 324 ) 3 ) a 2 ( 21778071482940061661655974875633165533184 r 8 53817251171012308427455331739009 + 10000 a 4 a r a 4 ( 181 a r a 2 81 + 4525 324 ) 2 + 1 ) − 1250 ( 40000 a 4 a r a 3 ( 181 a r a 2 81 + 4525 324 ) 2 − 7240000 a 4 a r a 5 81 ( 181 a r a 2 81 + 4525 324 ) 3 ) ( 4345080004734585 r 8 68719476736 + 384160000 a 4 a r a 4 ( 181 a r a 2 81 + 4525 324 ) 2 + 1 ) a 2 ( 21778071482940061661655974875633165533184 r 8 53817251171012308427455331739009 + 10000 a 4 a r a 4 ( 181 a r a 2 81 + 4525 324 ) 2 + 1 ) 2 3 ( ( 7290000 ( a + 1 10 ) 2 + ( 2700 a u f + 1 10 + 9 10 ) 2 + 729 2500 ) ( 2125764 ( a + 1 10 ) 2 + 729 ( 2700 a u f + 1 10 + 9 10 ) 2 2500 + 7290000 ( 2700 a u f + 1 10 + 9 10 ) 2 ( a + 1 10 ) 2 ) 6 − ( 7290000 ( a + 1 10 ) 2 + ( 2700 a u f + 1 10 + 9 10 ) 2 + 729 2500 ) 3 27 − ( 2 ( 7290000 ( a + 1 10 ) 2 + ( 2700 a u f + 1 10 + 9 10 ) 2 + 729 2500 ) 3 27 − ( 7290000 ( a + 1 10 ) 2 + ( 2700 a u f + 1 10 + 9 10 ) 2 + 729 2500 ) ( 2125764 ( a + 1 10 ) 2 + 729 ( 2700 a u f + 1 10 + 9 10 ) 2 2500 + 7290000 ( 2700 a u f + 1 10 + 9 10 ) 2 ( a + 1 10 ) 2 ) 3 + 2125764 ( 2700 a u f + 1 10 + 9 10 ) 2 ( a + 1 10 ) 2 − 2500 ( 4345080004734585 r 8 68719476736 + 384160000 a 4 a r a 4 ( 181 a r a 2 81 + 4525 324 ) 2 + 1 ) a 2 ( 21778071482940061661655974875633165533184 r 8 53817251171012308427455331739009 + 10000 a 4 a r a 4 ( 181 a r a 2 81 + 4525 324 ) 2 + 1 ) ) 2 4 + ( 2125764 ( a + 1 10 ) 2 + 729 ( 2700 a u f + 1 10 + 9 10 ) 2 2500 − ( 7290000 ( a + 1 10 ) 2 + ( 2700 a u f + 1 10 + 9 10 ) 2 + 729 2500 ) 2 3 + 7290000 ( 2700 a u f + 1 10 + 9 10 ) 2 ( a + 1 10 ) 2 ) 3 27 − 1062882 ( 2700 a u f + 1 10 + 9 10 ) 2 ( a + 1 10 ) 2 + 1250 ( 4345080004734585 r 8 68719476736 + 384160000 a 4 a r a 4 ( 181 a r a 2 81 + 4525 324 ) 2 + 1 ) a 2 ( 21778071482940061661655974875633165533184 r 8 53817251171012308427455331739009 + 10000 a 4 a r a 4 ( 181 a r a 2 81 + 4525 324 ) 2 + 1 ) ) 2 3 − ( 2500 ( 1536640000 a 4 a r a 3 ( 181 a r a 2 81 + 4525 324 ) 2 − 278131840000 a 4 a r a 5 81 ( 181 a r a 2 81 + 4525 324 ) 3 ) a 2 ( 21778071482940061661655974875633165533184 r 8 53817251171012308427455331739009 + 10000 a 4 a r a 4 ( 181 a r a 2 81 + 4525 324 ) 2 + 1 ) − 2500 ( 40000 a 4 a r a 3 ( 181 a r a 2 81 + 4525 324 ) 2 − 7240000 a 4 a r a 5 81 ( 181 a r a 2 81 + 4525 324 ) 3 ) ( 4345080004734585 r 8 68719476736 + 384160000 a 4 a r a 4 ( 181 a r a 2 81 + 4525 324 ) 2 + 1 ) a 2 ( 21778071482940061661655974875633165533184 r 8 53817251171012308427455331739009 + 10000 a 4 a r a 4 ( 181 a r a 2 81 + 4525 324 ) 2 + 1 ) 2 ) ( 2 ( 7290000 ( a + 1 10 ) 2 + ( 2700 a u f + 1 10 + 9 10 ) 2 + 729 2500 ) 3 27 − ( 7290000 ( a + 1 10 ) 2 + ( 2700 a u f + 1 10 + 9 10 ) 2 + 729 2500 ) ( 2125764 ( a + 1 10 ) 2 + 729 ( 2700 a u f + 1 10 + 9 10 ) 2 2500 + 7290000 ( 2700 a u f + 1 10 + 9 10 ) 2 ( a + 1 10 ) 2 ) 3 + 2125764 ( 2700 a u f + 1 10 + 9 10 ) 2 ( a + 1 10 ) 2 − 2500 ( 4345080004734585 r 8 68719476736 + 384160000 a 4 a r a 4 ( 181 a r a 2 81 + 4525 324 ) 2 + 1 ) a 2 ( 21778071482940061661655974875633165533184 r 8 53817251171012308427455331739009 + 10000 a 4 a r a 4 ( 181 a r a 2 81 + 4525 324 ) 2 + 1 ) ) 4 ( 2 ( 7290000 ( a + 1 10 ) 2 + ( 2700 a u f + 1 10 + 9 10 ) 2 + 729 2500 ) 3 27 − ( 7290000 ( a + 1 10 ) 2 + ( 2700 a u f + 1 10 + 9 10 ) 2 + 729 2500 ) ( 2125764 ( a + 1 10 ) 2 + 729 ( 2700 a u f + 1 10 + 9 10 ) 2 2500 + 7290000 ( 2700 a u f + 1 10 + 9 10 ) 2 ( a + 1 10 ) 2 ) 3 + 2125764 ( 2700 a u f + 1 10 + 9 10 ) 2 ( a + 1 10 ) 2 − 2500 ( 4345080004734585 r 8 68719476736 + 384160000 a 4 a r a 4 ( 181 a r a 2 81 + 4525 324 ) 2 + 1 ) a 2 ( 21778071482940061661655974875633165533184 r 8 53817251171012308427455331739009 + 10000 a 4 a r a 4 ( 181 a r a 2 81 + 4525 324 ) 2 + 1 ) ) 2 4 + ( 2125764 ( a + 1 10 ) 2 + 729 ( 2700 a u f + 1 10 + 9 10 ) 2 2500 − ( 7290000 ( a + 1 10 ) 2 + ( 2700 a u f + 1 10 + 9 10 ) 2 + 729 2500 ) 2 3 + 7290000 ( 2700 a u f + 1 10 + 9 10 ) 2 ( a + 1 10 ) 2 ) 3 27 − 1250 ( 1536640000 a 4 a r a 3 ( 181 a r a 2 81 + 4525 324 ) 2 − 278131840000 a 4 a r a 5 81 ( 181 a r a 2 81 + 4525 324 ) 3 ) a 2 ( 21778071482940061661655974875633165533184 r 8 53817251171012308427455331739009 + 10000 a 4 a r a 4 ( 181 a r a 2 81 + 4525 324 ) 2 + 1 ) + 1250 ( 40000 a 4 a r a 3 ( 181 a r a 2 81 + 4525 324 ) 2 − 7240000 a 4 a r a 5 81 ( 181 a r a 2 81 + 4525 324 ) 3 ) ( 4345080004734585 r 8 68719476736 + 384160000 a 4 a r a 4 ( 181 a r a 2 81 + 4525 324 ) 2 + 1 ) a 2 ( 21778071482940061661655974875633165533184 r 8 53817251171012308427455331739009 + 10000 a 4 a r a 4 ( 181 a r a 2 81 + 4525 324 ) 2 + 1 ) 2 3 ( ( 2 ( 7290000 ( a + 1 10 ) 2 + ( 2700 a u f + 1 10 + 9 10 ) 2 + 729 2500 ) 3 27 − ( 7290000 ( a + 1 10 ) 2 + ( 2700 a u f + 1 10 + 9 10 ) 2 + 729 2500 ) ( 2125764 ( a + 1 10 ) 2 + 729 ( 2700 a u f + 1 10 + 9 10 ) 2 2500 + 7290000 ( 2700 a u f + 1 10 + 9 10 ) 2 ( a + 1 10 ) 2 ) 3 + 2125764 ( 2700 a u f + 1 10 + 9 10 ) 2 ( a + 1 10 ) 2 − 2500 ( 4345080004734585 r 8 68719476736 + 384160000 a 4 a r a 4 ( 181 a r a 2 81 + 4525 324 ) 2 + 1 ) a 2 ( 21778071482940061661655974875633165533184 r 8 53817251171012308427455331739009 + 10000 a 4 a r a 4 ( 181 a r a 2 81 + 4525 324 ) 2 + 1 ) ) 2 4 + ( 2125764 ( a + 1 10 ) 2 + 729 ( 2700 a u f + 1 10 + 9 10 ) 2 2500 − ( 7290000 ( a + 1 10 ) 2 + ( 2700 a u f + 1 10 + 9 10 ) 2 + 729 2500 ) 2 3 + 7290000 ( 2700 a u f + 1 10 + 9 10 ) 2 ( a + 1 10 ) 2 ) 3 27 − ( 7290000 ( a + 1 10 ) 2 + ( 2700 a u f + 1 10 + 9 10 ) 2 + 729 2500 ) 3 27 + ( 7290000 ( a + 1 10 ) 2 + ( 2700 a u f + 1 10 + 9 10 ) 2 + 729 2500 ) ( 2125764 ( a + 1 10 ) 2 + 729 ( 2700 a u f + 1 10 + 9 10 ) 2 2500 + 7290000 ( 2700 a u f + 1 10 + 9 10 ) 2 ( a + 1 10 ) 2 ) 6 − 1062882 ( 2700 a u f + 1 10 + 9 10 ) 2 ( a + 1 10 ) 2 + 1250 ( 4345080004734585 r 8 68719476736 + 384160000 a 4 a r a 4 ( 181 a r a 2 81 + 4525 324 ) 2 + 1 ) a 2 ( 21778071482940061661655974875633165533184 r 8 53817251171012308427455331739009 + 10000 a 4 a r a 4 ( 181 a r a 2 81 + 4525 324 ) 2 + 1 ) ) 2 3 ) ( ( ( 2 ( 7290000 ( a + 1 10 ) 2 + ( 2700 a u f + 1 10 + 9 10 ) 2 + 729 2500 ) 3 27 − ( 7290000 ( a + 1 10 ) 2 + ( 2700 a u f + 1 10 + 9 10 ) 2 + 729 2500 ) ( 2125764 ( a + 1 10 ) 2 + 729 ( 2700 a u f + 1 10 + 9 10 ) 2 2500 + 7290000 ( 2700 a u f + 1 10 + 9 10 ) 2 ( a + 1 10 ) 2 ) 3 + 2125764 ( 2700 a u f + 1 10 + 9 10 ) 2 ( a + 1 10 ) 2 − 2500 ( 4345080004734585 r 8 68719476736 + 384160000 a 4 a r a 4 ( 181 a r a 2 81 + 4525 324 ) 2 + 1 ) a 2 ( 21778071482940061661655974875633165533184 r 8 53817251171012308427455331739009 + 10000 a 4 a r a 4 ( 181 a r a 2 81 + 4525 324 ) 2 + 1 ) ) 2 4 + ( 2125764 ( a + 1 10 ) 2 + 729 ( 2700 a u f + 1 10 + 9 10 ) 2 2500 − ( 7290000 ( a + 1 10 ) 2 + ( 2700 a u f + 1 10 + 9 10 ) 2 + 729 2500 ) 2 3 + 7290000 ( 2700 a u f + 1 10 + 9 10 ) 2 ( a + 1 10 ) 2 ) 3 27 − ( 7290000 ( a + 1 10 ) 2 + ( 2700 a u f + 1 10 + 9 10 ) 2 + 729 2500 ) 3 27 + ( 7290000 ( a + 1 10 ) 2 + ( 2700 a u f + 1 10 + 9 10 ) 2 + 729 2500 ) ( 2125764 ( a + 1 10 ) 2 + 729 ( 2700 a u f + 1 10 + 9 10 ) 2 2500 + 7290000 ( 2700 a u f + 1 10 + 9 10 ) 2 ( a + 1 10 ) 2 ) 6 − 1062882 ( 2700 a u f + 1 10 + 9 10 ) 2 ( a + 1 10 ) 2 + 1250 ( 4345080004734585 r 8 68719476736 + 384160000 a 4 a r a 4 ( 181 a r a 2 81 + 4525 324 ) 2 + 1 ) a 2 ( 21778071482940061661655974875633165533184 r 8 53817251171012308427455331739009 + 10000 a 4 a r a 4 ( 181 a r a 2 81 + 4525 324 ) 2 + 1 ) ) 1 3 + ( ( 7290000 ( a + 1 10 ) 2 + ( 2700 a u f + 1 10 + 9 10 ) 2 + 729 2500 ) ( 2125764 ( a + 1 10 ) 2 + 729 ( 2700 a u f + 1 10 + 9 10 ) 2 2500 + 7290000 ( 2700 a u f + 1 10 + 9 10 ) 2 ( a + 1 10 ) 2 ) 6 − ( 7290000 ( a + 1 10 ) 2 + ( 2700 a u f + 1 10 + 9 10 ) 2 + 729 2500 ) 3 27 − ( 2 ( 7290000 ( a + 1 10 ) 2 + ( 2700 a u f + 1 10 + 9 10 ) 2 + 729 2500 ) 3 27 − ( 7290000 ( a + 1 10 ) 2 + ( 2700 a u f + 1 10 + 9 10 ) 2 + 729 2500 ) ( 2125764 ( a + 1 10 ) 2 + 729 ( 2700 a u f + 1 10 + 9 10 ) 2 2500 + 7290000 ( 2700 a u f + 1 10 + 9 10 ) 2 ( a + 1 10 ) 2 ) 3 + 2125764 ( 2700 a u f + 1 10 + 9 10 ) 2 ( a + 1 10 ) 2 − 2500 ( 4345080004734585 r 8 68719476736 + 384160000 a 4 a r a 4 ( 181 a r a 2 81 + 4525 324 ) 2 + 1 ) a 2 ( 21778071482940061661655974875633165533184 r 8 53817251171012308427455331739009 + 10000 a 4 a r a 4 ( 181 a r a 2 81 + 4525 324 ) 2 + 1 ) ) 2 4 + ( 2125764 ( a + 1 10 ) 2 + 729 ( 2700 a u f + 1 10 + 9 10 ) 2 2500 − ( 7290000 ( a + 1 10 ) 2 + ( 2700 a u f + 1 10 + 9 10 ) 2 + 729 2500 ) 2 3 + 7290000 ( 2700 a u f + 1 10 + 9 10 ) 2 ( a + 1 10 ) 2 ) 3 27 − 1062882 ( 2700 a u f + 1 10 + 9 10 ) 2 ( a + 1 10 ) 2 + 1250 ( 4345080004734585 r 8 68719476736 + 384160000 a 4 a r a 4 ( 181 a r a 2 81 + 4525 324 ) 2 + 1 ) a 2 ( 21778071482940061661655974875633165533184 r 8 53817251171012308427455331739009 + 10000 a 4 a r a 4 ( 181 a r a 2 81 + 4525 324 ) 2 + 1 ) ) 1 3 ) 2 {\displaystyle -{\frac {2\,\pi \,\left({\frac {{\frac {\left({\frac {2500\,\left({\frac {1536640000\,a^{4}\,{\mathrm {ara} }^{3}}{{\left({\frac {181\,{\mathrm {ara} }^{2}}{81}}+{\frac {4525}{324}}\right)}^{2}}}-{\frac {278131840000\,a^{4}\,{\mathrm {ara} }^{5}}{81\,{\left({\frac {181\,{\mathrm {ara} }^{2}}{81}}+{\frac {4525}{324}}\right)}^{3}}}\right)}{a^{2}\,\left({\frac {21778071482940061661655974875633165533184\,r^{8}}{53817251171012308427455331739009}}+{\frac {10000\,a^{4}\,{\mathrm {ara} }^{4}}{{\left({\frac {181\,{\mathrm {ara} }^{2}}{81}}+{\frac {4525}{324}}\right)}^{2}}}+1\right)}}-{\frac {2500\,\left({\frac {40000\,a^{4}\,{\mathrm {ara} }^{3}}{{\left({\frac {181\,{\mathrm {ara} }^{2}}{81}}+{\frac {4525}{324}}\right)}^{2}}}-{\frac {7240000\,a^{4}\,{\mathrm {ara} }^{5}}{81\,{\left({\frac {181\,{\mathrm {ara} }^{2}}{81}}+{\frac {4525}{324}}\right)}^{3}}}\right)\,\left({\frac {4345080004734585\,r^{8}}{68719476736}}+{\frac {384160000\,a^{4}\,{\mathrm {ara} }^{4}}{{\left({\frac {181\,{\mathrm {ara} }^{2}}{81}}+{\frac {4525}{324}}\right)}^{2}}}+1\right)}{a^{2}\,{\left({\frac {21778071482940061661655974875633165533184\,r^{8}}{53817251171012308427455331739009}}+{\frac {10000\,a^{4}\,{\mathrm {ara} }^{4}}{{\left({\frac {181\,{\mathrm {ara} }^{2}}{81}}+{\frac {4525}{324}}\right)}^{2}}}+1\right)}^{2}}}\right)\,\left({\frac {2\,{\left({\frac {7290000}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}+{\frac {729}{2500}}\right)}^{3}}{27}}-{\frac {\left({\frac {7290000}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}+{\frac {729}{2500}}\right)\,\left({\frac {2125764}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\frac {729\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{2500}}+{\frac {7290000\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{{\left(a+{\frac {1}{10}}\right)}^{2}}}\right)}{3}}+{\frac {2125764\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{{\left(a+{\frac {1}{10}}\right)}^{2}}}-{\frac {2500\,\left({\frac {4345080004734585\,r^{8}}{68719476736}}+{\frac {384160000\,a^{4}\,{\mathrm {ara} }^{4}}{{\left({\frac {181\,{\mathrm {ara} }^{2}}{81}}+{\frac {4525}{324}}\right)}^{2}}}+1\right)}{a^{2}\,\left({\frac {21778071482940061661655974875633165533184\,r^{8}}{53817251171012308427455331739009}}+{\frac {10000\,a^{4}\,{\mathrm {ara} }^{4}}{{\left({\frac {181\,{\mathrm {ara} }^{2}}{81}}+{\frac {4525}{324}}\right)}^{2}}}+1\right)}}\right)}{4\,{\sqrt {{\frac {{\left({\frac {2\,{\left({\frac {7290000}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}+{\frac {729}{2500}}\right)}^{3}}{27}}-{\frac {\left({\frac {7290000}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}+{\frac {729}{2500}}\right)\,\left({\frac {2125764}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\frac {729\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{2500}}+{\frac {7290000\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{{\left(a+{\frac {1}{10}}\right)}^{2}}}\right)}{3}}+{\frac {2125764\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{{\left(a+{\frac {1}{10}}\right)}^{2}}}-{\frac {2500\,\left({\frac {4345080004734585\,r^{8}}{68719476736}}+{\frac {384160000\,a^{4}\,{\mathrm {ara} }^{4}}{{\left({\frac {181\,{\mathrm {ara} }^{2}}{81}}+{\frac {4525}{324}}\right)}^{2}}}+1\right)}{a^{2}\,\left({\frac {21778071482940061661655974875633165533184\,r^{8}}{53817251171012308427455331739009}}+{\frac {10000\,a^{4}\,{\mathrm {ara} }^{4}}{{\left({\frac {181\,{\mathrm {ara} }^{2}}{81}}+{\frac {4525}{324}}\right)}^{2}}}+1\right)}}\right)}^{2}}{4}}+{\frac {{\left({\frac {2125764}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\frac {729\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{2500}}-{\frac {{\left({\frac {7290000}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}+{\frac {729}{2500}}\right)}^{2}}{3}}+{\frac {7290000\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{{\left(a+{\frac {1}{10}}\right)}^{2}}}\right)}^{3}}{27}}}}}}+{\frac {1250\,\left({\frac {1536640000\,a^{4}\,{\mathrm {ara} }^{3}}{{\left({\frac {181\,{\mathrm {ara} }^{2}}{81}}+{\frac {4525}{324}}\right)}^{2}}}-{\frac {278131840000\,a^{4}\,{\mathrm {ara} }^{5}}{81\,{\left({\frac {181\,{\mathrm {ara} }^{2}}{81}}+{\frac {4525}{324}}\right)}^{3}}}\right)}{a^{2}\,\left({\frac {21778071482940061661655974875633165533184\,r^{8}}{53817251171012308427455331739009}}+{\frac {10000\,a^{4}\,{\mathrm {ara} }^{4}}{{\left({\frac {181\,{\mathrm {ara} }^{2}}{81}}+{\frac {4525}{324}}\right)}^{2}}}+1\right)}}-{\frac {1250\,\left({\frac {40000\,a^{4}\,{\mathrm {ara} }^{3}}{{\left({\frac {181\,{\mathrm {ara} }^{2}}{81}}+{\frac {4525}{324}}\right)}^{2}}}-{\frac {7240000\,a^{4}\,{\mathrm {ara} }^{5}}{81\,{\left({\frac {181\,{\mathrm {ara} }^{2}}{81}}+{\frac {4525}{324}}\right)}^{3}}}\right)\,\left({\frac {4345080004734585\,r^{8}}{68719476736}}+{\frac {384160000\,a^{4}\,{\mathrm {ara} }^{4}}{{\left({\frac {181\,{\mathrm {ara} }^{2}}{81}}+{\frac {4525}{324}}\right)}^{2}}}+1\right)}{a^{2}\,{\left({\frac {21778071482940061661655974875633165533184\,r^{8}}{53817251171012308427455331739009}}+{\frac {10000\,a^{4}\,{\mathrm {ara} }^{4}}{{\left({\frac {181\,{\mathrm {ara} }^{2}}{81}}+{\frac {4525}{324}}\right)}^{2}}}+1\right)}^{2}}}}{3\,{\left({\frac {\left({\frac {7290000}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}+{\frac {729}{2500}}\right)\,\left({\frac {2125764}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\frac {729\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{2500}}+{\frac {7290000\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{{\left(a+{\frac {1}{10}}\right)}^{2}}}\right)}{6}}-{\frac {{\left({\frac {7290000}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}+{\frac {729}{2500}}\right)}^{3}}{27}}-{\sqrt {{\frac {{\left({\frac {2\,{\left({\frac {7290000}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}+{\frac {729}{2500}}\right)}^{3}}{27}}-{\frac {\left({\frac {7290000}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}+{\frac {729}{2500}}\right)\,\left({\frac {2125764}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\frac {729\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{2500}}+{\frac {7290000\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{{\left(a+{\frac {1}{10}}\right)}^{2}}}\right)}{3}}+{\frac {2125764\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{{\left(a+{\frac {1}{10}}\right)}^{2}}}-{\frac {2500\,\left({\frac {4345080004734585\,r^{8}}{68719476736}}+{\frac {384160000\,a^{4}\,{\mathrm {ara} }^{4}}{{\left({\frac {181\,{\mathrm {ara} }^{2}}{81}}+{\frac {4525}{324}}\right)}^{2}}}+1\right)}{a^{2}\,\left({\frac {21778071482940061661655974875633165533184\,r^{8}}{53817251171012308427455331739009}}+{\frac {10000\,a^{4}\,{\mathrm {ara} }^{4}}{{\left({\frac {181\,{\mathrm {ara} }^{2}}{81}}+{\frac {4525}{324}}\right)}^{2}}}+1\right)}}\right)}^{2}}{4}}+{\frac {{\left({\frac {2125764}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\frac {729\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{2500}}-{\frac {{\left({\frac {7290000}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}+{\frac {729}{2500}}\right)}^{2}}{3}}+{\frac {7290000\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{{\left(a+{\frac {1}{10}}\right)}^{2}}}\right)}^{3}}{27}}}}-{\frac {1062882\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\frac {1250\,\left({\frac {4345080004734585\,r^{8}}{68719476736}}+{\frac {384160000\,a^{4}\,{\mathrm {ara} }^{4}}{{\left({\frac {181\,{\mathrm {ara} }^{2}}{81}}+{\frac {4525}{324}}\right)}^{2}}}+1\right)}{a^{2}\,\left({\frac {21778071482940061661655974875633165533184\,r^{8}}{53817251171012308427455331739009}}+{\frac {10000\,a^{4}\,{\mathrm {ara} }^{4}}{{\left({\frac {181\,{\mathrm {ara} }^{2}}{81}}+{\frac {4525}{324}}\right)}^{2}}}+1\right)}}\right)}^{\frac {2}{3}}}}-{\frac {{\frac {\left({\frac {2500\,\left({\frac {1536640000\,a^{4}\,{\mathrm {ara} }^{3}}{{\left({\frac {181\,{\mathrm {ara} }^{2}}{81}}+{\frac {4525}{324}}\right)}^{2}}}-{\frac {278131840000\,a^{4}\,{\mathrm {ara} }^{5}}{81\,{\left({\frac {181\,{\mathrm {ara} }^{2}}{81}}+{\frac {4525}{324}}\right)}^{3}}}\right)}{a^{2}\,\left({\frac {21778071482940061661655974875633165533184\,r^{8}}{53817251171012308427455331739009}}+{\frac {10000\,a^{4}\,{\mathrm {ara} }^{4}}{{\left({\frac {181\,{\mathrm {ara} }^{2}}{81}}+{\frac {4525}{324}}\right)}^{2}}}+1\right)}}-{\frac {2500\,\left({\frac {40000\,a^{4}\,{\mathrm {ara} }^{3}}{{\left({\frac {181\,{\mathrm {ara} }^{2}}{81}}+{\frac {4525}{324}}\right)}^{2}}}-{\frac {7240000\,a^{4}\,{\mathrm {ara} }^{5}}{81\,{\left({\frac {181\,{\mathrm {ara} }^{2}}{81}}+{\frac {4525}{324}}\right)}^{3}}}\right)\,\left({\frac {4345080004734585\,r^{8}}{68719476736}}+{\frac {384160000\,a^{4}\,{\mathrm {ara} }^{4}}{{\left({\frac {181\,{\mathrm {ara} }^{2}}{81}}+{\frac {4525}{324}}\right)}^{2}}}+1\right)}{a^{2}\,{\left({\frac {21778071482940061661655974875633165533184\,r^{8}}{53817251171012308427455331739009}}+{\frac {10000\,a^{4}\,{\mathrm {ara} }^{4}}{{\left({\frac {181\,{\mathrm {ara} }^{2}}{81}}+{\frac {4525}{324}}\right)}^{2}}}+1\right)}^{2}}}\right)\,\left({\frac {2\,{\left({\frac {7290000}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}+{\frac {729}{2500}}\right)}^{3}}{27}}-{\frac {\left({\frac {7290000}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}+{\frac {729}{2500}}\right)\,\left({\frac {2125764}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\frac {729\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{2500}}+{\frac {7290000\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{{\left(a+{\frac {1}{10}}\right)}^{2}}}\right)}{3}}+{\frac {2125764\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{{\left(a+{\frac {1}{10}}\right)}^{2}}}-{\frac {2500\,\left({\frac {4345080004734585\,r^{8}}{68719476736}}+{\frac {384160000\,a^{4}\,{\mathrm {ara} }^{4}}{{\left({\frac {181\,{\mathrm {ara} }^{2}}{81}}+{\frac {4525}{324}}\right)}^{2}}}+1\right)}{a^{2}\,\left({\frac {21778071482940061661655974875633165533184\,r^{8}}{53817251171012308427455331739009}}+{\frac {10000\,a^{4}\,{\mathrm {ara} }^{4}}{{\left({\frac {181\,{\mathrm {ara} }^{2}}{81}}+{\frac {4525}{324}}\right)}^{2}}}+1\right)}}\right)}{4\,{\sqrt {{\frac {{\left({\frac {2\,{\left({\frac {7290000}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}+{\frac {729}{2500}}\right)}^{3}}{27}}-{\frac {\left({\frac {7290000}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}+{\frac {729}{2500}}\right)\,\left({\frac {2125764}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\frac {729\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{2500}}+{\frac {7290000\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{{\left(a+{\frac {1}{10}}\right)}^{2}}}\right)}{3}}+{\frac {2125764\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{{\left(a+{\frac {1}{10}}\right)}^{2}}}-{\frac {2500\,\left({\frac {4345080004734585\,r^{8}}{68719476736}}+{\frac {384160000\,a^{4}\,{\mathrm {ara} }^{4}}{{\left({\frac {181\,{\mathrm {ara} }^{2}}{81}}+{\frac {4525}{324}}\right)}^{2}}}+1\right)}{a^{2}\,\left({\frac {21778071482940061661655974875633165533184\,r^{8}}{53817251171012308427455331739009}}+{\frac {10000\,a^{4}\,{\mathrm {ara} }^{4}}{{\left({\frac {181\,{\mathrm {ara} }^{2}}{81}}+{\frac {4525}{324}}\right)}^{2}}}+1\right)}}\right)}^{2}}{4}}+{\frac {{\left({\frac {2125764}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\frac {729\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{2500}}-{\frac {{\left({\frac {7290000}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}+{\frac {729}{2500}}\right)}^{2}}{3}}+{\frac {7290000\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{{\left(a+{\frac {1}{10}}\right)}^{2}}}\right)}^{3}}{27}}}}}}-{\frac {1250\,\left({\frac {1536640000\,a^{4}\,{\mathrm {ara} }^{3}}{{\left({\frac {181\,{\mathrm {ara} }^{2}}{81}}+{\frac {4525}{324}}\right)}^{2}}}-{\frac {278131840000\,a^{4}\,{\mathrm {ara} }^{5}}{81\,{\left({\frac {181\,{\mathrm {ara} }^{2}}{81}}+{\frac {4525}{324}}\right)}^{3}}}\right)}{a^{2}\,\left({\frac {21778071482940061661655974875633165533184\,r^{8}}{53817251171012308427455331739009}}+{\frac {10000\,a^{4}\,{\mathrm {ara} }^{4}}{{\left({\frac {181\,{\mathrm {ara} }^{2}}{81}}+{\frac {4525}{324}}\right)}^{2}}}+1\right)}}+{\frac {1250\,\left({\frac {40000\,a^{4}\,{\mathrm {ara} }^{3}}{{\left({\frac {181\,{\mathrm {ara} }^{2}}{81}}+{\frac {4525}{324}}\right)}^{2}}}-{\frac {7240000\,a^{4}\,{\mathrm {ara} }^{5}}{81\,{\left({\frac {181\,{\mathrm {ara} }^{2}}{81}}+{\frac {4525}{324}}\right)}^{3}}}\right)\,\left({\frac {4345080004734585\,r^{8}}{68719476736}}+{\frac {384160000\,a^{4}\,{\mathrm {ara} }^{4}}{{\left({\frac {181\,{\mathrm {ara} }^{2}}{81}}+{\frac {4525}{324}}\right)}^{2}}}+1\right)}{a^{2}\,{\left({\frac {21778071482940061661655974875633165533184\,r^{8}}{53817251171012308427455331739009}}+{\frac {10000\,a^{4}\,{\mathrm {ara} }^{4}}{{\left({\frac {181\,{\mathrm {ara} }^{2}}{81}}+{\frac {4525}{324}}\right)}^{2}}}+1\right)}^{2}}}}{3\,{\left({\sqrt {{\frac {{\left({\frac {2\,{\left({\frac {7290000}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}+{\frac {729}{2500}}\right)}^{3}}{27}}-{\frac {\left({\frac {7290000}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}+{\frac {729}{2500}}\right)\,\left({\frac {2125764}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\frac {729\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{2500}}+{\frac {7290000\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{{\left(a+{\frac {1}{10}}\right)}^{2}}}\right)}{3}}+{\frac {2125764\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{{\left(a+{\frac {1}{10}}\right)}^{2}}}-{\frac {2500\,\left({\frac {4345080004734585\,r^{8}}{68719476736}}+{\frac {384160000\,a^{4}\,{\mathrm {ara} }^{4}}{{\left({\frac {181\,{\mathrm {ara} }^{2}}{81}}+{\frac {4525}{324}}\right)}^{2}}}+1\right)}{a^{2}\,\left({\frac {21778071482940061661655974875633165533184\,r^{8}}{53817251171012308427455331739009}}+{\frac {10000\,a^{4}\,{\mathrm {ara} }^{4}}{{\left({\frac {181\,{\mathrm {ara} }^{2}}{81}}+{\frac {4525}{324}}\right)}^{2}}}+1\right)}}\right)}^{2}}{4}}+{\frac {{\left({\frac {2125764}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\frac {729\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{2500}}-{\frac {{\left({\frac {7290000}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}+{\frac {729}{2500}}\right)}^{2}}{3}}+{\frac {7290000\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{{\left(a+{\frac {1}{10}}\right)}^{2}}}\right)}^{3}}{27}}}}-{\frac {{\left({\frac {7290000}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}+{\frac {729}{2500}}\right)}^{3}}{27}}+{\frac {\left({\frac {7290000}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}+{\frac {729}{2500}}\right)\,\left({\frac {2125764}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\frac {729\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{2500}}+{\frac {7290000\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{{\left(a+{\frac {1}{10}}\right)}^{2}}}\right)}{6}}-{\frac {1062882\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\frac {1250\,\left({\frac {4345080004734585\,r^{8}}{68719476736}}+{\frac {384160000\,a^{4}\,{\mathrm {ara} }^{4}}{{\left({\frac {181\,{\mathrm {ara} }^{2}}{81}}+{\frac {4525}{324}}\right)}^{2}}}+1\right)}{a^{2}\,\left({\frac {21778071482940061661655974875633165533184\,r^{8}}{53817251171012308427455331739009}}+{\frac {10000\,a^{4}\,{\mathrm {ara} }^{4}}{{\left({\frac {181\,{\mathrm {ara} }^{2}}{81}}+{\frac {4525}{324}}\right)}^{2}}}+1\right)}}\right)}^{\frac {2}{3}}}}\right)}{{\left({\left({\sqrt {{\frac {{\left({\frac {2\,{\left({\frac {7290000}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}+{\frac {729}{2500}}\right)}^{3}}{27}}-{\frac {\left({\frac {7290000}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}+{\frac {729}{2500}}\right)\,\left({\frac {2125764}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\frac {729\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{2500}}+{\frac {7290000\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{{\left(a+{\frac {1}{10}}\right)}^{2}}}\right)}{3}}+{\frac {2125764\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{{\left(a+{\frac {1}{10}}\right)}^{2}}}-{\frac {2500\,\left({\frac {4345080004734585\,r^{8}}{68719476736}}+{\frac {384160000\,a^{4}\,{\mathrm {ara} }^{4}}{{\left({\frac {181\,{\mathrm {ara} }^{2}}{81}}+{\frac {4525}{324}}\right)}^{2}}}+1\right)}{a^{2}\,\left({\frac {21778071482940061661655974875633165533184\,r^{8}}{53817251171012308427455331739009}}+{\frac {10000\,a^{4}\,{\mathrm {ara} }^{4}}{{\left({\frac {181\,{\mathrm {ara} }^{2}}{81}}+{\frac {4525}{324}}\right)}^{2}}}+1\right)}}\right)}^{2}}{4}}+{\frac {{\left({\frac {2125764}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\frac {729\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{2500}}-{\frac {{\left({\frac {7290000}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}+{\frac {729}{2500}}\right)}^{2}}{3}}+{\frac {7290000\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{{\left(a+{\frac {1}{10}}\right)}^{2}}}\right)}^{3}}{27}}}}-{\frac {{\left({\frac {7290000}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}+{\frac {729}{2500}}\right)}^{3}}{27}}+{\frac {\left({\frac {7290000}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}+{\frac {729}{2500}}\right)\,\left({\frac {2125764}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\frac {729\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{2500}}+{\frac {7290000\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{{\left(a+{\frac {1}{10}}\right)}^{2}}}\right)}{6}}-{\frac {1062882\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\frac {1250\,\left({\frac {4345080004734585\,r^{8}}{68719476736}}+{\frac {384160000\,a^{4}\,{\mathrm {ara} }^{4}}{{\left({\frac {181\,{\mathrm {ara} }^{2}}{81}}+{\frac {4525}{324}}\right)}^{2}}}+1\right)}{a^{2}\,\left({\frac {21778071482940061661655974875633165533184\,r^{8}}{53817251171012308427455331739009}}+{\frac {10000\,a^{4}\,{\mathrm {ara} }^{4}}{{\left({\frac {181\,{\mathrm {ara} }^{2}}{81}}+{\frac {4525}{324}}\right)}^{2}}}+1\right)}}\right)}^{\frac {1}{3}}+{\left({\frac {\left({\frac {7290000}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}+{\frac {729}{2500}}\right)\,\left({\frac {2125764}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\frac {729\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{2500}}+{\frac {7290000\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{{\left(a+{\frac {1}{10}}\right)}^{2}}}\right)}{6}}-{\frac {{\left({\frac {7290000}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}+{\frac {729}{2500}}\right)}^{3}}{27}}-{\sqrt {{\frac {{\left({\frac {2\,{\left({\frac {7290000}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}+{\frac {729}{2500}}\right)}^{3}}{27}}-{\frac {\left({\frac {7290000}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}+{\frac {729}{2500}}\right)\,\left({\frac {2125764}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\frac {729\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{2500}}+{\frac {7290000\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{{\left(a+{\frac {1}{10}}\right)}^{2}}}\right)}{3}}+{\frac {2125764\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{{\left(a+{\frac {1}{10}}\right)}^{2}}}-{\frac {2500\,\left({\frac {4345080004734585\,r^{8}}{68719476736}}+{\frac {384160000\,a^{4}\,{\mathrm {ara} }^{4}}{{\left({\frac {181\,{\mathrm {ara} }^{2}}{81}}+{\frac {4525}{324}}\right)}^{2}}}+1\right)}{a^{2}\,\left({\frac {21778071482940061661655974875633165533184\,r^{8}}{53817251171012308427455331739009}}+{\frac {10000\,a^{4}\,{\mathrm {ara} }^{4}}{{\left({\frac {181\,{\mathrm {ara} }^{2}}{81}}+{\frac {4525}{324}}\right)}^{2}}}+1\right)}}\right)}^{2}}{4}}+{\frac {{\left({\frac {2125764}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\frac {729\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{2500}}-{\frac {{\left({\frac {7290000}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}+{\frac {729}{2500}}\right)}^{2}}{3}}+{\frac {7290000\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{{\left(a+{\frac {1}{10}}\right)}^{2}}}\right)}^{3}}{27}}}}-{\frac {1062882\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\frac {1250\,\left({\frac {4345080004734585\,r^{8}}{68719476736}}+{\frac {384160000\,a^{4}\,{\mathrm {ara} }^{4}}{{\left({\frac {181\,{\mathrm {ara} }^{2}}{81}}+{\frac {4525}{324}}\right)}^{2}}}+1\right)}{a^{2}\,\left({\frac {21778071482940061661655974875633165533184\,r^{8}}{53817251171012308427455331739009}}+{\frac {10000\,a^{4}\,{\mathrm {ara} }^{4}}{{\left({\frac {181\,{\mathrm {ara} }^{2}}{81}}+{\frac {4525}{324}}\right)}^{2}}}+1\right)}}\right)}^{\frac {1}{3}}\right)}^{2}}}} 事实上画出来就是ara对周期影响微乎其微。我不知道为嘛是这样的。
if q == 0 {\displaystyle q==0}
p > 0 ⟹ {\displaystyle p>0\Longrightarrow } 1个振动中心
此时周期== 2 π ( 2125764 ( a + 1 10 ) 2 + 729 ( 2700 a u f + 1 10 + 9 10 ) 2 2500 − ( 7290000 ( a + 1 10 ) 2 + ( 2700 a u f + 1 10 + 9 10 ) 2 + 729 2500 ) 2 3 + 7290000 ( 2700 a u f + 1 10 + 9 10 ) 2 ( a + 1 10 ) 2 ) 1 4 {\displaystyle {\frac {2\,\pi }{{\left({\frac {2125764}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\frac {729\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{2500}}-{\frac {{\left({\frac {7290000}{{\left(a+{\frac {1}{10}}\right)}^{2}}}+{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}+{\frac {729}{2500}}\right)}^{2}}{3}}+{\frac {7290000\,{\left({\frac {2700}{\mathrm {auf} +{\frac {1}{10}}}}+{\frac {9}{10}}\right)}^{2}}{{\left(a+{\frac {1}{10}}\right)}^{2}}}\right)}^{\frac {1}{4}}}}} 周期对于ara的导数==0
p ≤ 0 ⟹ {\displaystyle p\leq 0\Longrightarrow } 0个振动中心