Using Conways Chained Arrow Notation
F 0 ( n ) ≡ 1 {\displaystyle F_{0}(n)\equiv 1}
F 1 ( n ) ≡ n {\displaystyle F_{1}(n)\equiv n}
F 2 ( n ) ≡ n → n → ⋯ → n ⏟ n copies of n {\displaystyle F_{2}(n)\equiv {\begin{matrix}\underbrace {n\rightarrow n\rightarrow \cdots \rightarrow n} \\\ \ n{\mbox{ copies of }}n\end{matrix}}}
F 3 ( n ) ≡ n → n → ⋯ ⋯ ⋯ ⋯ ⋯ → n ⏟ n → n → ⋯ ⋯ ⋯ ⋯ → n ⏟ ⋮ ⏟ n → n → ⋯ ⋯ → n ⏟ n → n → ⋯ → n ⏟ n copies of n } n layers {\displaystyle F_{3}(n)\equiv \left.{\begin{matrix}&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \cdots \cdots \cdots \rightarrow n} \\&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \cdots \cdots \rightarrow n} \\&\underbrace {\qquad \;\;\vdots \qquad \;\;} \\&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \rightarrow n} \\&\underbrace {n\rightarrow n\rightarrow \cdots \rightarrow n} \\&n{\mbox{ copies of }}n\end{matrix}}\right\}n{\mbox{ layers}}}
F 4 ( n ) ≡ ( n layers ) { n → n → ⋯ ⋯ ⋯ ⋯ ⋯ → n ⏟ n → n → ⋯ ⋯ ⋯ ⋯ → n ⏟ ⋮ ⏟ n → n → ⋯ ⋯ → n ⏟ n → n → ⋯ → n ⏟ n copies of n { n → n → ⋯ ⋯ ⋯ ⋯ ⋯ → n ⏟ n → n → ⋯ ⋯ ⋯ ⋯ → n ⏟ ⋮ ⋮ ⏟ n → n → ⋯ ⋯ → n ⏟ n → n → ⋯ → n ⏟ n copies of n { ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ { n → n → ⋯ ⋯ ⋯ ⋯ ⋯ → n ⏟ n → n → ⋯ ⋯ ⋯ ⋯ → n ⏟ ⋮ ⋮ ⋮ ⏟ n → n → ⋯ ⋯ → n ⏟ n → n → ⋯ → n ⏟ n copies of n ⏟ n towers {\displaystyle F_{4}(n)\equiv \ \ \ \underbrace {(n{\mbox{ layers}})\left\{{\begin{matrix}&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \cdots \cdots \cdots \rightarrow n} \\&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \cdots \cdots \rightarrow n} \\&\underbrace {\qquad \;\;\vdots \qquad \;\;} \\&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \rightarrow n} \\&\underbrace {n\rightarrow n\rightarrow \cdots \rightarrow n} \\&n{\mbox{ copies of }}n\end{matrix}}\right.\left\{{\begin{matrix}&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \cdots \cdots \cdots \rightarrow n} \\&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \cdots \cdots \rightarrow n} \\&\underbrace {\qquad \;\;{\begin{matrix}\vdots \\\vdots \end{matrix}}\qquad \;\;} \\&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \rightarrow n} \\&\underbrace {n\rightarrow n\rightarrow \cdots \rightarrow n} \\&n{\mbox{ copies of }}n\end{matrix}}\right.{\Bigg \{}\cdots \cdots \cdots \cdots \cdots \cdots \left\{{\begin{matrix}&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \cdots \cdots \cdots \rightarrow n} \\&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \cdots \cdots \rightarrow n} \\&\underbrace {\qquad \;\;{\begin{matrix}\vdots \\\vdots \\\vdots \end{matrix}}\qquad \;\;} \\&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \rightarrow n} \\&\underbrace {n\rightarrow n\rightarrow \cdots \rightarrow n} \\&n{\mbox{ copies of }}n\end{matrix}}\right.} _{\begin{matrix}n{\mbox{ towers}}\end{matrix}}}
F 5 ( n ) ≡ n layers { n → n → ⋯ ⋯ ⋯ ⋯ ⋯ → n ⏟ n → n → ⋯ ⋯ ⋯ ⋯ → n ⏟ ⋮ ⏟ n → n → ⋯ ⋯ → n ⏟ n → n → ⋯ → n ⏟ n copies of n { n → n → ⋯ ⋯ ⋯ ⋯ ⋯ → n ⏟ n → n → ⋯ ⋯ ⋯ ⋯ → n ⏟ ⋮ ⋮ ⏟ n → n → ⋯ ⋯ → n ⏟ n → n → ⋯ → n ⏟ n copies of n { ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ { n → n → ⋯ ⋯ ⋯ ⋯ ⋯ → n ⏟ n → n → ⋯ ⋯ ⋯ ⋯ → n ⏟ ⋮ ⋮ ⋮ ⏟ n → n → ⋯ ⋯ → n ⏟ n → n → ⋯ → n ⏟ n copies of n ⏟ ⋮ ⋮ ⋮ ⏟ n layers { n → n → ⋯ ⋯ ⋯ ⋯ ⋯ → n ⏟ n → n → ⋯ ⋯ ⋯ ⋯ → n ⏟ ⋮ ⏟ n → n → ⋯ ⋯ → n ⏟ n → n → ⋯ → n ⏟ n copies of n { n → n → ⋯ ⋯ ⋯ ⋯ ⋯ → n ⏟ n → n → ⋯ ⋯ ⋯ ⋯ → n ⏟ ⋮ ⋮ ⏟ n → n → ⋯ ⋯ → n ⏟ n → n → ⋯ → n ⏟ n copies of n { ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ { n → n → ⋯ ⋯ ⋯ ⋯ ⋯ → n ⏟ n → n → ⋯ ⋯ ⋯ ⋯ → n ⏟ ⋮ ⋮ ⋮ ⏟ n → n → ⋯ ⋯ → n ⏟ n → n → ⋯ → n ⏟ n copies of n ⏟ n layers { n → n → ⋯ ⋯ ⋯ ⋯ ⋯ → n ⏟ n → n → ⋯ ⋯ ⋯ ⋯ → n ⏟ ⋮ ⏟ n → n → ⋯ ⋯ → n ⏟ n → n → ⋯ → n ⏟ n copies of n { n → n → ⋯ ⋯ ⋯ ⋯ ⋯ → n ⏟ n → n → ⋯ ⋯ ⋯ ⋯ → n ⏟ ⋮ ⋮ ⏟ n → n → ⋯ ⋯ → n ⏟ n → n → ⋯ → n ⏟ n copies of n { ⋯ ⋯ ⋯ ⋯ { n → n → ⋯ ⋯ ⋯ ⋯ ⋯ → n ⏟ n → n → ⋯ ⋯ ⋯ ⋯ → n ⏟ ⋮ ⋮ ⋮ ⏟ n → n → ⋯ ⋯ → n ⏟ n → n → ⋯ → n ⏟ n copies of n ⏟ n towers } n Super-Layers {\displaystyle F_{5}(n)\equiv \ \ \left.{\begin{matrix}&\underbrace {n{\mbox{ layers}}\left\{{\begin{matrix}&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \cdots \cdots \cdots \rightarrow n} \\&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \cdots \cdots \rightarrow n} \\&\underbrace {\qquad \;\;\vdots \qquad \;\;} \\&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \rightarrow n} \\&\underbrace {n\rightarrow n\rightarrow \cdots \rightarrow n} \\&n{\mbox{ copies of }}n\end{matrix}}\right.\left\{{\begin{matrix}&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \cdots \cdots \cdots \rightarrow n} \\&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \cdots \cdots \rightarrow n} \\&\underbrace {\qquad \;\;{\begin{matrix}\vdots \\\vdots \end{matrix}}\qquad \;\;} \\&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \rightarrow n} \\&\underbrace {n\rightarrow n\rightarrow \cdots \rightarrow n} \\&n{\mbox{ copies of }}n\end{matrix}}\right.{\Bigg \{}\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \left\{{\begin{matrix}&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \cdots \cdots \cdots \rightarrow n} \\&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \cdots \cdots \rightarrow n} \\&\underbrace {\qquad \;\;{\begin{matrix}\vdots \\\vdots \\\vdots \end{matrix}}\qquad \;\;} \\&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \rightarrow n} \\&\underbrace {n\rightarrow n\rightarrow \cdots \rightarrow n} \\&n{\mbox{ copies of }}n\end{matrix}}\right.} \\&\underbrace {\begin{matrix}\vdots \\\vdots \\\vdots \end{matrix}} \\&\underbrace {n{\mbox{ layers}}\left\{{\begin{matrix}&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \cdots \cdots \cdots \rightarrow n} \\&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \cdots \cdots \rightarrow n} \\&\underbrace {\qquad \;\;\vdots \qquad \;\;} \\&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \rightarrow n} \\&\underbrace {n\rightarrow n\rightarrow \cdots \rightarrow n} \\&n{\mbox{ copies of }}n\end{matrix}}\right.\left\{{\begin{matrix}&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \cdots \cdots \cdots \rightarrow n} \\&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \cdots \cdots \rightarrow n} \\&\underbrace {\qquad \;\;{\begin{matrix}\vdots \\\vdots \end{matrix}}\qquad \;\;} \\&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \rightarrow n} \\&\underbrace {n\rightarrow n\rightarrow \cdots \rightarrow n} \\&n{\mbox{ copies of }}n\end{matrix}}\right.{\Bigg \{}\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \left\{{\begin{matrix}&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \cdots \cdots \cdots \rightarrow n} \\&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \cdots \cdots \rightarrow n} \\&\underbrace {\qquad \;\;{\begin{matrix}\vdots \\\vdots \\\vdots \end{matrix}}\qquad \;\;} \\&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \rightarrow n} \\&\underbrace {n\rightarrow n\rightarrow \cdots \rightarrow n} \\&n{\mbox{ copies of }}n\end{matrix}}\right.} \\&\underbrace {n{\mbox{ layers}}\left\{{\begin{matrix}&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \cdots \cdots \cdots \rightarrow n} \\&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \cdots \cdots \rightarrow n} \\&\underbrace {\qquad \;\;\vdots \qquad \;\;} \\&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \rightarrow n} \\&\underbrace {n\rightarrow n\rightarrow \cdots \rightarrow n} \\&n{\mbox{ copies of }}n\end{matrix}}\right.\left\{{\begin{matrix}&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \cdots \cdots \cdots \rightarrow n} \\&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \cdots \cdots \rightarrow n} \\&\underbrace {\qquad \;\;{\begin{matrix}\vdots \\\vdots \end{matrix}}\qquad \;\;} \\&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \rightarrow n} \\&\underbrace {n\rightarrow n\rightarrow \cdots \rightarrow n} \\&n{\mbox{ copies of }}n\end{matrix}}\right.{\Bigg \{}\cdots \cdots \cdots \cdots \left\{{\begin{matrix}&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \cdots \cdots \cdots \rightarrow n} \\&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \cdots \cdots \rightarrow n} \\&\underbrace {\qquad \;\;{\begin{matrix}\vdots \\\vdots \\\vdots \end{matrix}}\qquad \;\;} \\&\underbrace {n\rightarrow n\rightarrow \cdots \cdots \rightarrow n} \\&\underbrace {n\rightarrow n\rightarrow \cdots \rightarrow n} \\&n{\mbox{ copies of }}n\end{matrix}}\right.} \\&{\begin{matrix}n{\mbox{ towers}}\end{matrix}}\end{matrix}}\right\}n{\mbox{ Super-Layers}}} G ( n ) ≡ F n ( n ) {\displaystyle G(n)\equiv F_{n}(n)}