Equivalent infinitesimal [ edit ]
When two variables
α
{\displaystyle \alpha }
and
β
{\displaystyle \beta }
converge to zero at the same limit point and
lim
β
α
=
1
{\displaystyle \textstyle \lim {\frac {\beta }{\alpha }}=1}
, they are called equivalent infinitesimal (equiv.
α
∼
β
{\displaystyle \alpha \sim \beta }
).
Moreover, if variables
α
′
{\displaystyle \alpha '}
and
β
′
{\displaystyle \beta '}
are such that
α
∼
α
′
{\displaystyle \alpha \sim \alpha '}
and
β
∼
β
′
{\displaystyle \beta \sim \beta '}
, then:
lim
β
α
=
lim
β
′
α
′
{\displaystyle \lim {\frac {\beta }{\alpha }}=\lim {\frac {\beta '}{\alpha '}}}
Here is a brief proof:
Suppose there are two equivalent infinitesimals
α
∼
α
′
{\displaystyle \alpha \sim \alpha '}
and
β
∼
β
′
{\displaystyle \beta \sim \beta '}
.
lim
β
α
=
lim
β
β
′
α
′
β
′
α
′
α
=
lim
β
β
′
lim
α
′
α
lim
β
′
α
′
=
lim
β
′
α
′
{\displaystyle \lim {\frac {\beta }{\alpha }}=\lim {\frac {\beta \beta '\alpha '}{\beta '\alpha '\alpha }}=\lim {\frac {\beta }{\beta '}}\lim {\frac {\alpha '}{\alpha }}\lim {\frac {\beta '}{\alpha '}}=\lim {\frac {\beta '}{\alpha '}}}
For the evaluation of the indeterminate form
0
/
0
{\displaystyle 0/0}
, one can make use of the following facts about equivalent infinitesimals (e.g.,
x
∼
sin
x
{\displaystyle x\sim \sin x}
if x becomes closer to zero):[ 1]
x
∼
sin
x
,
{\displaystyle x\sim \sin x,}
x
∼
arcsin
x
,
{\displaystyle x\sim \arcsin x,}
x
∼
sinh
x
,
{\displaystyle x\sim \sinh x,}
x
∼
tan
x
,
{\displaystyle x\sim \tan x,}
x
∼
arctan
x
,
{\displaystyle x\sim \arctan x,}
x
∼
ln
(
1
+
x
)
,
{\displaystyle x\sim \ln(1+x),}
1
−
cos
x
∼
x
2
2
,
{\displaystyle 1-\cos x\sim {\frac {x^{2}}{2}},}
cosh
x
−
1
∼
x
2
2
,
{\displaystyle \cosh x-1\sim {\frac {x^{2}}{2}},}
a
x
−
1
∼
x
ln
a
,
{\displaystyle a^{x}-1\sim x\ln a,}
e
x
−
1
∼
x
,
{\displaystyle e^{x}-1\sim x,}
(
1
+
x
)
a
−
1
∼
a
x
.
{\displaystyle (1+x)^{a}-1\sim ax.}
For example:
lim
x
→
0
1
x
3
[
(
2
+
cos
x
3
)
x
−
1
]
=
lim
x
→
0
e
x
ln
2
+
cos
x
3
−
1
x
3
=
lim
x
→
0
1
x
2
ln
2
+
cos
x
3
=
lim
x
→
0
1
x
2
ln
(
cos
x
−
1
3
+
1
)
=
lim
x
→
0
cos
x
−
1
3
x
2
=
lim
x
→
0
−
x
2
6
x
2
=
−
1
6
{\displaystyle {\begin{aligned}\lim _{x\to 0}{\frac {1}{x^{3}}}\left[\left({\frac {2+\cos x}{3}}\right)^{x}-1\right]&=\lim _{x\to 0}{\frac {e^{x\ln {\frac {2+\cos x}{3}}}-1}{x^{3}}}\\&=\lim _{x\to 0}{\frac {1}{x^{2}}}\ln {\frac {2+\cos x}{3}}\\&=\lim _{x\to 0}{\frac {1}{x^{2}}}\ln \left({\frac {\cos x-1}{3}}+1\right)\\&=\lim _{x\to 0}{\frac {\cos x-1}{3x^{2}}}\\&=\lim _{x\to 0}-{\frac {x^{2}}{6x^{2}}}\\&=-{\frac {1}{6}}\end{aligned}}}
In the 2nd equality,
e
y
−
1
∼
y
{\displaystyle e^{y}-1\sim y}
where
y
=
x
ln
2
+
cos
x
3
{\displaystyle y=x\ln {2+\cos x \over 3}}
as y become closer to 0 is used, and
y
∼
ln
(
1
+
y
)
{\displaystyle y\sim \ln {(1+y)}}
where
y
=
cos
x
−
1
3
{\displaystyle y={{\cos x-1} \over 3}}
is used in the 4th equality, and
1
−
cos
x
∼
x
2
2
{\displaystyle 1-\cos x\sim {x^{2} \over 2}}
is used in the 5th equality.
Differentiation rules [ edit ]
Unless otherwise stated, all functions are functions of real numbers (R ) that return real values; although more generally, the formulae below apply wherever they are well defined [ 2] [ 3] — including the case of complex numbers (C ) .[ 4]
For any value of
c
{\displaystyle c}
, where
c
∈
R
{\displaystyle c\in \mathbb {R} }
, if
f
(
x
)
{\displaystyle f(x)}
is the constant function given by
f
(
x
)
=
c
{\displaystyle f(x)=c}
, then
d
f
d
x
=
0
{\displaystyle {\frac {df}{dx}}=0}
.[ 5]
Let
c
∈
R
{\displaystyle c\in \mathbb {R} }
and
f
(
x
)
=
c
{\displaystyle f(x)=c}
. By the definition of the derivative,
f
′
(
x
)
=
lim
h
→
0
f
(
x
+
h
)
−
f
(
x
)
h
=
lim
h
→
0
(
c
)
−
(
c
)
h
=
lim
h
→
0
0
h
=
lim
h
→
0
0
=
0
{\displaystyle {\begin{aligned}f'(x)&=\lim _{h\to 0}{\frac {f(x+h)-f(x)}{h}}\\&=\lim _{h\to 0}{\frac {(c)-(c)}{h}}\\&=\lim _{h\to 0}{\frac {0}{h}}\\&=\lim _{h\to 0}0\\&=0\end{aligned}}}
This shows that the derivative of any constant function is 0.
Intuitive (geometric) explanation[ edit ]
The derivative of the function at a point is the slope of the line tangent to the curve at the point. Slope of the constant function is zero, because the tangent line to the constant function is horizontal and its angle is zero.
In other words, the value of the constant function, y, will not change as the value of x increases or decreases.
At each point, the derivative is the slope of a line that is tangent to the curve at that point. Note: the derivative at point A is positive where green and dash–dot, negative where red and dashed, and zero where black and solid.
Differentiation is linear [ edit ]
For any functions
f
{\displaystyle f}
and
g
{\displaystyle g}
and any real numbers
a
{\displaystyle a}
and
b
{\displaystyle b}
, the derivative of the function
h
(
x
)
=
a
f
(
x
)
+
b
g
(
x
)
{\displaystyle h(x)=af(x)+bg(x)}
with respect to
x
{\displaystyle x}
is:
h
′
(
x
)
=
a
f
′
(
x
)
+
b
g
′
(
x
)
.
{\displaystyle h'(x)=af'(x)+bg'(x).}
In Leibniz's notation this is written as:
d
(
a
f
+
b
g
)
d
x
=
a
d
f
d
x
+
b
d
g
d
x
.
{\displaystyle {\frac {d(af+bg)}{dx}}=a{\frac {df}{dx}}+b{\frac {dg}{dx}}.}
Special cases include:
The constant factor rule
(
a
f
)
′
=
a
f
′
{\displaystyle (af)'=af'}
The sum rule
(
f
+
g
)
′
=
f
′
+
g
′
{\displaystyle (f+g)'=f'+g'}
The difference rule
(
f
−
g
)
′
=
f
′
−
g
′
.
{\displaystyle (f-g)'=f'-g'.}
For the functions
f
{\displaystyle f}
and
g
{\displaystyle g}
, the derivative of the function
h
(
x
)
=
f
(
x
)
g
(
x
)
{\displaystyle h(x)=f(x)g(x)}
with respect to
x
{\displaystyle x}
is
h
′
(
x
)
=
(
f
g
)
′
(
x
)
=
f
′
(
x
)
g
(
x
)
+
f
(
x
)
g
′
(
x
)
.
{\displaystyle h'(x)=(fg)'(x)=f'(x)g(x)+f(x)g'(x).}
In Leibniz's notation this is written
d
(
f
g
)
d
x
=
g
d
f
d
x
+
f
d
g
d
x
.
{\displaystyle {\frac {d(fg)}{dx}}=g{\frac {df}{dx}}+f{\frac {dg}{dx}}.}
The derivative of the function
h
(
x
)
=
f
(
g
(
x
)
)
{\displaystyle h(x)=f(g(x))}
is
h
′
(
x
)
=
f
′
(
g
(
x
)
)
⋅
g
′
(
x
)
.
{\displaystyle h'(x)=f'(g(x))\cdot g'(x).}
In Leibniz's notation, this is written as:
d
d
x
h
(
x
)
=
d
d
z
f
(
z
)
|
z
=
g
(
x
)
⋅
d
d
x
g
(
x
)
,
{\displaystyle {\frac {d}{dx}}h(x)=\left.{\frac {d}{dz}}f(z)\right|_{z=g(x)}\cdot {\frac {d}{dx}}g(x),}
often abridged to
d
h
(
x
)
d
x
=
d
f
(
g
(
x
)
)
d
g
(
x
)
⋅
d
g
(
x
)
d
x
.
{\displaystyle {\frac {dh(x)}{dx}}={\frac {df(g(x))}{dg(x)}}\cdot {\frac {dg(x)}{dx}}.}
Focusing on the notion of maps, and the differential being a map
D
{\displaystyle {\text{D}}}
, this is written in a more concise way as:
[
D
(
f
∘
g
)
]
x
=
[
D
f
]
g
(
x
)
⋅
[
D
g
]
x
.
{\displaystyle [{\text{D}}(f\circ g)]_{x}=[{\text{D}}f]_{g(x)}\cdot [{\text{D}}g]_{x}\,.}
The inverse function rule [ edit ]
If the function f has an inverse function g , meaning that
g
(
f
(
x
)
)
=
x
{\displaystyle g(f(x))=x}
and
f
(
g
(
y
)
)
=
y
,
{\displaystyle f(g(y))=y,}
then
g
′
=
1
f
′
∘
g
.
{\displaystyle g'={\frac {1}{f'\circ g}}.}
In Leibniz notation, this is written as
d
x
d
y
=
1
d
y
d
x
.
{\displaystyle {\frac {dx}{dy}}={\frac {1}{\frac {dy}{dx}}}.}
The polynomial or elementary power rule [ edit ]
If
f
(
x
)
=
x
r
{\displaystyle f(x)=x^{r}}
, for any real number
r
≠
0
,
{\displaystyle r\neq 0,}
then
f
′
(
x
)
=
r
x
r
−
1
.
{\displaystyle f'(x)=rx^{r-1}.}
When
r
=
1
,
{\displaystyle r=1,}
this becomes the special case that if
f
(
x
)
=
x
,
{\displaystyle f(x)=x,}
then
f
′
(
x
)
=
1.
{\displaystyle f'(x)=1.}
Combining the power rule with the sum and constant multiple rules permits the computation of the derivative of any polynomial.
The reciprocal rule [ edit ]
The derivative of
h
(
x
)
=
1
f
(
x
)
{\displaystyle h(x)={\frac {1}{f(x)}}}
for any (nonvanishing) function f is:
h
′
(
x
)
=
−
f
′
(
x
)
(
f
(
x
)
)
2
{\displaystyle h'(x)=-{\frac {f'(x)}{(f(x))^{2}}}}
wherever f is non-zero.
In Leibniz's notation, this is written
d
(
1
/
f
)
d
x
=
−
1
f
2
d
f
d
x
.
{\displaystyle {\frac {d(1/f)}{dx}}=-{\frac {1}{f^{2}}}{\frac {df}{dx}}.}
The reciprocal rule can be derived either from the quotient rule, or from the combination of power rule and chain rule.
If f and g are functions, then:
(
f
g
)
′
=
f
′
g
−
g
′
f
g
2
{\displaystyle \left({\frac {f}{g}}\right)'={\frac {f'g-g'f}{g^{2}}}\quad }
wherever g is nonzero.
This can be derived from the product rule and the reciprocal rule.
Generalized power rule [ edit ]
The elementary power rule generalizes considerably. The most general power rule is the functional power rule : for any functions f and g ,
(
f
g
)
′
=
(
e
g
ln
f
)
′
=
f
g
(
f
′
g
f
+
g
′
ln
f
)
,
{\displaystyle (f^{g})'=\left(e^{g\ln f}\right)'=f^{g}\left(f'{g \over f}+g'\ln f\right),\quad }
wherever both sides are well defined.
Special cases
If
f
(
x
)
=
x
a
{\textstyle f(x)=x^{a}\!}
, then
f
′
(
x
)
=
a
x
a
−
1
{\textstyle f'(x)=ax^{a-1}}
when a is any non-zero real number and x is positive.
The reciprocal rule may be derived as the special case where
g
(
x
)
=
−
1
{\textstyle g(x)=-1\!}
.
d
d
x
(
c
a
x
)
=
a
c
a
x
ln
c
,
c
>
0
{\displaystyle {\frac {d}{dx}}\left(c^{ax}\right)={ac^{ax}\ln c},\qquad c>0}
the equation above is true for all c , but the derivative for
c
<
0
{\textstyle c<0}
yields a complex number.
d
d
x
(
e
a
x
)
=
a
e
a
x
{\displaystyle {\frac {d}{dx}}\left(e^{ax}\right)=ae^{ax}}
d
d
x
(
log
c
x
)
=
1
x
ln
c
,
c
>
1
{\displaystyle {\frac {d}{dx}}\left(\log _{c}x\right)={1 \over x\ln c},\qquad c>1}
the equation above is also true for all c , but yields a complex number if
c
<
0
{\textstyle c<0\!}
.
d
d
x
(
ln
x
)
=
1
x
,
x
>
0.
{\displaystyle {\frac {d}{dx}}\left(\ln x\right)={1 \over x},\qquad x>0.}
d
d
x
(
ln
|
x
|
)
=
1
x
,
x
≠
0.
{\displaystyle {\frac {d}{dx}}\left(\ln |x|\right)={1 \over x},\qquad x\neq 0.}
d
d
x
(
W
(
x
)
)
=
1
x
+
e
W
(
x
)
,
x
>
−
1
e
.
{\displaystyle {\frac {d}{dx}}\left(W(x)\right)={1 \over {x+e^{W(x)}}},\qquad x>-{1 \over e}.\qquad }
where
W
(
x
)
{\displaystyle W(x)}
is the Lambert W function
d
d
x
(
x
x
)
=
x
x
(
1
+
ln
x
)
.
{\displaystyle {\frac {d}{dx}}\left(x^{x}\right)=x^{x}(1+\ln x).}
d
d
x
(
f
(
x
)
g
(
x
)
)
=
g
(
x
)
f
(
x
)
g
(
x
)
−
1
d
f
d
x
+
f
(
x
)
g
(
x
)
ln
(
f
(
x
)
)
d
g
d
x
,
if
f
(
x
)
>
0
,
and if
d
f
d
x
and
d
g
d
x
exist.
{\displaystyle {\frac {d}{dx}}\left(f(x)^{g(x)}\right)=g(x)f(x)^{g(x)-1}{\frac {df}{dx}}+f(x)^{g(x)}\ln {(f(x))}{\frac {dg}{dx}},\qquad {\text{if }}f(x)>0,{\text{ and if }}{\frac {df}{dx}}{\text{ and }}{\frac {dg}{dx}}{\text{ exist.}}}
d
d
x
(
f
1
(
x
)
f
2
(
x
)
(
.
.
.
)
f
n
(
x
)
)
=
[
∑
k
=
1
n
∂
∂
x
k
(
f
1
(
x
1
)
f
2
(
x
2
)
(
.
.
.
)
f
n
(
x
n
)
)
]
|
x
1
=
x
2
=
.
.
.
=
x
n
=
x
,
if
f
i
<
n
(
x
)
>
0
and
{\displaystyle {\frac {d}{dx}}\left(f_{1}(x)^{f_{2}(x)^{\left(...\right)^{f_{n}(x)}}}\right)=\left[\sum \limits _{k=1}^{n}{\frac {\partial }{\partial x_{k}}}\left(f_{1}(x_{1})^{f_{2}(x_{2})^{\left(...\right)^{f_{n}(x_{n})}}}\right)\right]{\biggr \vert }_{x_{1}=x_{2}=...=x_{n}=x},{\text{ if }}f_{i<n}(x)>0{\text{ and }}}
d
f
i
d
x
exists.
{\displaystyle {\frac {df_{i}}{dx}}{\text{ exists. }}}
Logarithmic derivatives [ edit ]
The logarithmic derivative is another way of stating the rule for differentiating the logarithm of a function (using the chain rule):
(
ln
f
)
′
=
f
′
f
{\displaystyle (\ln f)'={\frac {f'}{f}}\quad }
wherever f is positive.
Logarithmic differentiation is a technique which uses logarithms and its differentiation rules to simplify certain expressions before actually applying the derivative.[citation needed ]
Logarithms can be used to remove exponents, convert products into sums, and convert division into subtraction — each of which may lead to a simplified expression for taking derivatives.
d
d
x
sin
x
=
cos
x
{\displaystyle {\frac {d}{dx}}\sin x=\cos x}
d
d
x
arcsin
x
=
1
1
−
x
2
{\displaystyle {\frac {d}{dx}}\arcsin x={\frac {1}{\sqrt {1-x^{2}}}}}
d
d
x
cos
x
=
−
sin
x
{\displaystyle {\frac {d}{dx}}\cos x=-\sin x}
d
d
x
arccos
x
=
−
1
1
−
x
2
{\displaystyle {\frac {d}{dx}}\arccos x=-{\frac {1}{\sqrt {1-x^{2}}}}}
d
d
x
tan
x
=
sec
2
x
=
1
cos
2
x
=
1
+
tan
2
x
{\displaystyle {\frac {d}{dx}}\tan x=\sec ^{2}x={\frac {1}{\cos ^{2}x}}=1+\tan ^{2}x}
d
d
x
arctan
x
=
1
1
+
x
2
{\displaystyle {\frac {d}{dx}}\arctan x={\frac {1}{1+x^{2}}}}
d
d
x
csc
x
=
−
csc
x
cot
x
{\displaystyle {\frac {d}{dx}}\csc x=-\csc {x}\cot {x}}
d
d
x
arccsc
x
=
−
1
|
x
|
x
2
−
1
{\displaystyle {\frac {d}{dx}}\operatorname {arccsc} x=-{\frac {1}{|x|{\sqrt {x^{2}-1}}}}}
d
d
x
sec
x
=
sec
x
tan
x
{\displaystyle {\frac {d}{dx}}\sec x=\sec {x}\tan {x}}
d
d
x
arcsec
x
=
1
|
x
|
x
2
−
1
{\displaystyle {\frac {d}{dx}}\operatorname {arcsec} x={\frac {1}{|x|{\sqrt {x^{2}-1}}}}}
d
d
x
cot
x
=
−
csc
2
x
=
−
1
sin
2
x
=
−
1
−
cot
2
x
{\displaystyle {\frac {d}{dx}}\cot x=-\csc ^{2}x=-{\frac {1}{\sin ^{2}x}}=-1-\cot ^{2}x}
d
d
x
arccot
x
=
−
1
1
+
x
2
{\displaystyle {\frac {d}{dx}}\operatorname {arccot} x=-{1 \over 1+x^{2}}}
The derivatives in the table above are for when the range of the inverse secant is
[
0
,
π
]
{\displaystyle [0,\pi ]\!}
and when the range of the inverse cosecant is
[
−
π
2
,
π
2
]
.
{\displaystyle \left[-{\frac {\pi }{2}},{\frac {\pi }{2}}\right].}
It is common to additionally define an inverse tangent function with two arguments ,
arctan
(
y
,
x
)
.
{\displaystyle \arctan(y,x).}
Its value lies in the range
[
−
π
,
π
]
{\displaystyle [-\pi ,\pi ]}
and reflects the quadrant of the point
(
x
,
y
)
.
{\displaystyle (x,y).}
For the first and fourth quadrant (i.e.
x
>
0
{\displaystyle x>0}
) one has
arctan
(
y
,
x
>
0
)
=
arctan
(
y
/
x
)
.
{\displaystyle \arctan(y,x>0)=\arctan(y/x).}
Its partial derivatives are
∂
arctan
(
y
,
x
)
∂
y
=
x
x
2
+
y
2
and
∂
arctan
(
y
,
x
)
∂
x
=
−
y
x
2
+
y
2
.
{\displaystyle {\frac {\partial \arctan(y,x)}{\partial y}}={\frac {x}{x^{2}+y^{2}}}\qquad {\text{and}}\qquad {\frac {\partial \arctan(y,x)}{\partial x}}={\frac {-y}{x^{2}+y^{2}}}.}
Several important Maclaurin series expansions follow. All these expansions are valid for complex arguments x .
Exponential function [ edit ]
The exponential function e x (in blue), and the sum of the first n + 1 terms of its Taylor series at 0 (in red).
The exponential function
e
x
{\displaystyle e^{x}}
(with base e ) has Maclaurin series
e
x
=
∑
n
=
0
∞
x
n
n
!
=
1
+
x
+
x
2
2
!
+
x
3
3
!
+
⋯
.
{\displaystyle e^{x}=\sum _{n=0}^{\infty }{\frac {x^{n}}{n!}}=1+x+{\frac {x^{2}}{2!}}+{\frac {x^{3}}{3!}}+\cdots .}
It converges for all x .
The exponential generating function of the Bell numbers is the exponential function of the predecessor of the exponential function:
exp
(
exp
x
−
1
)
=
∑
n
=
0
∞
B
n
n
!
x
n
{\displaystyle \exp(\exp {x}-1)=\sum _{n=0}^{\infty }{\frac {B_{n}}{n!}}x^{n}}
The natural logarithm (with base e ) has Maclaurin series[ 7]
ln
(
1
−
x
)
=
−
∑
n
=
1
∞
x
n
n
=
−
x
−
x
2
2
−
x
3
3
−
⋯
,
ln
(
1
+
x
)
=
∑
n
=
1
∞
(
−
1
)
n
+
1
x
n
n
=
x
−
x
2
2
+
x
3
3
−
⋯
.
{\displaystyle {\begin{aligned}\ln(1-x)&=-\sum _{n=1}^{\infty }{\frac {x^{n}}{n}}=-x-{\frac {x^{2}}{2}}-{\frac {x^{3}}{3}}-\cdots ,\\\ln(1+x)&=\sum _{n=1}^{\infty }(-1)^{n+1}{\frac {x^{n}}{n}}=x-{\frac {x^{2}}{2}}+{\frac {x^{3}}{3}}-\cdots .\end{aligned}}}
The last series is known as Mercator series , named after Nicholas Mercator (since it was published in his 1668 treatise Logarithmotechnia ). Both of these series converge for
|
x
|
<
1
{\displaystyle |x|<1}
. (In addition, the series for ln(1 − x ) converges for x = −1 , and the series for ln(1 + x ) converges for x = 1 .)[ 7]
The geometric series and its derivatives have Maclaurin series
1
1
−
x
=
∑
n
=
0
∞
x
n
1
(
1
−
x
)
2
=
∑
n
=
1
∞
n
x
n
−
1
1
(
1
−
x
)
3
=
∑
n
=
2
∞
(
n
−
1
)
n
2
x
n
−
2
.
{\displaystyle {\begin{aligned}{\frac {1}{1-x}}&=\sum _{n=0}^{\infty }x^{n}\\{\frac {1}{(1-x)^{2}}}&=\sum _{n=1}^{\infty }nx^{n-1}\\{\frac {1}{(1-x)^{3}}}&=\sum _{n=2}^{\infty }{\frac {(n-1)n}{2}}x^{n-2}.\end{aligned}}}
All are convergent for
|
x
|
<
1
{\displaystyle |x|<1}
. These are special cases of the binomial series given in the next section.
The binomial series is the power series
(
1
+
x
)
α
=
∑
n
=
0
∞
(
α
n
)
x
n
{\displaystyle (1+x)^{\alpha }=\sum _{n=0}^{\infty }{\binom {\alpha }{n}}x^{n}}
whose coefficients are the generalized binomial coefficients
(
α
n
)
=
∏
k
=
1
n
α
−
k
+
1
k
=
α
(
α
−
1
)
⋯
(
α
−
n
+
1
)
n
!
.
{\displaystyle {\binom {\alpha }{n}}=\prod _{k=1}^{n}{\frac {\alpha -k+1}{k}}={\frac {\alpha (\alpha -1)\cdots (\alpha -n+1)}{n!}}.}
(If n = 0 , this product is an empty product and has value 1.) It converges for
|
x
|
<
1
{\displaystyle |x|<1}
for any real or complex number α .
When α = −1 , this is essentially the infinite geometric series mentioned in the previous section. The special cases α = 1 / 2 and α = −1 / 2 give the square root function and its inverse :
(
1
+
x
)
1
2
=
1
+
1
2
x
−
1
8
x
2
+
1
16
x
3
−
5
128
x
4
+
7
256
x
5
−
⋯
=
∑
n
=
0
∞
(
−
1
)
n
−
1
(
2
n
)
!
4
n
(
n
!
)
2
(
2
n
−
1
)
x
n
,
(
1
+
x
)
−
1
2
=
1
−
1
2
x
+
3
8
x
2
−
5
16
x
3
+
35
128
x
4
−
63
256
x
5
+
⋯
=
∑
n
=
0
∞
(
−
1
)
n
(
2
n
)
!
4
n
(
n
!
)
2
x
n
.
{\displaystyle {\begin{aligned}(1+x)^{\frac {1}{2}}&=1+{\frac {1}{2}}x-{\frac {1}{8}}x^{2}+{\frac {1}{16}}x^{3}-{\frac {5}{128}}x^{4}+{\frac {7}{256}}x^{5}-\cdots &=\sum _{n=0}^{\infty }{\frac {(-1)^{n-1}(2n)!}{4^{n}(n!)^{2}(2n-1)}}x^{n},\\(1+x)^{-{\frac {1}{2}}}&=1-{\frac {1}{2}}x+{\frac {3}{8}}x^{2}-{\frac {5}{16}}x^{3}+{\frac {35}{128}}x^{4}-{\frac {63}{256}}x^{5}+\cdots &=\sum _{n=0}^{\infty }{\frac {(-1)^{n}(2n)!}{4^{n}(n!)^{2}}}x^{n}.\end{aligned}}}
When only the linear term is retained, this simplifies to the binomial approximation .
Trigonometric functions [ edit ]
The usual trigonometric functions and their inverses have the following Maclaurin series:
sin
x
=
∑
n
=
0
∞
(
−
1
)
n
(
2
n
+
1
)
!
x
2
n
+
1
=
x
−
x
3
3
!
+
x
5
5
!
−
⋯
for all
x
cos
x
=
∑
n
=
0
∞
(
−
1
)
n
(
2
n
)
!
x
2
n
=
1
−
x
2
2
!
+
x
4
4
!
−
⋯
for all
x
tan
x
=
∑
n
=
1
∞
B
2
n
(
−
4
)
n
(
1
−
4
n
)
(
2
n
)
!
x
2
n
−
1
=
x
+
x
3
3
+
2
x
5
15
+
⋯
for
|
x
|
<
π
2
sec
x
=
∑
n
=
0
∞
(
−
1
)
n
E
2
n
(
2
n
)
!
x
2
n
=
1
+
x
2
2
+
5
x
4
24
+
⋯
for
|
x
|
<
π
2
arcsin
x
=
∑
n
=
0
∞
(
2
n
)
!
4
n
(
n
!
)
2
(
2
n
+
1
)
x
2
n
+
1
=
x
+
x
3
6
+
3
x
5
40
+
⋯
for
|
x
|
≤
1
arccos
x
=
π
2
−
arcsin
x
=
π
2
−
∑
n
=
0
∞
(
2
n
)
!
4
n
(
n
!
)
2
(
2
n
+
1
)
x
2
n
+
1
=
π
2
−
x
−
x
3
6
−
3
x
5
40
−
⋯
for
|
x
|
≤
1
arctan
x
=
∑
n
=
0
∞
(
−
1
)
n
2
n
+
1
x
2
n
+
1
=
x
−
x
3
3
+
x
5
5
−
⋯
for
|
x
|
≤
1
,
x
≠
±
i
{\displaystyle {\begin{aligned}\sin x&=\sum _{n=0}^{\infty }{\frac {(-1)^{n}}{(2n+1)!}}x^{2n+1}&&=x-{\frac {x^{3}}{3!}}+{\frac {x^{5}}{5!}}-\cdots &&{\text{for all }}x\\[6pt]\cos x&=\sum _{n=0}^{\infty }{\frac {(-1)^{n}}{(2n)!}}x^{2n}&&=1-{\frac {x^{2}}{2!}}+{\frac {x^{4}}{4!}}-\cdots &&{\text{for all }}x\\[6pt]\tan x&=\sum _{n=1}^{\infty }{\frac {B_{2n}(-4)^{n}\left(1-4^{n}\right)}{(2n)!}}x^{2n-1}&&=x+{\frac {x^{3}}{3}}+{\frac {2x^{5}}{15}}+\cdots &&{\text{for }}|x|<{\frac {\pi }{2}}\\[6pt]\sec x&=\sum _{n=0}^{\infty }{\frac {(-1)^{n}E_{2n}}{(2n)!}}x^{2n}&&=1+{\frac {x^{2}}{2}}+{\frac {5x^{4}}{24}}+\cdots &&{\text{for }}|x|<{\frac {\pi }{2}}\\[6pt]\arcsin x&=\sum _{n=0}^{\infty }{\frac {(2n)!}{4^{n}(n!)^{2}(2n+1)}}x^{2n+1}&&=x+{\frac {x^{3}}{6}}+{\frac {3x^{5}}{40}}+\cdots &&{\text{for }}|x|\leq 1\\[6pt]\arccos x&={\frac {\pi }{2}}-\arcsin x\\&={\frac {\pi }{2}}-\sum _{n=0}^{\infty }{\frac {(2n)!}{4^{n}(n!)^{2}(2n+1)}}x^{2n+1}&&={\frac {\pi }{2}}-x-{\frac {x^{3}}{6}}-{\frac {3x^{5}}{40}}-\cdots &&{\text{for }}|x|\leq 1\\[6pt]\arctan x&=\sum _{n=0}^{\infty }{\frac {(-1)^{n}}{2n+1}}x^{2n+1}&&=x-{\frac {x^{3}}{3}}+{\frac {x^{5}}{5}}-\cdots &&{\text{for }}|x|\leq 1,\ x\neq \pm i\end{aligned}}}
All angles are expressed in radians . The numbers Bk appearing in the expansions of tan x are the Bernoulli numbers . The E k in the expansion of sec x are Euler numbers .
Hyperbolic functions [ edit ]
The hyperbolic functions have Maclaurin series closely related to the series for the corresponding trigonometric functions:
sinh
x
=
∑
n
=
0
∞
x
2
n
+
1
(
2
n
+
1
)
!
=
x
+
x
3
3
!
+
x
5
5
!
+
⋯
for all
x
cosh
x
=
∑
n
=
0
∞
x
2
n
(
2
n
)
!
=
1
+
x
2
2
!
+
x
4
4
!
+
⋯
for all
x
tanh
x
=
∑
n
=
1
∞
B
2
n
4
n
(
4
n
−
1
)
(
2
n
)
!
x
2
n
−
1
=
x
−
x
3
3
+
2
x
5
15
−
17
x
7
315
+
⋯
for
|
x
|
<
π
2
arsinh
x
=
∑
n
=
0
∞
(
−
1
)
n
(
2
n
)
!
4
n
(
n
!
)
2
(
2
n
+
1
)
x
2
n
+
1
=
x
−
x
3
6
+
3
x
5
40
−
⋯
for
|
x
|
≤
1
artanh
x
=
∑
n
=
0
∞
x
2
n
+
1
2
n
+
1
=
x
+
x
3
3
+
x
5
5
+
⋯
for
|
x
|
≤
1
,
x
≠
±
1
{\displaystyle {\begin{aligned}\sinh x&=\sum _{n=0}^{\infty }{\frac {x^{2n+1}}{(2n+1)!}}&&=x+{\frac {x^{3}}{3!}}+{\frac {x^{5}}{5!}}+\cdots &&{\text{for all }}x\\[6pt]\cosh x&=\sum _{n=0}^{\infty }{\frac {x^{2n}}{(2n)!}}&&=1+{\frac {x^{2}}{2!}}+{\frac {x^{4}}{4!}}+\cdots &&{\text{for all }}x\\[6pt]\tanh x&=\sum _{n=1}^{\infty }{\frac {B_{2n}4^{n}\left(4^{n}-1\right)}{(2n)!}}x^{2n-1}&&=x-{\frac {x^{3}}{3}}+{\frac {2x^{5}}{15}}-{\frac {17x^{7}}{315}}+\cdots &&{\text{for }}|x|<{\frac {\pi }{2}}\\[6pt]\operatorname {arsinh} x&=\sum _{n=0}^{\infty }{\frac {(-1)^{n}(2n)!}{4^{n}(n!)^{2}(2n+1)}}x^{2n+1}&&=x-{\frac {x^{3}}{6}}+{\frac {3x^{5}}{40}}-\cdots &&{\text{for }}|x|\leq 1\\[6pt]\operatorname {artanh} x&=\sum _{n=0}^{\infty }{\frac {x^{2n+1}}{2n+1}}&&=x+{\frac {x^{3}}{3}}+{\frac {x^{5}}{5}}+\cdots &&{\text{for }}|x|\leq 1,\ x\neq \pm 1\end{aligned}}}
The numbers Bk appearing in the series for tanh x are the Bernoulli numbers .
Polylogarithmic functions [ edit ]
The polylogarithms have these defining identities:
Li
2
(
x
)
=
∑
n
=
1
∞
1
n
2
x
n
Li
3
(
x
)
=
∑
n
=
1
∞
1
n
3
x
n
{\displaystyle {\begin{aligned}{\text{Li}}_{2}(x)&=\sum _{n=1}^{\infty }{\frac {1}{n^{2}}}x^{n}\\{\text{Li}}_{3}(x)&=\sum _{n=1}^{\infty }{\frac {1}{n^{3}}}x^{n}\end{aligned}}}
The Legendre chi functions are defined as follows:
χ
2
(
x
)
=
∑
n
=
0
∞
1
(
2
n
+
1
)
2
x
2
n
+
1
χ
3
(
x
)
=
∑
n
=
0
∞
1
(
2
n
+
1
)
3
x
2
n
+
1
{\displaystyle {\begin{aligned}\chi _{2}(x)&=\sum _{n=0}^{\infty }{\frac {1}{(2n+1)^{2}}}x^{2n+1}\\\chi _{3}(x)&=\sum _{n=0}^{\infty }{\frac {1}{(2n+1)^{3}}}x^{2n+1}\end{aligned}}}
And the formulas presented below are called inverse tangent integrals :
Ti
2
(
x
)
=
∑
n
=
0
∞
(
−
1
)
n
(
2
n
+
1
)
2
x
2
n
+
1
Ti
3
(
x
)
=
∑
n
=
0
∞
(
−
1
)
n
(
2
n
+
1
)
3
x
2
n
+
1
{\displaystyle {\begin{aligned}{\text{Ti}}_{2}(x)&=\sum _{n=0}^{\infty }{\frac {(-1)^{n}}{(2n+1)^{2}}}x^{2n+1}\\{\text{Ti}}_{3}(x)&=\sum _{n=0}^{\infty }{\frac {(-1)^{n}}{(2n+1)^{3}}}x^{2n+1}\end{aligned}}}
In statistical thermodynamics these formulas are of great importance.
The complete elliptic integrals of first kind K and of second kind E can be defined as follows:
2
π
K
(
x
)
=
∑
n
=
0
∞
[
(
2
n
)
!
]
2
16
n
(
n
!
)
4
x
2
n
2
π
E
(
x
)
=
∑
n
=
0
∞
[
(
2
n
)
!
]
2
(
1
−
2
n
)
16
n
(
n
!
)
4
x
2
n
{\displaystyle {\begin{aligned}{\frac {2}{\pi }}K(x)&=\sum _{n=0}^{\infty }{\frac {[(2n)!]^{2}}{16^{n}(n!)^{4}}}x^{2n}\\{\frac {2}{\pi }}E(x)&=\sum _{n=0}^{\infty }{\frac {[(2n)!]^{2}}{(1-2n)16^{n}(n!)^{4}}}x^{2n}\end{aligned}}}
The Jacobi theta functions describe the world of the elliptic modular functions and they have these Taylor series:
ϑ
00
(
x
)
=
1
+
2
∑
n
=
1
∞
x
n
2
ϑ
01
(
x
)
=
1
+
2
∑
n
=
1
∞
(
−
1
)
n
x
n
2
{\displaystyle {\begin{aligned}\vartheta _{00}(x)&=1+2\sum _{n=1}^{\infty }x^{n^{2}}\\\vartheta _{01}(x)&=1+2\sum _{n=1}^{\infty }(-1)^{n}x^{n^{2}}\end{aligned}}}
The regular partition number sequence P(n) has this generating function:
ϑ
00
(
x
)
−
1
/
6
ϑ
01
(
x
)
−
2
/
3
[
ϑ
00
(
x
)
4
−
ϑ
01
(
x
)
4
16
x
]
−
1
/
24
=
∑
n
=
0
∞
P
(
n
)
x
n
=
∏
k
=
1
∞
1
1
−
x
k
{\displaystyle \vartheta _{00}(x)^{-1/6}\vartheta _{01}(x)^{-2/3}{\biggl [}{\frac {\vartheta _{00}(x)^{4}-\vartheta _{01}(x)^{4}}{16\,x}}{\biggr ]}^{-1/24}=\sum _{n=0}^{\infty }P(n)x^{n}=\prod _{k=1}^{\infty }{\frac {1}{1-x^{k}}}}
The strict partition number sequence Q(n) has that generating function:
ϑ
00
(
x
)
1
/
6
ϑ
01
(
x
)
−
1
/
3
[
ϑ
00
(
x
)
4
−
ϑ
01
(
x
)
4
16
x
]
1
/
24
=
∑
n
=
0
∞
Q
(
n
)
x
n
=
∏
k
=
1
∞
1
1
−
x
2
k
−
1
{\displaystyle \vartheta _{00}(x)^{1/6}\vartheta _{01}(x)^{-1/3}{\biggl [}{\frac {\vartheta _{00}(x)^{4}-\vartheta _{01}(x)^{4}}{16\,x}}{\biggr ]}^{1/24}=\sum _{n=0}^{\infty }Q(n)x^{n}=\prod _{k=1}^{\infty }{\frac {1}{1-x^{2k-1}}}}
C is used for an arbitrary constant of integration that can only be determined if something about the value of the integral at some point is known. Thus, each function has an infinite number of antiderivatives .
These formulas only state in another form the assertions in the table of derivatives .
Integrals with a singularity [ edit ]
When there is a singularity in the function being integrated such that the antiderivative becomes undefined or at some point (the singularity), then C does not need to be the same on both sides of the singularity. The forms below normally assume the Cauchy principal value around a singularity in the value of C but this is in general, not necessary. For instance in
∫
1
x
d
x
=
ln
|
x
|
+
C
{\displaystyle \int {1 \over x}\,dx=\ln \left|x\right|+C}
there is a singularity at 0 and the antiderivative becomes infinite there. If the integral above were to be used to compute a definite integral between −1 and 1, one would get the wrong answer 0. This however is the Cauchy principal value of the integral around the singularity. If the integration is done in the complex plane the result depends on the path around the origin, in this case the singularity contributes −i π when using a path above the origin and i π for a path below the origin. A function on the real line could use a completely different value of C on either side of the origin as in:[ 14]
∫
1
x
d
x
=
ln
|
x
|
+
{
A
if
x
>
0
;
B
if
x
<
0.
{\displaystyle \int {1 \over x}\,dx=\ln |x|+{\begin{cases}A&{\text{if }}x>0;\\B&{\text{if }}x<0.\end{cases}}}
∫
a
d
x
=
a
x
+
C
{\displaystyle \int a\,dx=ax+C}
The following function has a non-integrable singularity at 0 for n ≤ −1 :
∫
x
n
d
x
=
x
n
+
1
n
+
1
+
C
(for
n
≠
−
1
)
{\displaystyle \int x^{n}\,dx={\frac {x^{n+1}}{n+1}}+C\qquad {\text{(for }}n\neq -1{\text{)}}}
(Cavalieri's quadrature formula )
∫
(
a
x
+
b
)
n
d
x
=
(
a
x
+
b
)
n
+
1
a
(
n
+
1
)
+
C
(for
n
≠
−
1
)
{\displaystyle \int (ax+b)^{n}\,dx={\frac {(ax+b)^{n+1}}{a(n+1)}}+C\qquad {\text{(for }}n\neq -1{\text{)}}}
∫
1
x
d
x
=
ln
|
x
|
+
C
{\displaystyle \int {1 \over x}\,dx=\ln \left|x\right|+C}
More generally,[ 15]
∫
1
x
d
x
=
{
ln
|
x
|
+
C
−
x
<
0
ln
|
x
|
+
C
+
x
>
0
{\displaystyle \int {1 \over x}\,dx={\begin{cases}\ln \left|x\right|+C^{-}&x<0\\\ln \left|x\right|+C^{+}&x>0\end{cases}}}
∫
c
a
x
+
b
d
x
=
c
a
ln
|
a
x
+
b
|
+
C
{\displaystyle \int {\frac {c}{ax+b}}\,dx={\frac {c}{a}}\ln \left|ax+b\right|+C}
Exponential functions [ edit ]
∫
ln
x
d
x
=
x
ln
x
−
x
+
C
=
x
(
ln
x
−
1
)
+
C
{\displaystyle \int \ln x\,dx=x\ln x-x+C=x(\ln x-1)+C}
∫
log
a
x
d
x
=
x
log
a
x
−
x
ln
a
+
C
=
x
ln
a
(
ln
x
−
1
)
+
C
{\displaystyle \int \log _{a}x\,dx=x\log _{a}x-{\frac {x}{\ln a}}+C={\frac {x}{\ln a}}(\ln x-1)+C}
Trigonometric functions [ edit ]
∫
sin
x
d
x
=
−
cos
x
+
C
{\displaystyle \int \sin {x}\,dx=-\cos {x}+C}
∫
cos
x
d
x
=
sin
x
+
C
{\displaystyle \int \cos {x}\,dx=\sin {x}+C}
∫
tan
x
d
x
=
ln
|
sec
x
|
+
C
=
−
ln
|
cos
x
|
+
C
{\displaystyle \int \tan {x}\,dx=\ln {\left|\sec {x}\right|}+C=-\ln {\left|\cos {x}\right|}+C}
∫
cot
x
d
x
=
−
ln
|
csc
x
|
+
C
=
ln
|
sin
x
|
+
C
{\displaystyle \int \cot {x}\,dx=-\ln {\left|\csc {x}\right|}+C=\ln {\left|\sin {x}\right|}+C}
∫
sec
x
d
x
=
ln
|
sec
x
+
tan
x
|
+
C
=
ln
|
tan
(
x
2
+
π
4
)
|
+
C
{\displaystyle \int \sec {x}\,dx=\ln {\left|\sec {x}+\tan {x}\right|}+C=\ln \left|\tan \left({\dfrac {x}{2}}+{\dfrac {\pi }{4}}\right)\right|+C}
∫
csc
x
d
x
=
−
ln
|
csc
x
+
cot
x
|
+
C
=
ln
|
csc
x
−
cot
x
|
+
C
=
ln
|
tan
x
2
|
+
C
{\displaystyle \int \csc {x}\,dx=-\ln {\left|\csc {x}+\cot {x}\right|}+C=\ln {\left|\csc {x}-\cot {x}\right|}+C=\ln {\left|\tan {\frac {x}{2}}\right|}+C}
∫
sec
2
x
d
x
=
tan
x
+
C
{\displaystyle \int \sec ^{2}x\,dx=\tan x+C}
∫
csc
2
x
d
x
=
−
cot
x
+
C
{\displaystyle \int \csc ^{2}x\,dx=-\cot x+C}
∫
sec
x
tan
x
d
x
=
sec
x
+
C
{\displaystyle \int \sec {x}\,\tan {x}\,dx=\sec {x}+C}
∫
csc
x
cot
x
d
x
=
−
csc
x
+
C
{\displaystyle \int \csc {x}\,\cot {x}\,dx=-\csc {x}+C}
∫
sin
2
x
d
x
=
1
2
(
x
−
sin
2
x
2
)
+
C
=
1
2
(
x
−
sin
x
cos
x
)
+
C
{\displaystyle \int \sin ^{2}x\,dx={\frac {1}{2}}\left(x-{\frac {\sin 2x}{2}}\right)+C={\frac {1}{2}}(x-\sin x\cos x)+C}
∫
cos
2
x
d
x
=
1
2
(
x
+
sin
2
x
2
)
+
C
=
1
2
(
x
+
sin
x
cos
x
)
+
C
{\displaystyle \int \cos ^{2}x\,dx={\frac {1}{2}}\left(x+{\frac {\sin 2x}{2}}\right)+C={\frac {1}{2}}(x+\sin x\cos x)+C}
∫
tan
2
x
d
x
=
tan
x
−
x
+
C
{\displaystyle \int \tan ^{2}x\,dx=\tan x-x+C}
∫
cot
2
x
d
x
=
−
cot
x
−
x
+
C
{\displaystyle \int \cot ^{2}x\,dx=-\cot x-x+C}
∫
sec
3
x
d
x
=
1
2
(
sec
x
tan
x
+
ln
|
sec
x
+
tan
x
|
)
+
C
{\displaystyle \int \sec ^{3}x\,dx={\frac {1}{2}}(\sec x\tan x+\ln |\sec x+\tan x|)+C}
∫
csc
3
x
d
x
=
1
2
(
−
csc
x
cot
x
+
ln
|
csc
x
−
cot
x
|
)
+
C
=
1
2
(
ln
|
tan
x
2
|
−
csc
x
cot
x
)
+
C
{\displaystyle \int \csc ^{3}x\,dx={\frac {1}{2}}(-\csc x\cot x+\ln |\csc x-\cot x|)+C={\frac {1}{2}}\left(\ln \left|\tan {\frac {x}{2}}\right|-\csc x\cot x\right)+C}
∫
sin
n
x
d
x
=
−
sin
n
−
1
x
cos
x
n
+
n
−
1
n
∫
sin
n
−
2
x
d
x
{\displaystyle \int \sin ^{n}x\,dx=-{\frac {\sin ^{n-1}{x}\cos {x}}{n}}+{\frac {n-1}{n}}\int \sin ^{n-2}{x}\,dx}
∫
cos
n
x
d
x
=
cos
n
−
1
x
sin
x
n
+
n
−
1
n
∫
cos
n
−
2
x
d
x
{\displaystyle \int \cos ^{n}x\,dx={\frac {\cos ^{n-1}{x}\sin {x}}{n}}+{\frac {n-1}{n}}\int \cos ^{n-2}{x}\,dx}
Inverse trigonometric functions [ edit ]
∫
arcsin
x
d
x
=
x
arcsin
x
+
1
−
x
2
+
C
,
for
|
x
|
≤
1
{\displaystyle \int \arcsin {x}\,dx=x\arcsin {x}+{\sqrt {1-x^{2}}}+C,{\text{ for }}\vert x\vert \leq 1}
∫
arccos
x
d
x
=
x
arccos
x
−
1
−
x
2
+
C
,
for
|
x
|
≤
1
{\displaystyle \int \arccos {x}\,dx=x\arccos {x}-{\sqrt {1-x^{2}}}+C,{\text{ for }}\vert x\vert \leq 1}
∫
arctan
x
d
x
=
x
arctan
x
−
1
2
ln
|
1
+
x
2
|
+
C
,
for all real
x
{\displaystyle \int \arctan {x}\,dx=x\arctan {x}-{\frac {1}{2}}\ln {\vert 1+x^{2}\vert }+C,{\text{ for all real }}x}
∫
arccot
x
d
x
=
x
arccot
x
+
1
2
ln
|
1
+
x
2
|
+
C
,
for all real
x
{\displaystyle \int \operatorname {arccot} {x}\,dx=x\operatorname {arccot} {x}+{\frac {1}{2}}\ln {\vert 1+x^{2}\vert }+C,{\text{ for all real }}x}
∫
arcsec
x
d
x
=
x
arcsec
x
−
ln
|
x
(
1
+
1
−
x
−
2
)
|
+
C
,
for
|
x
|
≥
1
{\displaystyle \int \operatorname {arcsec} {x}\,dx=x\operatorname {arcsec} {x}-\ln \left\vert x\,\left(1+{\sqrt {1-x^{-2}}}\,\right)\right\vert +C,{\text{ for }}\vert x\vert \geq 1}
∫
arccsc
x
d
x
=
x
arccsc
x
+
ln
|
x
(
1
+
1
−
x
−
2
)
|
+
C
,
for
|
x
|
≥
1
{\displaystyle \int \operatorname {arccsc} {x}\,dx=x\operatorname {arccsc} {x}+\ln \left\vert x\,\left(1+{\sqrt {1-x^{-2}}}\,\right)\right\vert +C,{\text{ for }}\vert x\vert \geq 1}
Hyperbolic functions [ edit ]
∫
sinh
x
d
x
=
cosh
x
+
C
{\displaystyle \int \sinh x\,dx=\cosh x+C}
∫
cosh
x
d
x
=
sinh
x
+
C
{\displaystyle \int \cosh x\,dx=\sinh x+C}
∫
tanh
x
d
x
=
ln
(
cosh
x
)
+
C
{\displaystyle \int \tanh x\,dx=\ln \,(\cosh x)+C}
∫
coth
x
d
x
=
ln
|
sinh
x
|
+
C
,
for
x
≠
0
{\displaystyle \int \coth x\,dx=\ln |\sinh x|+C,{\text{ for }}x\neq 0}
∫
sech
x
d
x
=
arctan
(
sinh
x
)
+
C
{\displaystyle \int \operatorname {sech} \,x\,dx=\arctan \,(\sinh x)+C}
∫
csch
x
d
x
=
ln
|
coth
x
−
csch
x
|
+
C
=
ln
|
tanh
x
2
|
+
C
,
for
x
≠
0
{\displaystyle \int \operatorname {csch} \,x\,dx=\ln |\operatorname {coth} x-\operatorname {csch} x|+C=\ln \left|\tanh {x \over 2}\right|+C,{\text{ for }}x\neq 0}
∫
sech
2
x
d
x
=
tanh
x
+
C
{\displaystyle \int \operatorname {sech} ^{2}x\,dx=\tanh x+C}
∫
csch
2
x
d
x
=
−
coth
x
+
C
{\displaystyle \int \operatorname {csch} ^{2}x\,dx=-\operatorname {coth} x+C}
∫
sech
x
tanh
x
d
x
=
−
sech
x
+
C
{\displaystyle \int \operatorname {sech} {x}\,\operatorname {tanh} {x}\,dx=-\operatorname {sech} {x}+C}
∫
csch
x
coth
x
d
x
=
−
csch
x
+
C
{\displaystyle \int \operatorname {csch} {x}\,\operatorname {coth} {x}\,dx=-\operatorname {csch} {x}+C}
Inverse hyperbolic functions [ edit ]
∫
arcsinh
x
d
x
=
x
arcsinh
x
−
x
2
+
1
+
C
,
for all real
x
{\displaystyle \int \operatorname {arcsinh} \,x\,dx=x\,\operatorname {arcsinh} \,x-{\sqrt {x^{2}+1}}+C,{\text{ for all real }}x}
∫
arccosh
x
d
x
=
x
arccosh
x
−
x
2
−
1
+
C
,
for
x
≥
1
{\displaystyle \int \operatorname {arccosh} \,x\,dx=x\,\operatorname {arccosh} \,x-{\sqrt {x^{2}-1}}+C,{\text{ for }}x\geq 1}
∫
arctanh
x
d
x
=
x
arctanh
x
+
ln
(
1
−
x
2
)
2
+
C
,
for
|
x
|
<
1
{\displaystyle \int \operatorname {arctanh} \,x\,dx=x\,\operatorname {arctanh} \,x+{\frac {\ln \left(\,1-x^{2}\right)}{2}}+C,{\text{ for }}\vert x\vert <1}
∫
arccoth
x
d
x
=
x
arccoth
x
+
ln
(
x
2
−
1
)
2
+
C
,
for
|
x
|
>
1
{\displaystyle \int \operatorname {arccoth} \,x\,dx=x\,\operatorname {arccoth} \,x+{\frac {\ln \left(x^{2}-1\right)}{2}}+C,{\text{ for }}\vert x\vert >1}
∫
arcsech
x
d
x
=
x
arcsech
x
+
arcsin
x
+
C
,
for
0
<
x
≤
1
{\displaystyle \int \operatorname {arcsech} \,x\,dx=x\,\operatorname {arcsech} \,x+\arcsin x+C,{\text{ for }}0<x\leq 1}
∫
arccsch
x
d
x
=
x
arccsch
x
+
|
arcsinh
x
|
+
C
,
for
x
≠
0
{\displaystyle \int \operatorname {arccsch} \,x\,dx=x\,\operatorname {arccsch} \,x+\vert \operatorname {arcsinh} \,x\vert +C,{\text{ for }}x\neq 0}
Products of functions proportional to their second derivatives [ edit ]
∫
cos
a
x
e
b
x
d
x
=
e
b
x
a
2
+
b
2
(
a
sin
a
x
+
b
cos
a
x
)
+
C
{\displaystyle \int \cos ax\,e^{bx}\,dx={\frac {e^{bx}}{a^{2}+b^{2}}}\left(a\sin ax+b\cos ax\right)+C}
∫
sin
a
x
e
b
x
d
x
=
e
b
x
a
2
+
b
2
(
b
sin
a
x
−
a
cos
a
x
)
+
C
{\displaystyle \int \sin ax\,e^{bx}\,dx={\frac {e^{bx}}{a^{2}+b^{2}}}\left(b\sin ax-a\cos ax\right)+C}
∫
cos
a
x
cosh
b
x
d
x
=
1
a
2
+
b
2
(
a
sin
a
x
cosh
b
x
+
b
cos
a
x
sinh
b
x
)
+
C
{\displaystyle \int \cos ax\,\cosh bx\,dx={\frac {1}{a^{2}+b^{2}}}\left(a\sin ax\,\cosh bx+b\cos ax\,\sinh bx\right)+C}
∫
sin
a
x
cosh
b
x
d
x
=
1
a
2
+
b
2
(
b
sin
a
x
sinh
b
x
−
a
cos
a
x
cosh
b
x
)
+
C
{\displaystyle \int \sin ax\,\cosh bx\,dx={\frac {1}{a^{2}+b^{2}}}\left(b\sin ax\,\sinh bx-a\cos ax\,\cosh bx\right)+C}
Absolute-value functions [ edit ]
Let f be a continuous function , that has at most one zero . If f has a zero, let g be the unique antiderivative of f that is zero at the root of f ; otherwise, let g be any antiderivative of f . Then
∫
|
f
(
x
)
|
d
x
=
sgn
(
f
(
x
)
)
g
(
x
)
+
C
,
{\displaystyle \int \left|f(x)\right|\,dx=\operatorname {sgn}(f(x))g(x)+C,}
where sgn(x ) is the sign function , which takes the values −1, 0, 1 when x is respectively negative, zero or positive.
This can be proved by computing the derivative of the right-hand side of the formula, taking into account that the condition on g is here for insuring the continuity of the integral.
This gives the following formulas (where a ≠ 0 ), which are valid over any interval where f is continuous (over larger intervals, the constant C must be replaced by a piecewise constant function):
∫
|
(
a
x
+
b
)
n
|
d
x
=
sgn
(
a
x
+
b
)
(
a
x
+
b
)
n
+
1
a
(
n
+
1
)
+
C
{\displaystyle \int \left|(ax+b)^{n}\right|\,dx=\operatorname {sgn}(ax+b){(ax+b)^{n+1} \over a(n+1)}+C}
when n is odd, and
n
≠
−
1
{\displaystyle n\neq -1}
.
∫
|
tan
a
x
|
d
x
=
−
1
a
sgn
(
tan
a
x
)
ln
(
|
cos
a
x
|
)
+
C
{\displaystyle \int \left|\tan {ax}\right|\,dx=-{\frac {1}{a}}\operatorname {sgn}(\tan {ax})\ln(\left|\cos {ax}\right|)+C}
when
a
x
∈
(
n
π
−
π
2
,
n
π
+
π
2
)
{\textstyle ax\in \left(n\pi -{\frac {\pi }{2}},n\pi +{\frac {\pi }{2}}\right)}
for some integer n .
∫
|
csc
a
x
|
d
x
=
−
1
a
sgn
(
csc
a
x
)
ln
(
|
csc
a
x
+
cot
a
x
|
)
+
C
{\displaystyle \int \left|\csc {ax}\right|\,dx=-{\frac {1}{a}}\operatorname {sgn}(\csc {ax})\ln(\left|\csc {ax}+\cot {ax}\right|)+C}
when
a
x
∈
(
n
π
,
n
π
+
π
)
{\displaystyle ax\in \left(n\pi ,n\pi +\pi \right)}
for some integer n .
∫
|
sec
a
x
|
d
x
=
1
a
sgn
(
sec
a
x
)
ln
(
|
sec
a
x
+
tan
a
x
|
)
+
C
{\displaystyle \int \left|\sec {ax}\right|\,dx={\frac {1}{a}}\operatorname {sgn}(\sec {ax})\ln(\left|\sec {ax}+\tan {ax}\right|)+C}
when
a
x
∈
(
n
π
−
π
2
,
n
π
+
π
2
)
{\textstyle ax\in \left(n\pi -{\frac {\pi }{2}},n\pi +{\frac {\pi }{2}}\right)}
for some integer n .
∫
|
cot
a
x
|
d
x
=
1
a
sgn
(
cot
a
x
)
ln
(
|
sin
a
x
|
)
+
C
{\displaystyle \int \left|\cot {ax}\right|\,dx={\frac {1}{a}}\operatorname {sgn}(\cot {ax})\ln(\left|\sin {ax}\right|)+C}
when
a
x
∈
(
n
π
,
n
π
+
π
)
{\displaystyle ax\in \left(n\pi ,n\pi +\pi \right)}
for some integer n .
If the function f does not have any continuous antiderivative which takes the value zero at the zeros of f (this is the case for the sine and the cosine functions), then sgn(f (x )) ∫ f (x ) dx is an antiderivative of f on every interval on which f is not zero, but may be discontinuous at the points where f (x ) = 0 . For having a continuous antiderivative, one has thus to add a well chosen step function . If we also use the fact that the absolute values of sine and cosine are periodic with period π , then we get:
∫
|
sin
a
x
|
d
x
=
2
a
⌊
a
x
π
⌋
−
1
a
cos
(
a
x
−
⌊
a
x
π
⌋
π
)
+
C
{\displaystyle \int \left|\sin {ax}\right|\,dx={2 \over a}\left\lfloor {\frac {ax}{\pi }}\right\rfloor -{1 \over a}\cos {\left(ax-\left\lfloor {\frac {ax}{\pi }}\right\rfloor \pi \right)}+C}
[citation needed ]
∫
|
cos
a
x
|
d
x
=
2
a
⌊
a
x
π
+
1
2
⌋
+
1
a
sin
(
a
x
−
⌊
a
x
π
+
1
2
⌋
π
)
+
C
{\displaystyle \int \left|\cos {ax}\right|\,dx={2 \over a}\left\lfloor {\frac {ax}{\pi }}+{\frac {1}{2}}\right\rfloor +{1 \over a}\sin {\left(ax-\left\lfloor {\frac {ax}{\pi }}+{\frac {1}{2}}\right\rfloor \pi \right)}+C}
[citation needed ]
Ci , Si : Trigonometric integrals , Ei : Exponential integral , li : Logarithmic integral function , erf : Error function
∫
Ci
(
x
)
d
x
=
x
Ci
(
x
)
−
sin
x
{\displaystyle \int \operatorname {Ci} (x)\,dx=x\operatorname {Ci} (x)-\sin x}
∫
Si
(
x
)
d
x
=
x
Si
(
x
)
+
cos
x
{\displaystyle \int \operatorname {Si} (x)\,dx=x\operatorname {Si} (x)+\cos x}
∫
Ei
(
x
)
d
x
=
x
Ei
(
x
)
−
e
x
{\displaystyle \int \operatorname {Ei} (x)\,dx=x\operatorname {Ei} (x)-e^{x}}
∫
li
(
x
)
d
x
=
x
li
(
x
)
−
Ei
(
2
ln
x
)
{\displaystyle \int \operatorname {li} (x)\,dx=x\operatorname {li} (x)-\operatorname {Ei} (2\ln x)}
∫
li
(
x
)
x
d
x
=
ln
x
li
(
x
)
−
x
{\displaystyle \int {\frac {\operatorname {li} (x)}{x}}\,dx=\ln x\,\operatorname {li} (x)-x}
∫
erf
(
x
)
d
x
=
e
−
x
2
π
+
x
erf
(
x
)
{\displaystyle \int \operatorname {erf} (x)\,dx={\frac {e^{-x^{2}}}{\sqrt {\pi }}}+x\operatorname {erf} (x)}
Tangent Half-angle Substitution [ edit ]
The tangent half-angle substitution relates an angle to the slope of a line.
Introducing a new variable
t
=
tan
x
2
,
{\textstyle t=\tan {\tfrac {x}{2}},}
sines and cosines can be expressed as rational functions of
t
,
{\displaystyle t,}
and
d
x
{\displaystyle dx}
can be expressed as the product of
d
t
{\displaystyle dt}
and a rational function of
t
,
{\displaystyle t,}
as follows:
sin
x
=
2
t
1
+
t
2
,
cos
x
=
1
−
t
2
1
+
t
2
,
and
d
x
=
2
1
+
t
2
d
t
.
{\displaystyle \sin x={\frac {2t}{1+t^{2}}},\quad \cos x={\frac {1-t^{2}}{1+t^{2}}},\quad {\text{and}}\quad dx={\frac {2}{1+t^{2}}}\,dt.}
Similar expressions can be written for tan x , cot x , sec x , and csc x .
Using the double-angle formulas
sin
x
=
2
sin
x
2
cos
x
2
{\displaystyle \sin x=2\sin {\tfrac {x}{2}}\cos {\tfrac {x}{2}}}
and
cos
x
=
cos
2
x
2
−
sin
2
x
2
{\displaystyle \cos x=\cos ^{2}{\tfrac {x}{2}}-\sin ^{2}{\tfrac {x}{2}}}
and introducing denominators equal to one by the Pythagorean identity
1
=
cos
2
x
2
+
sin
2
x
2
{\displaystyle 1=\cos ^{2}{\tfrac {x}{2}}+\sin ^{2}{\tfrac {x}{2}}}
results in
sin
x
=
2
sin
x
2
cos
x
2
cos
2
x
2
+
sin
2
x
2
=
2
tan
x
2
1
+
tan
2
x
2
=
2
t
1
+
t
2
,
cos
x
=
cos
2
x
2
−
sin
2
x
2
cos
2
x
2
+
sin
2
x
2
=
1
−
tan
2
x
2
1
+
tan
2
x
2
=
1
−
t
2
1
+
t
2
.
{\displaystyle {\begin{aligned}\sin x&={\frac {2\sin {\tfrac {x}{2}}\,\cos {\tfrac {x}{2}}}{\cos ^{2}{\tfrac {x}{2}}+\sin ^{2}{\tfrac {x}{2}}}}={\frac {2\tan {\tfrac {x}{2}}}{1+\tan ^{2}{\tfrac {x}{2}}}}={\frac {2t}{1+t^{2}}},\\[18mu]\cos x&={\frac {\cos ^{2}{\tfrac {x}{2}}-\sin ^{2}{\tfrac {x}{2}}}{\cos ^{2}{\tfrac {x}{2}}+\sin ^{2}{\tfrac {x}{2}}}}={\frac {1-\tan ^{2}{\tfrac {x}{2}}}{1+\tan ^{2}{\tfrac {x}{2}}}}={\frac {1-t^{2}}{1+t^{2}}}.\end{aligned}}}
Finally, since
t
=
tan
x
2
{\textstyle t=\tan {\tfrac {x}{2}}}
, differentiation rules imply
d
t
=
1
2
(
1
+
tan
2
x
2
)
d
x
=
1
+
t
2
2
d
x
,
{\displaystyle dt={\tfrac {1}{2}}\left(1+\tan ^{2}{\tfrac {x}{2}}\right)dx={\frac {1+t^{2}}{2}}\,dx,}
and thus
d
x
=
2
1
+
t
2
d
t
.
{\displaystyle dx={\frac {2}{1+t^{2}}}\,dt.}
^ "Table of equivalent infinitesimals" (PDF) . Vaxa Software .
^ Calculus (5th edition) , F. Ayres, E. Mendelson, Schaum's Outline Series, 2009, ISBN 978-0-07-150861-2 .
^ Advanced Calculus (3rd edition) , R. Wrede, M.R. Spiegel, Schaum's Outline Series, 2010, ISBN 978-0-07-162366-7 .
^ Complex Variables , M.R. Spiegel, S. Lipschutz, J.J. Schiller, D. Spellman, Schaum's Outlines Series, McGraw Hill (USA), 2009, ISBN 978-0-07-161569-3
^ "Differentiation Rules" . University of Waterloo – CEMC Open Courseware . Retrieved 3 May 2022 .
^ a b
^ Serge Lang . A First Course in Calculus , 5th edition, p. 290
^ "Reader Survey: log|x | + C ", Tom Leinster, The n-category Café , March 19, 2012