I'm going to exploit the use of LaTeX for now. As soon as I can program the AcadaWiki, I will stop.
Dr. Euler's Calculus I Sample Exam Problems
[edit]
1. True or False
2. True or False
3. True or False
4. Evaluate
5. Evaluate
6. True or False
7. True or False
8. True or False
9. True or False
10. True or False
11. True or False
12. True or False
13. Evaluate
14. Evaluate
Evaluation of Multiple Derivatives
[edit]
Dr. Euler assigned a recent extra credit assignment involving the finding of an equation to find the multiple derivatives of a function. The below equations are what I produced, yet they remain to be proved mathematically.
Dr. Euler's approach follows a different method, using limits as a brute-force method. Let us find multiple derivatives of the function .
- .
and
and
This was the extent to Dr. Euler's illustration of taking multiple derivatives. Obviously Dr. Euler's method trumps over mine because it has already been proven to solve any function, including trigonometric functions and rational functions. Upon analyzing these formulas, I formulated an equation for finding the nth derivative of a function with the help of Isaac Nichols, one of my fellow students.
Suppose you have a function f(x). The derivatives of of this function are as follow:
Derivative
|
Prime Notation
|
Limit notation
|
Binomial coefficients
|
0
|
|
|
1
|
|
|
|
1 1
|
|
|
|
1 2 1
|
|
|
|
1 3 3 1
|
|
|
|
|
|
|
|
1 n n 1
|
Calculus II Equations
[edit]
The Volume of a Cylindrical Wedge
[edit]
For a cylindrical wedge, similar to the type of wedge that is cut from a tree when chopping, this mathematical equation will find the volume.
If you take a cross section of the wedge to form a right triangle, the area of that cross section can be computed as follows, with representing the radius of of the semicircle, representing the position on the graph of the ellipse, and representing the angle the wedge is cut.
From here, we can calculate the volume of the wedge using the Cross Section method in calculus.
The Paradox of Gabriel's Horn
[edit]