Regular and uniform complex polytopes
Complex Polygons (C2)
[edit]
The complex reflection group is p[q]r, order [1] has, configuration matrix:[2]
= (Order 2p2 and p2) - Related to p-p duoprisms
Regular
G(p,1,2) |
|
k-face |
fk |
f0 |
f1 |
k-fig
|
Notes
|
A1 |
|
( )
|
f0
|
p2 |
2 |
{ } |
G(p,1,2)/A1 = 2p2/2 = p2
|
p[ ] |
|
p{ }
|
f1
|
p |
2p |
( ) |
G(p,1,2)/p[ ] = 2p2/p = 2p
|
|
Quasiregular
p[]p[] |
|
k-face |
fk |
f0 |
f1 |
k-fig
|
Notes
|
|
|
( )
|
f0
|
p2 |
1 |
1 |
{ } |
p[]p[] = p2
|
p[] |
|
p{ }
|
f1
|
p |
p |
* |
( ) |
p[]p[]/p[] = p
|
p[] |
|
p{ }
|
p |
* |
p |
p[]p[]/p[] = p
|
|
(order pq) - related to p-q duoprism
Quasiregular
p[]q[] |
|
k-face |
fk |
f0 |
f1 |
k-fig
|
Notes
|
|
|
( )
|
f0
|
pq |
1 |
1 |
{ } |
p[]q[] = pq
|
p[] |
|
p{ }
|
f1
|
p |
q |
* |
( ) |
p[]q[]/p[] = q
|
q[] |
|
q{ }
|
q |
* |
p |
p[]q[]/q[] = p
|
= (order 18 and 9) - related to 3-3 duoprism
Regular
M2 |
|
k-face |
fk |
f0 |
f1 |
k-fig
|
Notes
|
A1 |
|
( )
|
f0
|
9 |
2 |
{ } |
M2/A1 = 18/2 = 9
|
L1 |
|
3{ }
|
f1
|
3 |
6 |
( ) |
M2/L1 = 18/3 = 6
|
|
Quasiregular
L2 1 |
|
k-face |
fk |
f0 |
f1 |
k-fig
|
Notes
|
|
|
( )
|
f0
|
9 |
1 |
1 |
{ } |
L2 1 = 9
|
L1 |
|
3{ }
|
f1
|
3 |
3 |
* |
( ) |
L2 1/L1 = 9/3 = 3
|
|
3 |
* |
3
|
|
(order 6) - related to triangular prism
Quasiregular
L1A1 |
|
k-face |
fk |
f0 |
f1 |
k-fig
|
Notes
|
|
|
( )
|
f0
|
6 |
1 |
1 |
{ } |
L1A1 = 6
|
L1 |
|
3{ }
|
f1
|
3 |
2 |
* |
( ) |
L1A1/L1 = 6/3 = 2
|
A1 |
|
{ }
|
2 |
* |
3 |
L1A1/A1 = 6/2 = 3
|
(Order 18) - related 3-3 duopyramid
Regular
M2 |
|
k-face |
fk |
f0 |
f1 |
k-fig
|
Notes
|
L1 |
|
( )
|
f0
|
6 |
3 |
3{ } |
M2/L1 = 18/3 = 6
|
A1 |
|
{ }
|
f1
|
2 |
9 |
( ) |
M2/A1 = 18/2 = 9
|
(Order 18)
Quasiregular
M2 |
|
k-face |
fk |
f0 |
f1 |
k-fig
|
Notes
|
|
|
( )
|
f0
|
18 |
1 |
1 |
{ } |
M2 = 18
|
A1 |
|
{ }
|
f1
|
2 |
9 |
* |
( ) |
M2/A1 = 18/2 = 9
|
L1 |
|
3{ }
|
3 |
* |
6 |
M2/L1 = 18/3 = 6
|
Möbius–Kantor polygon = , (order 24)
Regular
L2 |
|
k-face |
fk |
f0 |
f1 |
k-fig
|
Notes
|
L1 |
|
( )
|
f0
|
8 |
3 |
3{ } |
L2/L1 = 4!/3 = 8
|
|
3{ }
|
f1
|
3 |
8 |
( )
|
= (order 48 and 24)
Regular
G6 |
|
k-face |
fk |
f0 |
f1 |
k-fig
|
Notes
|
A1 |
|
( )
|
f0
|
24 |
2 |
{ } |
G6/A1 = 48/2 = 24
|
L1 |
|
3{ }
|
f1
|
3 |
16 |
( ) |
G6/L1 = 48/3 = 16
|
|
Quasiregular
L2 |
|
k-face |
fk |
f0 |
f1 |
k-fig
|
Notes
|
|
|
( )
|
f0
|
24 |
1 |
1 |
{ } |
L2 = 24
|
L1 |
|
3{ }
|
f1
|
3 |
8 |
* |
( ) |
L2/L1 = 24/3 = 8
|
|
3 |
* |
8
|
|
Complex polyhedra (C3)
[edit]
There are 9 unique regular and uniform complex polyhedra from 14 Wythoff constructions (ringed patterns) in the L3 and M3 Shephard groups. These polyhedra can be seen a complex analogues of tetrahedral symmetry and octahedral symmetry of the regular tetrahedron, cube, and octahedron.
Type |
L3 = , order 648 |
M3 = , order 1296
|
Regular |
= |
(27,72,27) |
|
(54,216,72) |
= |
(72,216,54)
|
Truncation |
= |
(27,72+216,27+27) |
|
(648,216+432,72+72) |
= |
(648,216+432,72+72)
|
Quasiregular |
= |
(27,216,54+54) |
= |
(216,432,54+72)
|
Cantellation |
= |
(216,216+216,27+27+72) |
|
(216,216+432,54+72)
|
Cantitruncation |
= |
(648,216+216+216,27+27+72) |
|
(1296,432+432+648,54+54+216)
|
= - analogous to real tetrahedron
Regular
L3 |
|
k-face |
fk |
f0 |
f1 |
f2 |
k-fig
|
Notes
|
L2 |
|
( )
|
f0
|
27 |
8 |
8 |
3{3}3 |
L3/L2 = 27*4!/4! = 27
|
L1L1 |
|
3{ }
|
f1
|
3 |
72 |
3 |
3{ } |
L3/L1L1 = 27*4!/9 = 72
|
L2 |
|
3{3}3
|
f2
|
8 |
8 |
27 |
( ) |
L3/L2 = 27*4!/4! = 27
|
Rectified Hessian polyhedron
[edit]
= - analogous to real octahedron
Regular
M3 |
|
k-face |
fk |
f0 |
f1 |
f2 |
k-fig
|
Notes
|
M2 |
|
( )
|
f0
|
72 |
9 |
6 |
3{4}2 |
M3/M2 = 1296/18 = 72
|
L1A1 |
|
3{ }
|
f1
|
3 |
216 |
2 |
{ } |
M3/L1A1 = 1296/3/2 = 216
|
L2 |
|
3{3}3
|
f2
|
8 |
8 |
54 |
( ) |
M3/L2 = 1296/24 = 54
|
|
Quasiregular
L3 |
|
k-face |
fk |
f0 |
f1 |
f2 |
k-fig
|
Notes
|
L1L1 |
|
( )
|
f0
|
72 |
9 |
3 |
3 |
3{ }×3{ } |
L3/L1L1 = 648/9 = 72
|
L1 |
|
3{ }
|
f1
|
3 |
216 |
1 |
1 |
{ } |
L3/L1 = 648/3 = 216
|
L2 |
|
3{3}3
|
f2
|
8 |
8 |
27 |
* |
( ) |
L3/L2 = 648/24 = 27
|
|
8 |
8 |
* |
27
|
|
Truncated Hessian polyhedron
[edit]
= - analogous to real truncated tetrahedron
Truncated
L3 |
|
k-face |
fk |
f0 |
f1 |
f2 |
k-fig
|
Notes
|
L1 |
|
( )
|
f0
|
27 |
1 |
3 |
3 |
3 |
|
L3/L1 = 648/24 = 27
|
L1L1 |
|
3{ }
|
f1
|
3 |
72 |
* |
3 |
0 |
|
L3/L1L1 = 648/3/3 = 72
|
L1 |
|
3 |
* |
216 |
1 |
2 |
|
L3/L1 = 648/3 = 216
|
L2 |
|
t(3{3}3)
|
f2
|
24 |
8 |
8 |
27 |
* |
( ) |
L3/L2 = 648/24 = 27
|
|
3{3}3
|
8 |
0 |
8 |
* |
27
|
Cantellated Hessian polyhedron
[edit]
= - analogous to real cuboctahedron
Cantellated
L3 |
|
k-face |
fk |
f0 |
f1 |
f2 |
k-fig
|
Notes
|
L1 |
|
( )
|
f0
|
216 |
1 |
3 |
3 |
3 |
0 |
3{ }×{ } |
L3/L1 = 648/3 = 216
|
|
3{ }
|
f1
|
3 |
216 |
* |
2 |
0 |
0 |
{ }
|
|
3 |
* |
216 |
1 |
1 |
0
|
L2 |
|
3{3}3
|
f2
|
8 |
8 |
0 |
27 |
* |
* |
( ) |
L3/L2 = 648/24 = 27
|
L1L1 |
|
3{ }×3{ }
|
9 |
3 |
3 |
* |
72 |
* |
L3/L1L1 = 648/9 = 72
|
L2 |
|
3{3}3
|
8 |
0 |
8 |
* |
* |
27 |
L3/L2 = 648/24 = 27
|
|
Rectified
M3 |
|
k-face |
fk |
f0 |
f1 |
f2 |
k-fig
|
Notes
|
L1A1 |
|
( )
|
f0
|
216 |
6 |
3 |
2 |
3{ }×{ } |
M3/L1A1 = 1296/6 = 216
|
L1 |
|
3{ }
|
f1
|
3 |
432 |
1 |
1 |
{ } |
M3/L1 = 1296/3 = 432
|
L2 |
|
3{3}3
|
f2
|
8 |
8 |
54 |
* |
( ) |
M3/L2 = 1296/24 = 54
|
M2 |
|
3{4}2
|
9 |
6 |
* |
72 |
M3/M2 = 1296/18 = 72
|
|
Cantitruncated Hessian polyhedron
[edit]
= - analogous to real truncated octahedron
Truncated
M3 |
|
k-face |
fk |
f0 |
f1 |
f2 |
k-fig
|
Notes
|
A1 |
|
( )
|
f0
|
648 |
? |
? |
? |
? |
|
M3/L1 = 1296/2 = 648
|
L1A1 |
|
3{ }
|
f1
|
3 |
216 |
* |
? |
? |
|
M3/L1A1 = 1296/3/2 = 216
|
L1 |
|
3 |
* |
432 |
? |
? |
|
M3/L1 = 1296/3 = 432
|
L2 |
|
t(3{3}3)
|
f2
|
24 |
8 |
8 |
54 |
* |
( ) |
M3/L2 = 1296/24 = 54
|
M2 |
|
3{4}2
|
9 |
0 |
6 |
* |
72 |
M3/M2 = 1296/48 = 27
|
|
Cantitruncated
L3 |
|
k-face |
fk |
f0 |
f1 |
f2 |
k-fig
|
Notes
|
|
|
( )
|
f0
|
648 |
? |
? |
? |
? |
? |
? |
|
L3 = 648
|
L1 |
|
3{ }
|
f1
|
3 |
216 |
* |
* |
? |
? |
? |
|
L3/L1 = 648/3 = 216
|
|
3 |
* |
216 |
* |
? |
? |
?
|
|
3 |
* |
* |
216 |
? |
? |
?
|
L2 |
|
3{3}3
|
f2
|
24 |
8 |
8 |
0 |
27 |
* |
* |
( ) |
L3/L2 = 648/24 = 27
|
L1L1 |
|
3{ }×3{ } |
9 |
3 |
0 |
3 |
* |
72 |
* |
L3/L1/L1 = 648/3/3 = 72
|
L2 |
|
3{3}3 |
24 |
0 |
8 |
8 |
* |
* |
27 |
L3/L2 = 648/24 = 27
|
|
Double Hessian polyhedron
[edit]
Double Hessian polyhedron - analogous to real cube
Regular
M3 |
|
k-face |
fk |
f0 |
f1 |
f2 |
k-fig
|
Notes
|
L2 |
|
( )
|
f0
|
54 |
8 |
8 |
3{3}3 |
M3/L2 = 1296/24 = 54
|
L1A1 |
|
{ }
|
f1
|
2 |
216 |
3 |
3{ } |
M3/L1A1 = 1296/3/2 = 216
|
M2 |
|
2{4}3
|
f2
|
6 |
9 |
72 |
( ) |
M3/M2 = 1296/18 = 72
|
Truncated double Hessian polyhedron
[edit]
- analogous to real truncated cube
Truncated
M3 |
|
k-face |
fk |
f0 |
f1 |
f2 |
k-fig
|
Notes
|
L1 |
|
( )
|
f0
|
648 |
? |
? |
? |
? |
|
M3/L1 = 1296/3 = 432
|
L1A1 |
|
{ }
|
f1
|
2 |
216 |
* |
? |
? |
|
M3/L1A1 = 1296/6 = 216
|
L1 |
|
3{ }
|
3 |
* |
432 |
? |
? |
|
M3/L1 = 1296/3 = 432
|
M2 |
|
t(3{4}2)
|
f2
|
24 |
8 |
8 |
72 |
* |
( ) |
M3/M2 = 1296/18 = 72
|
L2 |
|
3{3}3
|
8 |
0 |
8 |
* |
72 |
M3/L2 = 1296/24 = 54
|
Cantellated double Hessian polyhedron
[edit]
- analogous to real rhombicuboctahedron
Cantellated
M3 |
|
k-face |
fk |
f0 |
f1 |
f2 |
k-fig
|
Notes
|
L1 |
|
( )
|
f0
|
216 |
1 |
3 |
3 |
3 |
0 |
|
M3/L1 = 1296/3 = 216
|
A1 |
|
{ }
|
f1
|
3 |
648 |
* |
2 |
0 |
0 |
{ } |
M3/A1 = 1296/2 = 648
|
L1 |
|
3{ }
|
3 |
* |
216 |
1 |
1 |
0 |
M3/L1 = 1296/3 = 216
|
M2 |
|
3{4}2
|
f2
|
9 |
6 |
0 |
72 |
* |
* |
( ) |
M3/M2 =1296/18 = 72
|
L1A1 |
|
3{ }×{ }
|
6 |
3 |
2 |
* |
216 |
* |
M3/L1A1 = 1296/6 = 216
|
L2 |
|
3{3}3
|
8 |
0 |
8 |
* |
* |
54 |
M3/L2 = 1296/24 = 54
|
Cantitruncated double Hessian polyhedron
[edit]
- analogous to real truncated cuboctahedron
Cantitruncated
M3 |
|
k-face |
fk |
f0 |
f1 |
f2 |
k-fig
|
Notes
|
|
|
( )
|
f0
|
1296 |
? |
? |
? |
? |
? |
? |
|
M3 = 1296
|
L1 |
|
3{ }
|
f1
|
3 |
432 |
* |
* |
? |
? |
? |
|
M3/L1 = 1296/3 = 432
|
|
3 |
* |
432 |
* |
? |
? |
?
|
A1 |
|
{ }
|
3 |
* |
* |
648 |
? |
? |
? |
M3/A1 = 1296/2 = 648
|
L2 |
|
t(3{3}3)
|
f2
|
24 |
8 |
8 |
0 |
54 |
* |
* |
( ) |
M3/L2 = 1296/24 = 54
|
L1A1 |
|
3{ }×{ } |
6 |
3 |
0 |
2 |
* |
216 |
* |
M3/L1/A1 = 1296/6 = 216
|
M2 |
|
t(3{4}2) |
18 |
0 |
9 |
6 |
* |
* |
27 |
M3/M2 = 1296/48 = 27
|
Witting polytope (C4)
[edit]
Witting polytope - - Real representation 421 polytope
L4 |
|
k-face |
fk |
f0 |
f1 |
f2 |
f3 |
k-fig
|
Notes
|
L3 |
|
( )
|
f0
|
240 |
27 |
72 |
27 |
3{3}3{3}3 |
L4/L3 = 216*6!/27/4! = 240
|
L3L1 |
|
3{ }
|
f1
|
3 |
2160 |
8 |
8 |
3{3}3 |
L4/L3L1 = 216*6!/4!/3 = 2160
|
|
3{3}3
|
f2
|
8 |
8 |
2160 |
3 |
3{ }
|
L3 |
|
3{3}3{3}3
|
f3
|
27 |
72 |
27 |
240 |
( ) |
L4/L3 = 216*6!/27/4! = 240
|
- Honeycomb of Witting polytope: L5 is order 155520N - Real representation 521 honeycomb
L5 |
|
k-face |
fk |
f0 |
f1 |
f2 |
f3 |
f4 |
k-figure
|
Notes
|
L4 |
|
( )
|
f0
|
N |
240 |
2160 |
2160 |
240 |
3{3}3{3}3{3}3 |
L5/L4 = N
|
L3L1 |
|
3{ }
|
f1
|
3 |
80N |
27 |
72 |
27 |
3{3}3{3}3 |
L5/L3L1 = NL4/L3L1 = 80N
|
L2L2 |
|
3{3}3
|
f2
|
8 |
8 |
270N |
8 |
8 |
3{3}3 |
L5/L2L2 = NL4/L2L2 = 270N
|
L3L1 |
|
3{3}3{3}3
|
f3
|
27 |
72 |
27 |
80N |
3 |
3{ } |
L5/L3L1 = NL4/L3L1 = 80N
|
L4 |
|
3{3}3{3}3{3}3
|
f4
|
240 |
2160 |
2160 |
240 |
N |
( ) |
L5/L4 = NL4/L4 = N
|
- ^ Lehrer & Taylor 2009, p.87
- ^ Complex Regular Polytopes, p. 117