The derivatives of the general NRTL equations are very useful for VLE calculations, but are incredibly cumbersome to perform by hand in the general form.
General NRTL equations
[edit]
The general equation for for species in a mixture of components is[1]:
| | (1.1) |
with
| | (1.2) |
| | (1.3) |
| | (1.4) |
For derivative calculations, it becomes convenient to further compartmentalize the general NRTL equation by abstracting the summation terms. While this does introduce an additional substitution for chain rule differentiation, it does make the final equation more readable.
| | (1.5) |
with
Sum type 1:
| | (1.6) |
Sum type 2:
| | (1.7) |
Derivatives of system variables
[edit]
The system variables are intrinsic to a system being observed or predicted. These include several directly measurable variables and many indirectly measurable variables. Only the directly measurable system variables need to be calculated for the NRTL model.
- Directly measurable system variables:
These, along with the composition derivatives, are the primary derivatives of interest, the reason for which will become obvious when reading the pressure derivatives section.
Adjustable parameters
[edit]
Since the adjustable parameters are treated as constants during typical VLE calculations, their derivatives are straight forward degenerate solutions:
| | (2.1-1) |
| | (2.1.1-1) |
Non-randomness term
[edit]
The non randomness term has a similarly simple series of temperature derivatives, being linear with respect to temperature.
First order:
| | (2.1.2-1) |
Second and higher order:
| | (2.1.2-2) |
The interaction term can be conveniently expressed in terms of the derivative order, which becomes more or less obvious after a couple of iterations:
First order:
| | (2.1.3-1) |
Second order:
| | (2.1.3-2) |
Higher order: {{NumBlk|||2.1.3.-3}
Interaction energy term
[edit]
| | (2.1.4.1-1) |
| | (2.1.4.1-2) |
| | (2.1.4.2-1) |
| | (2.1.4.3-1) |
| | (2.1.4.4-1) |
These are the least interesting, though still very important and useful, derivatives. Since the pressure derivatives are evaluated at constant temperature and composition and none of the terms involved are explicit functions of pressure, all of the derivative expressions are essentially derivatives of a constant scalar term, which is zero. All of the partial derivatives are listed below for sake of complete coverage of the topic.
Adjustable parameters
[edit]
The pressure derivatives for the adjustable parameters are analogous to their respective temperature derivatives.
| | (2.2.1-1) |
where is an adjustable parameter.
Non-randomness term
[edit]
Unlike the temperature derivatives, the pressure derivatives of the non-randomness term are all zero.
| | (2.2.2-1) |
| | (2.2.3-1) |
Interaction energy term
[edit]
| | (2.2.4-1) |
| | (2.2.5-1) |
| | (2.2.1-6) |
This is the most important derivative resulting from the pressure derivatives due to its use in simplifying calculations.
| | (2.2.7-1) |
Adjustable parameters
[edit]
| | (2.3.1-1) |
where is an adjustable parameter.
Non-randomness term
[edit]
| | (2.3.2-1) |
| | (2.3.3-1) |
Interaction energy term
[edit]
| | (2.3.4-1) |
| | (2.3.5-1) |
| | (2.3.6-1) |
Derivatives of adjustable parameters
[edit]
The adjustable parameters are fit to experimental data for known compositions and are coefficients for temperature dependent parameters of the general NRTL equation. These parameters are considered variables during fit optimization calculations only. During the calculations for vapor-liquid equilibrium, these parameters are considered as constants.
- Non-randomness parameters:
- , scalar
- , linearly proportional
- Interaction parameters:
- , scalar
- , inversely proportional
- , inverse square proportional
- , logarithmically proportional
- , power proportional
- , power term exponent
Non-randomness parameters
[edit]
Interaction parameters
[edit]
Inversely proportional
[edit]
Inverse square proportional
[edit]
Logarithmically proportional
[edit]
Power term exponent
[edit]