Jump to content

User:Viraj nadkarni/Elementary electronics

From Wikipedia, the free encyclopedia


Electronics is a huge field.Beginners often get confused from where to begin.The purpose of this article is to introduce them to electronics.Electronics is very young. It is hard to place its beginning in the timeline.Two developments at the beginning of this century led to the interest in electronics.One was the wireless telegraphy,and the second was the transistor on which the computers depend.Electronics is a brand new field.Its entire history is limited to the 20th century.Yet,it has grown so rapidly and has become so important that several branches of it have developed.Digital and Analog are the major ones.

History

[edit]

A major development came in 1906 when Pickard invented the crystal radio detector.Commercial radio was born in Pittsburgh,Pennysylvania at a station KDKA IN 1920.Commercial television was born around 1946.This suggested the use of semi-conductors in the future of electronics.But,the vaccum tube which had served so well for so many years were now making engineers wish for something better.The first vaccum tube computer was built in the university of pennysylvania.Soon,commercial vaccum tube computers became available.But, they were huge and expensive,and generated a lot of heat.They were not reliable by modern standards.Scientists knew that many of the jobs done by vaccum tubes could be done more efficiently by semi-conducting crystals.So,they kept working at it.The breakthrough came in 1947.Three scientists working at Bell Laboratories made the first working transistor.This was such a major contribution to science,that the three scientists were given the Nobel prize.'Solid state' became the household word for them.They became very popular.But,still engineers were not satisfied.So,it was with Jack Kilby of Texas instruments.His work led to the development of the integrated circuits.In 1971,the Intel corporation of California announced one of the most sophisticated integrated circuits-the microprocessor.The integrated circuit is producing an electronic explosion.Now electronics is being applied to more ways than ever before.At one time,the radio was just the only application.Today, electronics makes a major contribution to every part of human endeavor.It affects us in many ways that we may not have even be aware of.We are living in the electronic age.

Introduction

[edit]

Today,electronics is such a huge field that it is necessary to divide it into smaller subfields.You will hear many fields such as medical electronics,consumer electronics,etc.One way to divide electronics is to make it into digital electronics and analog electronics. Digital electronics represent signals by discrete bands of analog levels, rather than by a continuous range. All levels within a band represent the same signal state. Relatively small changes to the analog signal levels due to manufacturing tolerance, signal attenuation or parasitic noise do not leave the discrete envelope, and as a result are ignored by signal state sensing circuitry.

In most cases the number of these states is two, and they are represented by two voltage bands: one near a reference value (typically termed as "ground" or zero volts) and a value near the supply voltage, corresponding to the "false" ("0") and "true" ("1") values of the Boolean domain respectively.

Digital techniques are useful because it is easier to get an electronic device to switch into one of a number of known states than to accurately reproduce a continuous range of values. Digital circuits are made from analog components. The design must assure that the analog nature of the components doesn't dominate the desired digital behavior. Digital systems must manage noise and timing margins, parasitic inductances and capacitances, and filter power connections.

Bad designs have intermittent problems such as "glitches", vanishingly-fast pulses that may trigger some logic but not others, "runt pulses" that do not reach valid "threshold" voltages, or unexpected ("undecoded") combinations of logic states.

Additionally, where clocked digital systems interface to analogue systems or systems that are driven from a different clock, the digital system can be subject to metastability where a change to the input violates the set-up time for a digital input latch. This situation will self-resolve, but will take a random time, and while it persists can result in invalid signals being propagated within the digital system for a short time.

Since digital circuits are made from analog components, digital circuits calculate more slowly than low-precision analog circuits that use a similar amount of space and power. However, the digital circuit will calculate more repeatably, because of its high noise immunity. On the other hand, in the high-precision domain (for example, where 14 or more bits of precision are needed), analog circuits require much more power and area than digital equivalents. Now let us come to analog electronics.An analogue signal uses some attribute of the medium to convey the signal's information. For example, an aneroid barometer uses the angular position of a needle as the signal to convey the information of changes in atmospheric pressure.[1] Electrical signals may represent information by changing their voltage, current, frequency, or total charge. Information is converted from some other physical form (such as sound, light, temperature, pressure, position) to an electrical signal by a transducer which converts one type of energy into another (e.g. a microphone).[2]

The signals take any value from a given range, and each unique signal value represents different information. Any change in the signal is meaningful, and each level of the signal represents a different level of the phenomenon that it represents. For example, suppose the signal is being used to represent temperature, with one volt representing one degree Celsius. In such a system 10 volts would represent 10 degrees, and 10.1 volts would represent 10.1 degrees.

Another method of conveying an analogue signal is to use modulation. In this, some base carrier signal has one of its properties altered: amplitude modulation (AM) involves altering the amplitude of a sinusoidal voltage waveform by the source information, frequency modulation (FM) changes the frequency. Other techniques, such as phase modulation or changing the phase of the carrier signal, are also used.[3]

In an analogue sound recording, the variation in pressure of a sound striking a microphone creates a corresponding variation in the current passing through it or voltage across it. An increase in the volume of the sound causes the fluctuation of the current or voltage to increase proportionally while keeping the same waveform or shape.

Mechanical, pneumatic, hydraulic and other systems may also use analogue signals.

Semi-conductors

[edit]

A semiconductor is a material with electrical conductivity due to electron flow (as opposed to ionic conductivity) intermediate in magnitude between that of a conductor and an insulator. This means a conductivity roughly in the range of 103 to 10−8 siemens per centimeter. Semiconductor materials are the foundation of modern electronics, including radio, computers, telephones, and many other devices. Such devices include transistors, solar cells, many kinds of diodes including the light-emitting diode, the silicon controlled rectifier, and digital and analog integrated circuits. Similarly, semiconductor solar photovoltaic panels directly convert light energy into electrical energy. In a metallic conductor, current is carried by the flow of electrons. In semiconductors, current is often schematized as being carried either by the flow of electrons or by the flow of positively charged "holes" in the electron structure of the material.

Common semiconducting materials are crystalline solids, but amorphous and liquid semiconductors are known. These include hydrogenated amorphous silicon and mixtures of arsenic, selenium and tellurium in a variety of proportions. Such compounds share with better known semiconductors intermediate conductivity and a rapid variation of conductivity with temperature, as well as occasional negative resistance. Such disordered materials lack the rigid crystalline structure of conventional semiconductors such as silicon and are generally used in thin film structures, which are less demanding for as concerns the electronic quality of the material and thus are relatively insensitive to impurities and radiation damage. Organic semiconductors, that is, organic materials with properties resembling conventional semiconductors, are also known.

Silicon is used to create most semiconductors commercially. Dozens of other materials are used, including germanium, gallium arsenide, and silicon carbide. A pure semiconductor is often called an “intrinsic” semiconductor. The electronic properties and the conductivity of a semiconductor can be changed in a controlled manner by adding very small quantities of other elements, called “dopants”, to the intrinsic material. In crystalline silicon typically this is achieved by adding impurities of boron or phosphorus to the melt and then allowing the melt to solidify into the crystal. This process is called "doping".[4]

Doping

[edit]

The property of semiconductors that makes them most useful for constructing electronic devices is that their conductivity may easily be modified by introducing impurities into their crystal lattice. The process of adding controlled impurities to a semiconductor is known as doping. The amount of impurity, or dopant, added to an intrinsic (pure) semiconductor varies its level of conductivity. Doped semiconductors are often referred to as extrinsic. By adding impurity to pure semiconductors, the electrical conductivity may be varied not only by the number of impurity atoms but also, by the type of impurity atom and the changes may be thousand folds and million folds. For example, a 1 cm3 specimen of a metal or semiconductor has of the order of 1022 atoms. In a metal every atom donates at least one free electron for conduction, thus 1 cm3 of metal contains on the order of 1022 free electrons. Whereas a 1 cm3 of sample pure germanium at 20 °C, contains about 4.2×1022 atoms and 2.5×1013 free electrons and 2.5×1013 holes (empty spaces in crystal lattice having positive charge). The addition of 0.001% of arsenic (an impurity) donates an extra 1017 free electrons in the same volume and the electrical conductivity is increased by a factor of 10,000. The materials chosen as suitable dopants depend on the atomic properties of both the dopant and the material to be doped. In general, dopants that produce the desired controlled changes are classified as either electron acceptors or donors. A donor atom that activates (that is, becomes incorporated into the crystal lattice) donates weakly bound valence electrons to the material, creating excess negative charge carriers. These weakly bound electrons can move about in the crystal lattice relatively freely and can facilitate conduction in the presence of an electric field. (The donor atoms introduce some states under, but very close to the conduction band edge. Electrons at these states can be easily excited to the conduction band, becoming free electrons, at room temperature.) Conversely, an activated acceptor produces a hole. Semiconductors doped with donor impurities are called n-type, while those doped with acceptor impurities are known as p-type. The n and p type designations indicate which charge carrier acts as the material's majority carrier. The opposite carrier is called the minority carrier, which exists due to thermal excitation at a much lower concentration compared to the majority carrier.

For example, the pure semiconductor silicon has four valence electrons. In silicon, the most common dopants are IUPAC group 13 (commonly known as group III) and group 15 (commonly known as group V) elements. Group 13 elements all contain three valence electrons, causing them to function as acceptors when used to dope silicon. Group 15 elements have five valence electrons, which allows them to act as a donor. Therefore, a silicon crystal doped with boron creates a p-type semiconductor whereas one doped with phosphorus results in an n-type material.

N-type semi-conductors

[edit]

Semiconductors are defined by their unique electric conductive behavior. Metals are good conductors because at their Fermi level, there is a large density of energetically available states that each electron can occupy. Electrons can move quite freely between energy levels without a high energy cost. Metal conductivity decreases with temperature increase because thermal vibrations of crystal lattice disrupt the free motion of electrons. Insulators, by contrast, are very poor conductors of electricity because there is a large difference in energies (called a band gap) between electron-occupied energy levels and empty energy levels that allow for electron motion. Insulator conductivity increases with temperature because heat provides energy to promote electrons across the band gap to the higher electron conduction energy levels (called the conduction band). Semiconductors, on the other hand, have an intermediate level of electric conductivity when compared to metals and insulators. Their band gap is small enough that small increase in temperature promotes sufficient number of electrons (to result in measurable currents) from the lowest energy levels (in the valence band) to the conduction band. This creates electron holes, or unoccupied levels, in the valence band, and very loosely held electrons in the conduction band.[2][3] An intrinsic semiconductor is made up ideally of one pure element, typically silicon. At room temperature, the conductivity of intrinsic semiconductors is relatively low. Conductivity is greatly enhanced by a process called doping, in which other elements are added to the intrinsic crystal in very small amounts to create what is called an extrinsic semiconductor. When the dopant provides extra electrons to the host, the product is called an n-type semiconductor. The process of doping is described as it introduces energy levels into band gap; those levels are filled with electrons and lie close to the conduction band so that even slight thermal agitation can release them into the conduction band.[2] It should be noted, that the negative charge of the electrons is balanced by an equivalent positive charge in the center of the impurity atoms. Therefore, the net electrical charge of the semiconductor material is not changed.[4]

Diodes

[edit]
Figure 7: Typical diode packages in same alignment as diode symbol. Thin bar depicts the cathode.

A modern semiconductor diode is made of a crystal of semiconductor like silicon that has impurities added to it to create a region on one side that contains negative charge carriers (electrons), called n-type semiconductor, and a region on the other side that contains positive charge carriers (holes), called p-type semiconductor. The diode's terminals are attached to each of these regions. The boundary within the crystal between these two regions, called a PN junction, is where the action of the diode takes place. The crystal conducts a current of electrons in a direction from the N-type side (called the cathode) to the P-type side (called the anode), but not in the opposite direction. However, conventional current flows from anode to cathode in the direction of the arrow (opposite to the electron flow, since electrons have negative charge).

Another type of semiconductor diode, the Schottky diode, is formed from the contact between a metal and a semiconductor rather than by a p–n junction.

Current–voltage characteristic

[edit]

A semiconductor diode’s behavior in a circuit is given by its current–voltage characteristic, or I–V graph (see graph below). The shape of the curve is determined by the transport of charge carriers through the so-called depletion layer or depletion region that exists at the p–n junction between differing semiconductors. When a p–n junction is first created, conduction-band (mobile) electrons from the N-doped region diffuse into the P-doped region where there is a large population of holes (vacant places for electrons) with which the electrons "recombine". When a mobile electron recombines with a hole, both hole and electron vanish, leaving behind an immobile positively charged donor (dopant) on the N side and negatively charged acceptor (dopant) on the P side. The region around the p–n junction becomes depleted of charge carriers and thus behaves as an insulator.

However, the width of the depletion region (called the depletion width) cannot grow without limit. For each electron–hole pair that recombines, a positively charged dopant ion is left behind in the N-doped region, and a negatively charged dopant ion is left behind in the P-doped region. As recombination proceeds more ions are created, an increasing electric field develops through the depletion zone which acts to slow and then finally stop recombination. At this point, there is a "built-in" potential across the depletion zone.

If an external voltage is placed across the diode with the same polarity as the built-in potential, the depletion zone continues to act as an insulator, preventing any significant electric current flow (unless electron/hole pairs are actively being created in the junction by, for instance, light. see photodiode). This is the reverse bias phenomenon. However, if the polarity of the external voltage opposes the built-in potential, recombination can once again proceed, resulting in substantial electric current through the p–n junction (i.e. substantial numbers of electrons and holes recombine at the junction). For silicon diodes, the built-in potential is approximately 0.7 V (0.3 V for Germanium and 0.2 V for Schottky). Thus, if an external current is passed through the diode, about 0.7 V will be developed across the diode such that the P-doped region is positive with respect to the N-doped region and the diode is said to be "turned on" as it has a forward bias.

A diode’s 'I–V characteristic' can be approximated by four regions of operation.

Figure 5: I–V characteristics of a P–N junction diode (not to scale).

Transistors

[edit]

A transistor is a semiconductor device used to amplify and switch electronic signals and power. It is composed of a semiconductor material with at least three terminals for connection to an external circuit. A voltage or current applied to one pair of the transistor's terminals changes the current flowing through another pair of terminals. Because the controlled (output) power can be much more than the controlling (input) power, a transistor can amplify a signal. Today, some transistors are packaged individually, but many more are found embedded in integrated circuits. The transistor is the fundamental building block of modern electronic devices, and is ubiquitous in modern electronic systems. Following its release in the early 1950s the transistor revolutionized the field of electronics, and paved the way for smaller and cheaper radios, calculators, and computers, among other things. The essential usefulness of a transistor comes from its ability to use a small signal applied between one pair of its terminals to control a much larger signal at another pair of terminals. This property is called gain. A transistor can control its output in proportion to the input signal; that is, it can act as an amplifier. Alternatively, the transistor can be used to turn current on or off in a circuit as an electrically controlled switch, where the amount of current is determined by other circuit elements. There are two types of transistors, which have slight differences in how they are used in a circuit. A bipolar transistor has terminals labeled base, collector, and emitter. A small current at the base terminal (that is, flowing from the base to the emitter) can control or switch a much larger current between the collector and emitter terminals. For a field-effect transistor, the terminals are labeled gate, source, and drain, and a voltage at the gate can control a current between source and drain. The image to the right represents a typical bipolar transistor in a circuit. Charge will flow between emitter and collector terminals depending on the current in the base. Since internally the base and emitter connections behave like a semiconductor diode, a voltage drop develops between base and emitter while the base current exists. The amount of this voltage depends on the material the transistor is made from, and is referred to as VBE.

BJT used as an electronic switch, in grounded-emitter configuration.

Transistors are commonly used as electronic switches, both for high-power applications such as switched-mode power supplies and for low-power applications such as logic gates.

In a grounded-emitter transistor circuit, such as the light-switch circuit shown, as the base voltage rises the base and collector current rise exponentially, and the collector voltage drops because of the collector load resistor. The relevant equations:

VRC = ICE × RC, the voltage across the load (the lamp with resistance RC)
VRC + VCE = VCC, the supply voltage shown as 6V

If VCE could fall to 0 (perfect closed switch) then Ic could go no higher than VCC / RC, even with higher base voltage and current. The transistor is then said to be saturated. Hence, values of input voltage can be chosen such that the output is either completely off,[5] or completely on. The transistor is acting as a switch, and this type of operation is common in digital circuits where only "on" and "off" values are relevant.

Amplifier circuit, common-emitter configuration.

The common-emitter amplifier is designed so that a small change in voltage in (Vin) changes the small current through the base of the transistor; the transistor's current amplification combined with the properties of the circuit mean that small swings in Vin produce large changes in Vout.

Various configurations of single transistor amplifier are possible, with some providing current gain, some voltage gain, and some both.

From mobile phones to televisions, vast numbers of products include amplifiers for sound reproduction, radio transmission, and signal processing. The first discrete transistor audio amplifiers barely supplied a few hundred milliwatts, but power and audio fidelity gradually increased as better transistors became available and amplifier architecture evolved.

Modern transistor audio amplifiers of up to a few hundred watts are common and relatively inexpensive.

Oscillator

[edit]
A popular op-amp relaxation oscillator.

An electronic oscillator is an electronic circuit that produces a repetitive electronic signal, often a sine wave or a square wave. They are widely used in innumerable electronic devices. Common examples of signals generated by oscillators include signals broadcast by radio and television transmitters, clock signals that regulate computers and quartz clocks, and the sounds produced by electronic beepers and video games.

A low-frequency oscillator (LFO) is an electronic oscillator that generates an AC waveform at a frequency below ≈20 Hz. This term is typically used in the field of audio synthesizers, to distinguish it from an audio frequency oscillator.

Oscillators designed to produce a high-power AC output from a DC supply are usually called inverters.

There are two main types of electronic oscillator: the harmonic oscillator and the relaxation oscillator.

Harmonic oscillator

[edit]
Block diagram of a harmonic oscillator; an amplifier A with its output vo fed back into its input vf through a filter, β(jω).

The harmonic, or linear, oscillator produces a sinusoidal output.

The basic form of a harmonic oscillator is an electronic amplifier connected in a positive feedback loop with its output fed back into its input through a filter. When the power supply to the amplifier is first switched on, the amplifier's output consists only of noise. The noise travels around the loop and is filtered and re-amplified until it increasingly resembles a sine wave at a single frequency.

In inductive-capacitive or LC oscillators, the filter is a tuned circuit (often called a tank circuit) consisting of an inductor (L) and capacitor (C) connected together. Charge flows back and forth between the capacitor's plates through the inductor, so the tuned circuit can store electrical energy oscillating at its resonant frequency. There are small losses in the tank circuit, but the amplifier compensates for those losses and supplies the power for the output signal. LC oscillators are typically used when a tunable frequency source is necessary, such as in signal generators, tunable radio transmitters and the local oscillators in radio receivers. Typical LC oscillator circuits are the Hartley, Colpitts and Clapp circuits. On-chip inductors usually don't have a high enough Q-factor to use in the tuned circuit.

A piezoelectric crystal (commonly quartz) may take the place of the filter to stabilise the frequency of oscillation, this is called a crystal oscillator. These kinds of oscillators contain quartz crystals that mechanically vibrate as resonators, and their vibration determines the oscillation frequency. Crystals have very high Q-factor and also better temperature stability than tuned circuits, so crystal oscillators have much better frequency stability than LC or RC oscillators. They are used to stabilize the frequency of most radio transmitters, and to generate the clock signal in computers. The Pierce oscillator circuit is often used for crystal oscillators. Because the crystal is an off-chip component, it adds some cost and complexity to the system design, but the crystal itself is generally quite inexpensive.

Surface acoustic wave (SAW) devices are a kind of crystal oscillator, but achieve much higher frequencies by establishing standing waves on the surface of a quartz crystal lattice.[citation needed] These are more expensive than crystal oscillators, and are used in specialized applications which require a direct and very accurate high frequency reference, for example, in cellular telephones.

There are many ways to implement harmonic oscillators, because there are different ways to amplify and filter. Some of the different circuits are:

Relaxation oscillator

[edit]

A relaxation oscillator produces a non-sinusoidal output, such as a square, sawtooth or triangle wave. It contains an energy-storing element (a capacitor or, more rarely, an inductor) and a nonlinear trigger circuit (a latch, Schmitt trigger, or negative resistance element) that periodically charges and discharges the energy stored in the storage element thus causing abrupt changes in the output waveform.

Square-wave relaxation oscillators are used to provide the clock signal for sequential logic circuits such as timers and counters, although crystal oscillators are often preferred for their greater stability. Triangle wave or sawtooth oscillators are used in the timebase circuits that generate the horizontal deflection signals for cathode ray tubes in analogue oscilloscopes and television sets. In function generators, this triangle wave may then be further shaped into a close approximation of a sine wave.

Ring oscillators are built of a ring of active delay stages. Generally the ring has an odd number of inverting stages, so that there is no single stable state for the internal ring voltages. Instead, a single transition propagates endlessly around the ring.

Types of relaxation oscillator circuits include:

Integrated circuits

[edit]
Synthetic detail of an integrated circuit through four layers of planarized copper interconnect, down to the polysilicon (pink), wells (greyish), and substrate (green)

Integrated circuits were made possible by experimental discoveries showing that semiconductor devices could perform the functions of vacuum tubes and by mid-20th-century technology advancements in semiconductor device fabrication. The integration of large numbers of tiny transistors into a small chip was an enormous improvement over the manual assembly of circuits using discrete electronic components. The integrated circuit's mass production capability, reliability, and building-block approach to circuit design ensured the rapid adoption of standardized ICs in place of designs using discrete transistors.

There are two main advantages of ICs over discrete circuits: cost and performance. Cost is low because the chips, with all their components, are printed as a unit by photolithography rather than being constructed one transistor at a time. Furthermore, much less material is used to construct a packaged IC die than to construct a discrete circuit. Performance is high because the components switch quickly and consume little power (compared to their discrete counterparts) as a result of the small size and close proximity of the components. As of 2006, typical chip areas range from a few square millimeters to around 350 mm2, with up to 1 million transistors per mm2.

References

[edit]
  1. ^ Plympton, George Washington (1884). The aneroid barometer: its construction and use. D. Van Nostran Co.
  2. ^ Singmin, Andrew (2001). Beginning digital electronics through projects. Newnes. p. 9. ISBN 978-0750672696. Signals come from transducers...
  3. ^ Miller, Mark R. (2002). Electronics the Easy Way. Barron's Educational Series. pp. 232–239. ISBN 978-0764119811. Until the radio came along...
  4. ^ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "semiconductor". doi:10.1351/goldbook.S05591
  5. ^ apart from a small value due to leakage currents

See also

[edit]
[edit]